model.py 93.3 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16 17 18
import inspect
import os
import pickle
19
import socket
20 21 22 23
import time
import warnings

import numpy as np
24

25
import paddle
26 27
import paddle.distributed as dist
import paddle.distributed.fleet as fleet
28
from paddle import fluid
29 30
from paddle.autograd import no_grad
from paddle.distributed.fleet.base import role_maker
31
from paddle.fluid import core
32 33
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.executor import global_scope
34
from paddle.fluid.framework import Variable
35
from paddle.fluid.framework import _current_expected_place as _get_device
36
from paddle.fluid.framework import _get_paddle_place, _non_static_mode
37
from paddle.fluid.layers import collective
38
from paddle.fluid.layers.utils import flatten
39
from paddle.framework.io_utils import is_belong_to_optimizer
40
from paddle.io import DataLoader, Dataset, DistributedBatchSampler
41
from paddle.jit.translated_layer import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
42
from paddle.metric import Metric
43 44
from paddle.static import InputSpec as Input

45
from .callbacks import EarlyStopping, config_callbacks
L
LielinJiang 已提交
46
from .model_summary import summary
47

48
__all__ = []
49 50 51 52 53 54 55 56 57 58 59 60 61

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
62 63 64
    assert isinstance(
        var, (Variable, fluid.core.VarBase, fluid.core.eager.Tensor)
    ), "not a variable"
H
hong 已提交
65
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
92
    return inspect.getfullargspec(func).args
93 94 95


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
96 97 98
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream
    )
99 100 101


def wait_server_ready(endpoints):
102
    assert not isinstance(endpoints, str)
103 104 105 106 107 108
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
109 110
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as sock:
111 112 113 114 115 116 117 118 119 120 121
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


122 123 124
def init_communicator(
    program, rank, nranks, wait_port, current_endpoint, endpoints
):
125 126 127 128
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
129
    block = program.global_block()
130 131
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
132 133 134 135
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
160 161
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
162
            name=fluid.unique_name.generate('hccl_id'),
163
            persistable=True,
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            type=core.VarDesc.VarType.RAW,
        )
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks,
            },
        )
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    elif core.is_compiled_with_xpu():
        bkcl_id_var = block.create_var(
            name=fluid.unique_name.generate('bkcl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_bkcl_id',
            inputs={},
            outputs={'Out': bkcl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': bkcl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
215 216 217 218


def prepare_distributed_context(place=None):
    if place is None:
219
        place = (
220 221
            fluid.CUDAPlace(paddle.distributed.ParallelEnv().dev_id)
            if paddle.distributed.ParallelEnv().nranks > 1
222
            else fluid.CUDAPlace(0)
223
        )
224

225
    place = _get_paddle_place(place)
Q
qizhaoaoe 已提交
226
    strategy = paddle.distributed.parallel.ParallelStrategy()
227 228 229 230 231 232 233 234
    strategy.nranks = paddle.distributed.ParallelEnv().nranks
    strategy.local_rank = paddle.distributed.ParallelEnv().local_rank
    strategy.trainer_endpoints = (
        paddle.distributed.ParallelEnv().trainer_endpoints
    )
    strategy.current_endpoint = (
        paddle.distributed.ParallelEnv().current_endpoint
    )
235 236 237 238 239 240 241 242 243 244

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
245 246 247 248 249 250 251 252
            init_communicator(
                communicator_prog,
                strategy.local_rank,
                strategy.nranks,
                True,
                strategy.current_endpoint,
                strategy.trainer_endpoints,
            )
253 254 255
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
256
        if fluid._non_static_mode():
257 258 259 260 261
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
262
        assert "Only support CUDAPlace for now."
263 264 265

    _parallel_context_initialized = True
    return strategy
266 267


L
LiuChiachi 已提交
268
def _update_input_info(inputs):
L
LiuChiachi 已提交
269
    "Get input shape list by given inputs in Model initialization."
270
    shapes = None
L
LiuChiachi 已提交
271
    dtypes = None
L
LiuChiachi 已提交
272 273
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
274
        dtypes = [inputs.dtype]
275
    elif isinstance(inputs, (list, tuple)):
276
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
277
        dtypes = [input.dtype for input in inputs]
278 279
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
280 281 282 283
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
284 285


286
class StaticGraphAdapter:
287
    """
288

289
    Model traning/inference with a static graph.
290

291 292 293
    """

    def __init__(self, model):
294
        super().__init__()
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
313
            'test_batch': 0,
314 315
        }

316 317
        self._nranks = paddle.distributed.ParallelEnv().nranks
        self._local_rank = paddle.distributed.ParallelEnv().local_rank
318

J
Jiaqi Liu 已提交
319 320 321
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
322
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
323

324 325 326 327 328 329 330 331
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
332
    def train_batch(self, inputs, labels=None, update=True):
333 334 335
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
336
        self.mode = 'train'
337 338
        assert (
            update is True
339
        ), "Does not support `update == False` in static graph mode by now."
340 341 342 343 344 345
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

346
    def predict_batch(self, inputs):
347 348 349 350
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
351
        return self.model.network.parameters(*args, **kwargs)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
370
        _save(self.model.network.state_dict(), param_path)
371 372 373 374 375 376
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
377
            p.name: p for p in filter(is_belong_to_optimizer, prog.list_vars())
378 379 380 381 382 383
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
384
    # TODO: support save/load scaler state in static graph
385 386 387 388 389 390 391 392
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
393 394 395 396
            [param for param, state in param_state_pairs],
            global_scope(),
            executor,
        )
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
424 425 426 427
                    (np.array(converted_state.pop("global_step")) - 1)
                    if "global_step" in converted_state
                    else converted_state.pop("@LR_DECAY_COUNTER@", None)
                )
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
444 445 446 447 448 449 450 451 452
                        accum_name = (
                            name
                            if opt_name is None
                            else name[len(opt_name) + 1 :]
                        )
                        for (
                            param_name,
                            state_var,
                        ) in self.model._optimizer._accumulators[name].items():
453 454 455
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
                                for state_key in sorted(
                                    state.keys(),
                                    key=lambda x: len(x),
                                    reverse=True,
                                ):
                                    prefix = (
                                        param_name
                                        + "_"
                                        + (
                                            opt_cls_name
                                            if opt_name is None
                                            else opt_name
                                        )
                                        + "_"
                                    )
471
                                    if state_key.startswith(prefix):
472 473 474
                                        prefix_offset = state_key[
                                            len(prefix) :
                                        ].find("_") + len(prefix)
475
                                        opt_unq_name = state_key[
476 477 478 479
                                            len(
                                                param_name + "_"
                                            ) : prefix_offset
                                        ]
480 481 482 483
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
484 485 486 487 488 489 490 491
                            dy_state_name = (
                                param_name
                                + "_"
                                + opt_unq_name
                                + "_"
                                + accum_name
                                + "_0"
                            )
492
                            converted_state[
493 494
                                state_var.name
                            ] = converted_state.pop(dy_state_name)
495

496 497 498
            assert (
                var.name in converted_state
            ), "variable [{}] is not in optimizer state file".format(var.name)
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
517 518 519
        assert (
            compiled_prog
        ), "Model is not ready, please call `model.prepare()` first"
520 521 522 523

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
524 525
        assert len(inputs) == len(self._input_vars[self.mode]), (
            "number of inputs"
526
            + " does not match number of arguments of `forward` method"
527
        )
528 529 530

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
531 532
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

533 534 535 536
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
537 538 539 540
            if (
                self._amp_level == 'O2'
                and input_dtypes[idx] == core.VarDesc.VarType.FP16
            ):
L
Leo Chen 已提交
541 542
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
543
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
544 545
                    feed[n] = feed[n].astype('float16')

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

568 569 570 571 572 573
        rets = self._executor.run(
            compiled_prog,
            feed=feed,
            fetch_list=pruned_fetch_list,
            return_numpy=False,
        )
574 575 576 577 578 579 580 581 582 583

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
584

585 586 587 588
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
589 590 591 592 593 594
            if (
                self.mode != 'train'
                and self.model._test_dataloader is not None
                and isinstance(self.model._test_dataloader, DataLoader)
                and self._nranks > 1
            ):
595 596 597 598 599 600
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
601
                        s[: int(total_size - current_count), ...] for s in state
602 603
                    ]
                    self._merge_count[self.mode + '_total'] = 0
604 605 606
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
607 608 609 610 611
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
612 613 614 615 616

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
638 639 640 641 642
        if (
            mode == 'train'
            and self.model._optimizer
            and self.model._optimizer._learning_rate_map
        ):
643 644 645 646 647 648 649 650
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
651 652
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
653 654
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
655
            self._label_vars[mode] = labels
656
            outputs = to_list(self.model.network.forward(*inputs))
657

658 659
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
660 661 662 663 664 665 666 667

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
668
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
669 670

            if mode == 'train' and self.model._optimizer:
671
                self._loss_endpoint = paddle.add_n(losses)
672 673 674
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
675 676 677 678 679
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
680 681 682
                        dist_strategy.amp_configs['use_pure_fp16'] = (
                            self._amp_level == 'O2'
                        )
683
                    self.model._optimizer = fleet.distributed_optimizer(
684 685
                        self.model._optimizer, strategy=dist_strategy
                    )
J
Jiaqi Liu 已提交
686
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
687 688 689 690 691 692 693
                    amp_lists = (
                        paddle.static.amp.AutoMixedPrecisionLists(
                            **self._amp_custom_lists
                        )
                        if self._amp_custom_lists
                        else None
                    )
J
Jiaqi Liu 已提交
694 695 696 697 698
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
699 700
                        **self._amp_configs
                    )
701 702 703 704 705 706 707 708 709 710 711

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
712
            "loss": to_list(losses),
713
            "metric": metrics,
714 715 716 717 718 719 720
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

721 722 723
        assert (
            self.model._place is not None
        ), "device is not set, please call `model.prepare()` first"
724 725 726 727 728 729 730 731 732 733 734 735

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
736 737 738 739 740
                if (
                    not var_py.name.startswith('nccl_id')
                    and var
                    and var.get_tensor()._is_initialized()
                ):
741 742 743 744 745 746 747
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

748 749 750 751
        if (
            self._amp_level == "O2"
            and mode == 'train'
            and core.is_compiled_with_cuda()
J
Jiaqi Liu 已提交
752 753 754
        ):
            self.model._optimizer.amp_init(place)

755 756 757 758 759 760 761 762
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


763
class DynamicGraphAdapter:
764
    def __init__(self, model):
765
        super().__init__()
766
        self.model = model
767 768
        self._nranks = paddle.distributed.ParallelEnv().nranks
        self._local_rank = paddle.distributed.ParallelEnv().local_rank
769 770 771 772
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
773
            'test_batch': 0,
774 775
        }

L
LiuChiachi 已提交
776
        self._input_info = None
J
Jiaqi Liu 已提交
777 778 779 780 781
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

782
        if self._nranks > 1:
783
            dist.init_parallel_env()
Q
qizhaoaoe 已提交
784
            stradegy = paddle.distributed.parallel.ParallelStrategy()
785 786 787 788 789 790 791 792
            stradegy.nranks = paddle.distributed.ParallelEnv().nranks
            stradegy.local_rank = paddle.distributed.ParallelEnv().local_rank
            stradegy.trainer_endpoints = (
                paddle.distributed.ParallelEnv().trainer_endpoints
            )
            stradegy.current_endpoint = (
                paddle.distributed.ParallelEnv().current_endpoint
            )
Q
qizhaoaoe 已提交
793
            self.ddp_model = paddle.DataParallel(self.model.network, stradegy)
794 795 796 797 798 799 800 801 802 803

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
804
    def train_batch(self, inputs, labels=None, update=True):
805 806 807
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
808
        self.model.network.train()
809 810
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
811
        self._input_info = _update_input_info(inputs)
812 813 814
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
815 816 817 818
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

819 820 821 822 823
        with paddle.amp.auto_cast(
            enable=self._amp_level != 'O0',
            **self._amp_custom_lists,
            level=self._amp_level
        ):
J
Jiaqi Liu 已提交
824
            if self._nranks > 1:
825
                outputs = self.ddp_model(*[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
826
            else:
827
                outputs = self.model.network(*[to_variable(x) for x in inputs])
828

L
Leo Chen 已提交
829 830
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
831
        final_loss = paddle.add_n(losses)
832

J
Jiaqi Liu 已提交
833
        if self._amp_level != "O0":
L
Leo Chen 已提交
834
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
835
            scaled.backward()
L
lyuwenyu 已提交
836
            if update:
L
Leo Chen 已提交
837
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
838
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
839 840
        else:
            final_loss.backward()
L
lyuwenyu 已提交
841 842 843
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
844

845 846
        metrics = []
        for metric in self.model._metrics:
847
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
848
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
849 850
            metrics.append(m)

851 852 853 854 855
        return (
            ([to_numpy(l) for l in losses], metrics)
            if len(metrics) > 0
            else [to_numpy(l) for l in losses]
        )
856 857

    def eval_batch(self, inputs, labels=None):
858
        self.model.network.eval()
859 860
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
861
        self._input_info = _update_input_info(inputs)
862 863 864
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

865
        outputs = self.model.network(*[to_variable(x) for x in inputs])
866 867 868 869 870 871 872 873 874

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

875 876
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
877 878
            losses = to_list(losses)

879 880 881 882 883 884
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
885 886 887 888 889
            if (
                self.model._test_dataloader is not None
                and self._nranks > 1
                and isinstance(self.model._test_dataloader, DataLoader)
            ):
890 891 892 893 894
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
895
                        o[: int(total_size - current_count)] for o in outputs
896 897
                    ]
                    labels = [
898
                        l[: int(total_size - current_count)] for l in labels
899 900
                    ]
                    self._merge_count[self.mode + '_total'] = 0
901 902 903
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
904 905 906 907
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

908
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
909
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
910 911
            metrics.append(m)

912
        if self.model._loss and len(metrics):
913
            return [to_numpy(l) for l in losses], metrics
914
        elif self.model._loss:
915 916 917
            return [to_numpy(l) for l in losses]
        else:
            return metrics
918

919
    def predict_batch(self, inputs):
920
        self.model.network.eval()
921 922
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
923
        self._input_info = _update_input_info(inputs)
924
        outputs = self.model.network(*inputs)
925 926 927 928 929 930
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
931
        return self.model.network.parameters(*args, **kwargs)
932 933

    def save(self, path):
934
        params = self.model.network.state_dict()
935
        paddle.save(params, path + '.pdparams')
L
Leo Chen 已提交
936 937 938
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
939
                paddle.save(optim, path + '.pdopt')
L
Leo Chen 已提交
940 941 942 943 944 945
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
946 947 948 949
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
950 951 952 953
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

954 955 956 957
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

958 959
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
960 961 962 963 964 965 966 967 968 969
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
970
        opt_name = opt_unq_name[: opt_unq_name.rfind("_")]  # remove suffix idx
971
        param_names = [param.name for param in self.model.network.parameters()]
972 973 974
        for var_name, state_var in sorted(
            optim_state.items(), key=lambda x: len(x[0]), reverse=True
        ):
975 976 977 978 979
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
980 981 982
                    converted_state["global_step"] = (
                        np.array(converted_state.pop("@LR_DECAY_COUNTER@")) + 1
                    )
983 984 985 986 987 988
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
989 990 991 992 993 994 995
                        accum_name = var_name[
                            len(param_name + "_" + opt_name + "_") :
                        ]
                    elif (
                        var_name.startswith(param_name + "_")
                        and opt_name == opt_cls_name
                    ):
996
                        # when init optimizer without name
997
                        accum_name = var_name[len(param_name + "_") :]
998 999 1000
                    else:
                        continue
                    # remove suffix idx
1001
                    accum_name = accum_name[: accum_name.rfind("_")]
1002 1003
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
1004 1005 1006 1007 1008 1009 1010 1011
                    dy_state_name = (
                        param_name
                        + "_"
                        + opt_unq_name
                        + "_"
                        + accum_name
                        + "_0"
                    )
1012 1013
                    converted_state[dy_state_name] = state_var

1014 1015
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
1016
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
1017 1018 1019 1020
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
1021

L
Leo Chen 已提交
1022
    def prepare(self):
1023 1024 1025 1026
        if (
            self._amp_level == "O2"
            and self.model.mode == 'train'
            and core.is_compiled_with_cuda()
L
Leo Chen 已提交
1027 1028 1029 1030
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
1031 1032
                level='O2',
            )
L
Leo Chen 已提交
1033 1034 1035
        if self._amp_level != "O0":
            self.model._scaler = None

1036

1037
class Model:
1038
    """
1039

1040 1041
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
1042
    switched by `paddle.enable_static()`. The usage is as follows.
1043
    But note, the switching between dynamic and static should be before
1044
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
1045
    must be required for static graph.
1046

1047
    When training on GPU, auto mixed precision (AMP O1) and pure float16
1048
    (AMP O2) training are both supported in static graph mode and dynamic mode.
1049
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
1050 1051
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
1052 1053 1054 1055
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
1056

1057
    Args:
1058 1059
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
1060
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
1061
            could be a InputSpec instance, or list/tuple of InputSpec instances,
1062
            or dict ({name: InputSpec}), and it couldn't be None in static
1063 1064
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
1065
            could be a InputSpec instnace or list/tuple of InputSpec instances,
1066
            or None. For static graph, if labels is required in loss,
1067
            labels must be set. Otherwise, it could be None. Default: None.
1068 1069


1070
    Examples:
J
Jiaqi Liu 已提交
1071 1072
        1. A common example

1073
        .. code-block:: python
1074
          :name: code-example1
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
1092

1093 1094 1095 1096 1097
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
1098 1099
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
1100 1101 1102 1103 1104 1105 1106

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
1107 1108 1109 1110 1111


        2. An example using mixed precision training.

        .. code-block:: python
1112
          :name: code-example2
J
Jiaqi Liu 已提交
1113

1114 1115 1116 1117
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
1118

1119 1120
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
1121

1122 1123
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1124

1125 1126
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1137

1138 1139 1140 1141 1142 1143 1144
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1145

1146 1147
    """

1148
    def __init__(self, network, inputs=None, labels=None):
1149
        self.mode = 'train'
1150
        self.network = network
1151 1152
        self._inputs = None
        self._labels = None
1153
        self._loss = None
1154 1155
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1156
        self._input_info = None
1157
        self._is_shape_inferred = False
1158
        self._test_dataloader = None
L
LiuChiachi 已提交
1159
        self.stop_training = False
1160

J
Jiabin Yang 已提交
1161
        if not _non_static_mode():
1162
            if not isinstance(inputs, (list, tuple, dict, Input)):
1163
                raise TypeError(
1164 1165
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1166
        elif inputs:
L
LiuChiachi 已提交
1167
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1168

1169
        self._inputs = self._verify_spec(inputs, is_input=True)
1170
        self._labels = self._verify_spec(labels)
1171

1172
        # init backend
J
Jiabin Yang 已提交
1173
        if fluid._non_static_mode():
1174 1175 1176 1177
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1178
    def train_batch(self, inputs, labels=None, update=True):
1179
        """
1180

L
lyuwenyu 已提交
1181 1182
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1183 1184

        Args:
1185 1186
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1187
                tensors (in case the model has multiple inputs).
1188 1189 1190
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1191 1192 1193
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1194 1195 1196 1197 1198 1199 1200 1201 1202

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1226

1227
        """
L
lyuwenyu 已提交
1228
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1229
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1230
            self._update_inputs()
1231
        return loss
1232

Z
zhaoyingli 已提交
1233
    @no_grad()
1234 1235
    def eval_batch(self, inputs, labels=None):
        """
1236

1237 1238 1239
        Run one evaluating step on a batch of data.

        Args:
1240 1241
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1242
                tensors (in case the model has multiple inputs).
1243 1244 1245
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1246
                set None. Default: None.
1247 1248 1249 1250 1251 1252 1253 1254 1255

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1280

1281
        """
1282
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1283
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1284
            self._update_inputs()
1285
        return loss
1286

Z
zhaoyingli 已提交
1287
    @no_grad()
1288
    def predict_batch(self, inputs):
1289
        """
1290

1291
        Run one predicting step on a batch of data.
1292 1293

        Args:
1294 1295
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1296
                tensors (in case the model has multiple inputs).
1297 1298 1299 1300 1301 1302 1303 1304

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1305 1306 1307 1308 1309 1310

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1329

1330
        """
1331
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1332
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1333
            self._update_inputs()
1334
        return loss
1335

1336
    def save(self, path, training=True):
1337
        """
1338

1339
        This function saves parameters, optimizer information or model and
1340 1341
        paramters only for inference to path. It depends on the parameter
        `training`.
1342

1343
        If `training` is set to True, the parameters saved contain all
1344
        the trainable Variable, will save to a file with suffix ".pdparams".
1345 1346 1347 1348
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1349
        This function will silently overwrite existing file at the target location.
1350

1351
        If `training` is set to False, only inference model will be saved.
1352 1353

        Args:
1354 1355 1356
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1357 1358
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1359 1360 1361 1362 1363 1364 1365

        Returns:
            None

        Examples:

            .. code-block:: python
1366

1367
                import paddle
1368
                import paddle.nn as nn
1369
                import paddle.vision.transforms as T
1370
                from paddle.static import InputSpec
1371

1372
                class Mnist(nn.Layer):
1373
                    def __init__(self):
1374
                        super().__init__()
1375
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1376
                            nn.Flatten(1),
1377 1378 1379 1380
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1381

1382
                    def forward(self, x):
1383
                        return self.net(x)
1384

1385
                dynamic = True  # False
1386
                # if use static graph, do not set
1387 1388
                if not dynamic:
                    paddle.enable_static()
1389

1390 1391 1392
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1393
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1394
                    parameters=model.parameters())
1395
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1396

1397 1398 1399 1400 1401
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
1402

1403
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1404 1405
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1406

1407
        """
1408

1409
        if paddle.distributed.ParallelEnv().local_rank == 0:
1410 1411 1412 1413
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1414 1415 1416

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
1417

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1433
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1434 1435
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1436 1437
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1438 1439
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1440
                a optimizer has been set to the model. Default: False.
1441 1442 1443 1444 1445 1446 1447

        Returns:
            None

        Examples:

            .. code-block:: python
1448 1449 1450 1451

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1452

1453
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1454

1455
                input = InputSpec([None, 784], 'float32', 'x')
1456

1457 1458 1459 1460 1461
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1462

1463 1464
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1465

1466 1467 1468 1469 1470 1471
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1472
                return pickle.load(f, encoding='latin1')
1473 1474 1475 1476 1477

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
1478 1479
                    "{} is not found in the providing file.".format(key)
                )
1480 1481
            if list(state.shape) != list(param.shape):
                raise ValueError(
1482 1483 1484 1485
                    "{} receives a shape {}, but the expected shape is {}.".format(
                        key, list(state.shape), list(param.shape)
                    )
                )
1486 1487 1488 1489
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
1490 1491 1492 1493 1494 1495
            assert ext in [
                '',
                '.pdparams',
                '.pdopt',
                '.pdmodel',
            ], "Unknown postfix {} from weights".format(ext)
1496 1497 1498 1499 1500 1501 1502
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1503
        for key, param in self.network.state_dict().items():
1504 1505 1506 1507 1508
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
1509 1510
                        ("Skip loading for {}. ".format(key) + str(err))
                    )
1511 1512 1513 1514 1515 1516
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

1517 1518 1519
        optim_state = (
            None if reset_optimizer else _load_state_from_path(path + ".pdopt")
        )
L
Leo Chen 已提交
1520 1521

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1522
        if _non_static_mode():
L
Leo Chen 已提交
1523 1524 1525 1526 1527
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

1528 1529 1530
            return self._adapter.load(
                matched_param_state, optim_state, scaler_state
            )
L
Leo Chen 已提交
1531 1532
        else:
            return self._adapter.load(matched_param_state, optim_state)
1533 1534 1535

    def parameters(self, *args, **kwargs):
        """
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1546

1547 1548 1549
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1550

1551
                input = InputSpec([None, 784], 'float32', 'x')
1552

1553 1554 1555 1556
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1557

1558
                params = model.parameters()
1559

1560 1561 1562
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1563 1564 1565
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1566 1567
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
1568 1569 1570
                assert isinstance(
                    self._optimizer._grad_clip,
                    (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm),
1571
                ), "Only ClipGradByNorm and ClipGradByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
1583 1584
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1585 1586 1587 1588 1589 1590 1591 1592
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
1593 1594
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1595 1596 1597 1598 1599 1600 1601 1602
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1603
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1604 1605 1606 1607 1608 1609 1610
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
1611 1612 1613
                'custom_white_list',
                'custom_black_list',
                'custom_black_varnames',
J
Jiaqi Liu 已提交
1614 1615 1616
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
1617 1618
                        param_name
                    ]
J
Jiaqi Liu 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1633 1634 1635 1636
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".format(
                        tuple(amp_config_key_set - accepted_param_set)
                    )
                )
J
Jiaqi Liu 已提交
1637 1638

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1639
                if _non_static_mode():
J
Jiaqi Liu 已提交
1640
                    raise ValueError(
1641
                        "'use_fp16_guard' is supported in static graph mode only."
1642
                    )
J
Jiaqi Liu 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1652 1653 1654
    def prepare(
        self, optimizer=None, loss=None, metrics=None, amp_configs=None
    ):
1655
        """
1656

1657 1658 1659
        Configures the model before runing.

        Args:
1660
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1661
                and should be a Optimizer instance. It can be None in eval
1662 1663
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1664
                be a `paddle.nn.Layer` instance or any callable function
1665
                taken the predicted values and ground truth values as input.
1666 1667 1668 1669
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1670 1671 1672
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1673 1674
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1675 1676 1677 1678
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1679
                'use_fp16_guard' is only supported in static graph mode. Mixed
1680 1681 1682 1683 1684
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1685

1686 1687
        Returns:
            None
1688

1689
        """
1690 1691
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1692
            global _parallel_context_initialized
1693 1694 1695 1696
            if (
                paddle.distributed.ParallelEnv().nranks > 1
                and not _parallel_context_initialized
            ):
J
Jiabin Yang 已提交
1697
                if fluid._non_static_mode():
1698
                    main_prog_seed = fluid.default_main_program().random_seed
1699 1700 1701
                    startup_prog_seed = (
                        fluid.default_startup_program().random_seed
                    )
1702
                    fluid.disable_dygraph()
1703
                    paddle.disable_static(self._place)
1704 1705 1706
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
1707 1708 1709
                    fluid.default_startup_program().random_seed = (
                        startup_prog_seed
                    )
1710 1711 1712 1713 1714
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1715 1716
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1717 1718 1719
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1720
        self._loss = loss
1721 1722 1723

        metrics = metrics or []
        for metric in to_list(metrics):
1724 1725 1726
            assert isinstance(
                metric, Metric
            ), "{} is not sub class of Metric".format(metric.__class__.__name__)
1727
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1728
        self._prepare_amp(amp_configs)
1729

L
Leo Chen 已提交
1730
        self._adapter.prepare()
1731

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
    def fit(
        self,
        train_data=None,
        eval_data=None,
        batch_size=1,
        epochs=1,
        eval_freq=1,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        verbose=2,
        drop_last=False,
        shuffle=True,
        num_workers=0,
        callbacks=None,
        accumulate_grad_batches=1,
        num_iters=None,
    ):
1750
        """
1751

1752 1753 1754 1755
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1756 1757
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for
                train. An instance of paddle paddle.io.Dataset or
1758
                paddle.io.Dataloader is recomended. Default: None.
1759
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1760 1761
                evaluation at the end of epoch. If None, will not do evaluation.
                An instance of paddle.io.Dataset or paddle.io.Dataloader
1762
                is recomended. Default: None.
1763
            batch_size (int|list, optional): The batch size of train_data and eval_data. When
1764 1765 1766 1767
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1768
                is performed. Default: 1.
1769
            log_freq (int, optional): The frequency, in number of steps, the training logs
1770
                are printed. Default: 10.
1771
            save_dir(str|None, optional): The directory to save checkpoint during training.
1772
                If None, will not save checkpoint. Default: None.
1773
            save_freq (int, optional): The frequency, in number of epochs, to save
1774
                checkpoint. Default: 1.
1775
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1776
                1 = progress bar, 2 = one line per epoch. Default: 2.
1777
            drop_last (bool, optional): Whether drop the last incomplete batch of
1778 1779 1780
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1781
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1782 1783
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1784
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1785 1786 1787
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1788 1789 1790
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
1791
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident
L
lyuwenyu 已提交
1792
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1793
                size. Default: 1.
1794 1795 1796 1797
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1798 1799 1800 1801
        Returns:
            None

        Examples:
1802
            1. An example use Dataset and set batch size, shuffle in fit.
1803 1804 1805
               How to make a batch is done internally.

            .. code-block:: python
1806
              :name: code-example3
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1841 1842 1843 1844 1845

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1846
              :name: code-example4
1847 1848 1849 1850 1851

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1852

1853 1854 1855
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
1856

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1870

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1883

1884
        """
1885
        assert train_data is not None, "train_data must be given!"
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
        if isinstance(batch_size, (tuple, list)) and all(
            [isinstance(x, int) for x in batch_size]
        ):
            assert (
                len(batch_size) == 2
            ), "batch_size length error, expected train_batch_size and eval_batch_size."
            train_batch_size, eval_batch_size = batch_size
        elif isinstance(batch_size, int):
            train_batch_size, eval_batch_size = batch_size, batch_size

1897
        if isinstance(train_data, Dataset):
1898 1899
            train_sampler = DistributedBatchSampler(
                train_data,
1900
                batch_size=train_batch_size,
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
                shuffle=shuffle,
                drop_last=drop_last,
            )
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1911 1912 1913 1914
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1915
            eval_sampler = DistributedBatchSampler(
1916
                eval_data, batch_size=eval_batch_size
1917 1918 1919 1920 1921 1922 1923 1924
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1925 1926 1927 1928 1929 1930 1931
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1932

L
lyuwenyu 已提交
1933
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1934

1935
        steps = self._len_data_loader(train_loader)
1936
        self.num_iters = num_iters
1937 1938 1939 1940 1941
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(steps, int)
        ):
1942 1943 1944
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1945 1946 1947 1948 1949 1950 1951 1952 1953
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1954 1955
            metrics=self._metrics_name(),
        )
1956

L
LiuChiachi 已提交
1957 1958 1959
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1960 1961 1962 1963 1964 1965 1966 1967 1968
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
1969 1970 1971 1972
                cbks.on_begin(
                    'eval',
                    {'steps': eval_steps, 'metrics': self._metrics_name()},
                )
1973 1974 1975 1976

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1977 1978
            if self.stop_training:
                break
1979 1980 1981

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
    def evaluate(
        self,
        eval_data,
        batch_size=1,
        log_freq=10,
        verbose=2,
        num_workers=0,
        callbacks=None,
        num_iters=None,
    ):
1993 1994 1995 1996 1997
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
1998
                evaluation. An instance of paddle.io.Dataset or
1999
                paddle.io.Dataloader is recomended.
2000 2001 2002 2003
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
2004
                are printed. Default: 10.
2005
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2006
                1 = progress bar, 2 = one line per epoch. Default: 2.
2007
            num_workers (int, optional): The number of subprocess to load data,
2008 2009 2010
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
2011
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
2012 2013
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
2014 2015 2016
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
2017 2018 2019 2020 2021
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
2022 2023

          .. code-block:: python
2024

2025 2026 2027
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
2028

2029 2030 2031 2032 2033 2034
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
2035

2036 2037 2038 2039 2040 2041 2042
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
2043 2044 2045
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
2066 2067
            metrics=self._metrics_name(),
        )
2068 2069

        eval_steps = self._len_data_loader(eval_loader)
2070
        self.num_iters = num_iters
2071 2072 2073 2074 2075
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(eval_steps, int)
        ):
2076 2077 2078
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
2079 2080 2081
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

2095 2096 2097 2098 2099 2100 2101 2102 2103
    def predict(
        self,
        test_data,
        batch_size=1,
        num_workers=0,
        stack_outputs=False,
        verbose=1,
        callbacks=None,
    ):
2104 2105 2106 2107 2108 2109 2110
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
2111 2112
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
2113
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess
2114 2115 2116 2117
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
2118
                output field will be in shape [N, X, Y] if stack_output is True, and will
2119
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
2120 2121
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
2122
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2123
                1 = progress bar, 2 = one line per batch. Default: 1.
2124
            callbacks(Callback, optional): A Callback instance, Default: None.
2125

2126 2127 2128 2129
        Returns:
            list: output of models.

        Examples:
2130 2131

          .. code-block:: python
2132

2133 2134 2135
                import numpy as np
                import paddle
                from paddle.static import InputSpec
2136

2137 2138
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
2139
                        super().__init__(mode=mode)
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
2171 2172 2173
        """

        if test_data is not None and isinstance(test_data, Dataset):
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size
            )
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2184 2185 2186 2187 2188
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

2189
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
2190 2191 2192 2193

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2194
        cbks.on_begin('predict', logs)
2195 2196 2197

        outputs = []

2198
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2209
        cbks.on_end('predict', logs)
2210 2211
        return outputs

2212
    def _save_inference_model(self, path):
2213
        """
2214
        Save inference model can be used in static or dynamic mode.
2215 2216

        Args:
2217 2218
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2219
        Returns:
2220
            None
2221 2222
        """

J
Jiabin Yang 已提交
2223
        if fluid._non_static_mode():
2224 2225
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2226
                if self._input_info is None:  # No provided or inferred
2227
                    raise RuntimeError(
L
LiuChiachi 已提交
2228
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2229 2230 2231 2232
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
2233 2234
                        % self._input_info[0]
                    )
L
LiuChiachi 已提交
2235

2236
                paddle.jit.save(layer, path, input_spec=self._inputs)
2237

2238
        else:
2239 2240 2241 2242 2243 2244
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
2245 2246
                    "file_prefix is empty string."
                )
2247 2248 2249 2250 2251 2252 2253 2254 2255

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2256
            prog = self._adapter._progs.get('test', None)
2257 2258 2259
            assert (
                prog
            ), "Model is not ready, please call `model.prepare()` first"
2260 2261 2262 2263 2264 2265

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2266 2267 2268 2269 2270 2271 2272 2273 2274
            fluid.io.save_inference_model(
                model_path,
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
                params_filename=params_filename,
            )
2275

L
update  
lyuwenyu 已提交
2276
    def _run_one_epoch(
2277 2278 2279 2280 2281 2282
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2293
            # 4. custumed iterator yield separated inputs and labels:
2294 2295 2296 2297 2298
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2299

2300 2301 2302 2303 2304
            batch_size = (
                data[0].shape()[0]
                if callable(data[0].shape)
                else data[0].shape[0]
            )
2305 2306 2307

            callbacks.on_batch_begin(mode, step, logs)

2308
            if mode != 'predict':
2309
                _inputs = [data[: len(self._inputs)], data[len(self._inputs) :]]
L
lyuwenyu 已提交
2310
                if mode == 'train':
2311 2312 2313 2314
                    _inputs.append(
                        (step + 1) % self._accumulate == 0
                        or step + 1 == len(data_loader)
                    )
L
update  
lyuwenyu 已提交
2315

L
lyuwenyu 已提交
2316
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2317

2318
                if self._metrics and self._loss:
2319
                    metrics = [[l[0] for l in outs[0]]]
2320
                elif self._loss:
2321 2322 2323
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2334
                if self._inputs is not None:
2335
                    outs = self.predict_batch(data[: len(self._inputs)])
L
LielinJiang 已提交
2336
                else:
2337
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2338

2339 2340 2341
                outputs.append(outs)

            logs['step'] = step
2342 2343 2344 2345
            if (
                mode == 'train'
                or self._adapter._merge_count.get(mode + '_batch', 0) <= 0
            ):
2346 2347 2348
                logs['batch_size'] = (
                    batch_size * paddle.distributed.ParallelEnv().nranks
                )
2349 2350 2351 2352
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2353 2354
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2355 2356 2357
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2358
                    break
2359 2360
        self._reset_metrics()

2361
        if mode == 'predict':
2362 2363 2364
            return logs, outputs
        return logs

L
LielinJiang 已提交
2365
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2366 2367 2368
        """Prints a string summary of the network.

        Args:
2369 2370 2371 2372
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
                    if not set, input_size will get from ``self._inputs`` if network only have
                    one input, input_size can be tuple or InputSpec. if model have multiple
                    input, input_size must be a list which contain every input's shape.
L
LielinJiang 已提交
2373
                    Default: None.
2374
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2375 2376 2377 2378 2379 2380

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2381 2382 2383 2384 2385 2386

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2387

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2399 2400

        """
2401 2402 2403
        assert (
            input_size is not None or self._inputs is not None
        ), "'input_size' or 'self._input' must be set"
2404 2405 2406 2407
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2408
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2409

L
LiuChiachi 已提交
2410
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2411 2412
        out_specs = []

2413 2414 2415 2416 2417 2418
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2419
                # While Saving inference model in dygraph, and providing inputs only in running.
2420 2421 2422 2423
                if (
                    shapes is not None
                    and dtypes is not None
                    and fluid._non_static_mode()
L
LiuChiachi 已提交
2424
                ):
2425
                    out_specs = [
2426
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2427 2428 2429 2430 2431 2432 2433
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2434 2435
            assert is_input is False
            out_specs = [
2436 2437
                specs[n]
                for n in extract_args(self.network.forward)
2438 2439
                if n != 'self'
            ]
2440 2441 2442 2443 2444 2445 2446 2447
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2448 2449 2450 2451
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
2452 2453 2454

        return out_specs

2455 2456 2457 2458 2459
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2460
        metrics_name = ['loss'] if self._loss else []
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2471 2472 2473

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2474 2475
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
2476 2477 2478
            self._inputs = self._verify_spec(
                None, self._input_info[0], self._input_info[1], True
            )
L
LiuChiachi 已提交
2479
            self._is_shape_inferred = True