model.py 92.2 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import os
import pickle
import numpy as np
import warnings
20 21 22
import time
import socket
import contextlib
23

24
import paddle
25
from paddle import fluid
26
from paddle.fluid import core
27
from paddle.fluid.framework import _non_static_mode
28 29
from paddle.fluid.framework import Variable
from paddle.fluid.framework import _get_paddle_place
30
from paddle.fluid.framework import _current_expected_place as _get_device
31 32 33 34
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
35 36
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
37
from paddle.fluid.layers.utils import flatten
38
from paddle.fluid.layers import collective
39

40 41 42
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
43
from paddle.metric import Metric
44
from paddle.static import InputSpec as Input
45
import paddle.distributed as dist
J
Jiaqi Liu 已提交
46 47
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet.base import role_maker
Z
zhaoyingli 已提交
48
from paddle.autograd import no_grad
49

L
LiuChiachi 已提交
50
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
51
from .model_summary import summary
52

53
__all__ = []
54 55 56 57 58 59 60 61 62 63 64 65 66

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
67 68 69
    assert isinstance(
        var, (Variable, fluid.core.VarBase, fluid.core.eager.Tensor)
    ), "not a variable"
H
hong 已提交
70
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
97
    return inspect.getfullargspec(func).args
98 99 100


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
101 102 103
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream
    )
104 105 106


def wait_server_ready(endpoints):
107
    assert not isinstance(endpoints, str)
108 109 110 111 112 113
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
114 115
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as sock:
116 117 118 119 120 121 122 123 124 125 126
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


127 128 129
def init_communicator(
    program, rank, nranks, wait_port, current_endpoint, endpoints
):
130 131 132 133
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
134
    block = program.global_block()
135 136
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
137 138 139 140
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
165 166
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
167
            name=fluid.unique_name.generate('hccl_id'),
168
            persistable=True,
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
            type=core.VarDesc.VarType.RAW,
        )
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks,
            },
        )
192 193 194 195


def prepare_distributed_context(place=None):
    if place is None:
196 197 198
        place = (
            fluid.CUDAPlace(ParallelEnv().dev_id)
            if ParallelEnv().nranks > 1
199
            else fluid.CUDAPlace(0)
200
        )
201

202
    place = _get_paddle_place(place)
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
218 219 220 221 222 223 224 225
            init_communicator(
                communicator_prog,
                strategy.local_rank,
                strategy.nranks,
                True,
                strategy.current_endpoint,
                strategy.trainer_endpoints,
            )
226 227 228
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
229
        if fluid._non_static_mode():
230 231 232 233 234
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
235
        assert "Only support CUDAPlace for now."
236 237 238

    _parallel_context_initialized = True
    return strategy
239 240


L
LiuChiachi 已提交
241
def _update_input_info(inputs):
L
LiuChiachi 已提交
242
    "Get input shape list by given inputs in Model initialization."
243
    shapes = None
L
LiuChiachi 已提交
244
    dtypes = None
L
LiuChiachi 已提交
245 246
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
247
        dtypes = [inputs.dtype]
248
    elif isinstance(inputs, (list, tuple)):
249
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
250
        dtypes = [input.dtype for input in inputs]
251 252
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
253 254 255 256
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
257 258


259
class StaticGraphAdapter:
260
    """
261

262
    Model traning/inference with a static graph.
263

264 265 266
    """

    def __init__(self, model):
267
        super().__init__()
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
286
            'test_batch': 0,
287 288 289 290 291
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
292 293 294
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
295
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
296

297 298 299 300 301 302 303 304
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
305
    def train_batch(self, inputs, labels=None, update=True):
306 307 308
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
309
        self.mode = 'train'
310 311 312
        assert (
            update is True
        ), "Does not support `update == False` in static mode by now."
313 314 315 316 317 318
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

319
    def predict_batch(self, inputs):
320 321 322 323
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
324
        return self.model.network.parameters(*args, **kwargs)
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
343
        _save(self.model.network.state_dict(), param_path)
344 345 346 347 348 349
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
350
            p.name: p for p in filter(is_belong_to_optimizer, prog.list_vars())
351 352 353 354 355 356
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
357
    # TODO: support save/load scaler state in static graph
358 359 360 361 362 363 364 365
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
366 367 368 369
            [param for param, state in param_state_pairs],
            global_scope(),
            executor,
        )
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
397 398 399 400
                    (np.array(converted_state.pop("global_step")) - 1)
                    if "global_step" in converted_state
                    else converted_state.pop("@LR_DECAY_COUNTER@", None)
                )
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
417 418 419 420 421 422 423 424 425
                        accum_name = (
                            name
                            if opt_name is None
                            else name[len(opt_name) + 1 :]
                        )
                        for (
                            param_name,
                            state_var,
                        ) in self.model._optimizer._accumulators[name].items():
426 427 428
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
                                for state_key in sorted(
                                    state.keys(),
                                    key=lambda x: len(x),
                                    reverse=True,
                                ):
                                    prefix = (
                                        param_name
                                        + "_"
                                        + (
                                            opt_cls_name
                                            if opt_name is None
                                            else opt_name
                                        )
                                        + "_"
                                    )
444
                                    if state_key.startswith(prefix):
445 446 447
                                        prefix_offset = state_key[
                                            len(prefix) :
                                        ].find("_") + len(prefix)
448
                                        opt_unq_name = state_key[
449 450 451 452
                                            len(
                                                param_name + "_"
                                            ) : prefix_offset
                                        ]
453 454 455 456
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
457 458 459 460 461 462 463 464
                            dy_state_name = (
                                param_name
                                + "_"
                                + opt_unq_name
                                + "_"
                                + accum_name
                                + "_0"
                            )
465
                            converted_state[
466 467
                                state_var.name
                            ] = converted_state.pop(dy_state_name)
468

469 470 471
            assert (
                var.name in converted_state
            ), "variable [{}] is not in optimizer state file".format(var.name)
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
490 491 492
        assert (
            compiled_prog
        ), "Model is not ready, please call `model.prepare()` first"
493 494 495 496

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
497 498
        assert len(inputs) == len(self._input_vars[self.mode]), (
            "number of inputs"
499
            + " does not match number of arguments of `forward` method"
500
        )
501 502 503

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
504 505
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

506 507 508 509
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
510 511 512 513
            if (
                self._amp_level == 'O2'
                and input_dtypes[idx] == core.VarDesc.VarType.FP16
            ):
L
Leo Chen 已提交
514 515
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
516
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
517 518
                    feed[n] = feed[n].astype('float16')

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

541 542 543 544 545 546
        rets = self._executor.run(
            compiled_prog,
            feed=feed,
            fetch_list=pruned_fetch_list,
            return_numpy=False,
        )
547 548 549 550 551 552 553 554 555 556

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
557

558 559 560 561
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
562 563 564 565 566 567
            if (
                self.mode != 'train'
                and self.model._test_dataloader is not None
                and isinstance(self.model._test_dataloader, DataLoader)
                and self._nranks > 1
            ):
568 569 570 571 572 573
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
574
                        s[: int(total_size - current_count), ...] for s in state
575 576
                    ]
                    self._merge_count[self.mode + '_total'] = 0
577 578 579
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
580 581 582 583 584
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
585 586 587 588 589

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
611 612 613 614 615
        if (
            mode == 'train'
            and self.model._optimizer
            and self.model._optimizer._learning_rate_map
        ):
616 617 618 619 620 621 622 623
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
624 625
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
626 627
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
628
            self._label_vars[mode] = labels
629
            outputs = to_list(self.model.network.forward(*inputs))
630

631 632
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
633 634 635 636 637 638 639 640

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
641
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
642 643 644 645 646 647

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
648 649 650 651 652
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
653 654 655
                        dist_strategy.amp_configs['use_pure_fp16'] = (
                            self._amp_level == 'O2'
                        )
656
                    self.model._optimizer = fleet.distributed_optimizer(
657 658
                        self.model._optimizer, strategy=dist_strategy
                    )
J
Jiaqi Liu 已提交
659
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
660 661 662 663 664 665 666
                    amp_lists = (
                        paddle.static.amp.AutoMixedPrecisionLists(
                            **self._amp_custom_lists
                        )
                        if self._amp_custom_lists
                        else None
                    )
J
Jiaqi Liu 已提交
667 668 669 670 671
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
672 673
                        **self._amp_configs
                    )
674 675 676 677 678 679 680 681 682 683 684

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
685
            "loss": to_list(losses),
686
            "metric": metrics,
687 688 689 690 691 692 693
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

694 695 696
        assert (
            self.model._place is not None
        ), "device is not set, please call `model.prepare()` first"
697 698 699 700 701 702 703 704 705 706 707 708

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
709 710 711 712 713
                if (
                    not var_py.name.startswith('nccl_id')
                    and var
                    and var.get_tensor()._is_initialized()
                ):
714 715 716 717 718 719 720
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

721 722 723 724
        if (
            self._amp_level == "O2"
            and mode == 'train'
            and core.is_compiled_with_cuda()
J
Jiaqi Liu 已提交
725 726 727
        ):
            self.model._optimizer.amp_init(place)

728 729 730 731 732 733 734 735
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


736
class DynamicGraphAdapter:
737
    def __init__(self, model):
738
        super().__init__()
739 740 741 742 743 744 745
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
746
            'test_batch': 0,
747 748
        }

L
LiuChiachi 已提交
749
        self._input_info = None
J
Jiaqi Liu 已提交
750 751 752 753 754
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

755
        if self._nranks > 1:
756
            dist.init_parallel_env()
757 758 759 760 761
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
762
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
763 764
                self.model.network, stradegy
            )
765 766 767 768 769 770 771 772 773 774

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
775
    def train_batch(self, inputs, labels=None, update=True):
776 777 778
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
779
        self.model.network.train()
780 781
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
782
        self._input_info = _update_input_info(inputs)
783 784 785
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
786 787 788 789
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

790 791 792 793 794
        with paddle.amp.auto_cast(
            enable=self._amp_level != 'O0',
            **self._amp_custom_lists,
            level=self._amp_level
        ):
J
Jiaqi Liu 已提交
795
            if self._nranks > 1:
796
                outputs = self.ddp_model(*[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
797
            else:
798
                outputs = self.model.network(*[to_variable(x) for x in inputs])
799

L
Leo Chen 已提交
800 801 802
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
803

J
Jiaqi Liu 已提交
804
        if self._amp_level != "O0":
L
Leo Chen 已提交
805
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
806
            scaled.backward()
L
lyuwenyu 已提交
807
            if update:
L
Leo Chen 已提交
808
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
809
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
810 811
        else:
            final_loss.backward()
L
lyuwenyu 已提交
812 813 814
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
815

816 817
        metrics = []
        for metric in self.model._metrics:
818
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
819
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
820 821
            metrics.append(m)

822 823 824 825 826
        return (
            ([to_numpy(l) for l in losses], metrics)
            if len(metrics) > 0
            else [to_numpy(l) for l in losses]
        )
827 828

    def eval_batch(self, inputs, labels=None):
829
        self.model.network.eval()
830 831
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
832
        self._input_info = _update_input_info(inputs)
833 834 835
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

836
        outputs = self.model.network(*[to_variable(x) for x in inputs])
837 838 839 840 841 842 843 844 845

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

846 847
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
848 849
            losses = to_list(losses)

850 851 852 853 854 855
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
856 857 858 859 860
            if (
                self.model._test_dataloader is not None
                and self._nranks > 1
                and isinstance(self.model._test_dataloader, DataLoader)
            ):
861 862 863 864 865
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
866
                        o[: int(total_size - current_count)] for o in outputs
867 868
                    ]
                    labels = [
869
                        l[: int(total_size - current_count)] for l in labels
870 871
                    ]
                    self._merge_count[self.mode + '_total'] = 0
872 873 874
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
875 876 877 878
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

879
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
880
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
881 882
            metrics.append(m)

883
        if self.model._loss and len(metrics):
884
            return [to_numpy(l) for l in losses], metrics
885
        elif self.model._loss:
886 887 888
            return [to_numpy(l) for l in losses]
        else:
            return metrics
889

890
    def predict_batch(self, inputs):
891
        self.model.network.eval()
892 893
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
894
        self._input_info = _update_input_info(inputs)
895
        outputs = self.model.network(*inputs)
896 897 898 899 900 901
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
902
        return self.model.network.parameters(*args, **kwargs)
903 904

    def save(self, path):
905
        params = self.model.network.state_dict()
906
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
907 908 909 910 911 912 913 914 915 916
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
917 918 919 920
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
921 922 923 924
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

925 926 927 928
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

929 930
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
931 932 933 934 935 936 937 938 939 940
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
941
        opt_name = opt_unq_name[: opt_unq_name.rfind("_")]  # remove suffix idx
942
        param_names = [param.name for param in self.model.network.parameters()]
943 944 945
        for var_name, state_var in sorted(
            optim_state.items(), key=lambda x: len(x[0]), reverse=True
        ):
946 947 948 949 950
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
951 952 953
                    converted_state["global_step"] = (
                        np.array(converted_state.pop("@LR_DECAY_COUNTER@")) + 1
                    )
954 955 956 957 958 959
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
960 961 962 963 964 965 966
                        accum_name = var_name[
                            len(param_name + "_" + opt_name + "_") :
                        ]
                    elif (
                        var_name.startswith(param_name + "_")
                        and opt_name == opt_cls_name
                    ):
967
                        # when init optimizer without name
968
                        accum_name = var_name[len(param_name + "_") :]
969 970 971
                    else:
                        continue
                    # remove suffix idx
972
                    accum_name = accum_name[: accum_name.rfind("_")]
973 974
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
975 976 977 978 979 980 981 982
                    dy_state_name = (
                        param_name
                        + "_"
                        + opt_unq_name
                        + "_"
                        + accum_name
                        + "_0"
                    )
983 984
                    converted_state[dy_state_name] = state_var

985 986
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
987
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
988 989 990 991
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
992

L
Leo Chen 已提交
993
    def prepare(self):
994 995 996 997
        if (
            self._amp_level == "O2"
            and self.model.mode == 'train'
            and core.is_compiled_with_cuda()
L
Leo Chen 已提交
998 999 1000 1001
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
1002 1003
                level='O2',
            )
L
Leo Chen 已提交
1004 1005 1006
        if self._amp_level != "O0":
            self.model._scaler = None

1007

1008
class Model:
1009
    """
1010

1011 1012
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
1013
    switched by `paddle.enable_static()`. The usage is as follows.
1014
    But note, the switching between dynamic and static should be before
1015
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
1016
    must be required for static graph.
1017

1018
    When training on GPU, auto mixed precision (AMP O1) and pure float16
L
Leo Chen 已提交
1019
    (AMP O2) training are both supported in static mode and dynamic mode.
1020
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
1021 1022
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
1023 1024 1025 1026
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
1027

1028
    Args:
1029 1030
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
1031
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
1032
            could be a InputSpec instance, or list/tuple of InputSpec instances,
1033
            or dict ({name: InputSpec}), and it couldn't be None in static
1034 1035
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
1036
            could be a InputSpec instnace or list/tuple of InputSpec instances,
1037
            or None. For static graph, if labels is required in loss,
1038
            labels must be set. Otherwise, it could be None. Default: None.
1039 1040


1041
    Examples:
J
Jiaqi Liu 已提交
1042 1043
        1. A common example

1044
        .. code-block:: python
1045
          :name: code-example1
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
1063

1064 1065 1066 1067 1068
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
1069 1070
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
1071 1072 1073 1074 1075 1076 1077

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
1078 1079 1080 1081 1082


        2. An example using mixed precision training.

        .. code-block:: python
1083
          :name: code-example2
J
Jiaqi Liu 已提交
1084

1085 1086 1087 1088
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
1089

1090 1091
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
1092

1093 1094
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1095

1096 1097
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1108

1109 1110 1111 1112 1113 1114 1115
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1116

1117 1118
    """

1119
    def __init__(self, network, inputs=None, labels=None):
1120
        self.mode = 'train'
1121
        self.network = network
1122 1123
        self._inputs = None
        self._labels = None
1124
        self._loss = None
1125 1126
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1127
        self._input_info = None
1128
        self._is_shape_inferred = False
1129
        self._test_dataloader = None
L
LiuChiachi 已提交
1130
        self.stop_training = False
1131

J
Jiabin Yang 已提交
1132
        if not _non_static_mode():
1133
            if not isinstance(inputs, (list, tuple, dict, Input)):
1134
                raise TypeError(
1135 1136
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1137
        elif inputs:
L
LiuChiachi 已提交
1138
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1139

1140
        self._inputs = self._verify_spec(inputs, is_input=True)
1141
        self._labels = self._verify_spec(labels)
1142

1143
        # init backend
J
Jiabin Yang 已提交
1144
        if fluid._non_static_mode():
1145 1146 1147 1148
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1149
    def train_batch(self, inputs, labels=None, update=True):
1150
        """
1151

L
lyuwenyu 已提交
1152 1153
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1154 1155

        Args:
1156 1157
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1158
                tensors (in case the model has multiple inputs).
1159 1160 1161
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1162 1163 1164
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1165 1166 1167 1168 1169 1170 1171 1172 1173

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1197

1198
        """
L
lyuwenyu 已提交
1199
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1200
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1201
            self._update_inputs()
1202
        return loss
1203

Z
zhaoyingli 已提交
1204
    @no_grad()
1205 1206
    def eval_batch(self, inputs, labels=None):
        """
1207

1208 1209 1210
        Run one evaluating step on a batch of data.

        Args:
1211 1212
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1213
                tensors (in case the model has multiple inputs).
1214 1215 1216
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1217
                set None. Default: None.
1218 1219 1220 1221 1222 1223 1224 1225 1226

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1251

1252
        """
1253
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1254
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1255
            self._update_inputs()
1256
        return loss
1257

Z
zhaoyingli 已提交
1258
    @no_grad()
1259
    def predict_batch(self, inputs):
1260
        """
1261

1262
        Run one predicting step on a batch of data.
1263 1264

        Args:
1265 1266
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1267
                tensors (in case the model has multiple inputs).
1268 1269 1270 1271 1272 1273 1274 1275

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1276 1277 1278 1279 1280 1281

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
1282

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1300

1301
        """
1302
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1303
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1304
            self._update_inputs()
1305
        return loss
1306

1307
    def save(self, path, training=True):
1308
        """
1309

1310
        This function saves parameters, optimizer information or model and
1311 1312
        paramters only for inference to path. It depends on the parameter
        `training`.
1313

1314
        If `training` is set to True, the parameters saved contain all
1315
        the trainable Variable, will save to a file with suffix ".pdparams".
1316 1317 1318 1319
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1320
        This function will silently overwrite existing file at the target location.
1321

1322
        If `training` is set to False, only inference model will be saved.
1323 1324

        Args:
1325 1326 1327
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1328 1329
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1330 1331 1332 1333 1334 1335 1336

        Returns:
            None

        Examples:

            .. code-block:: python
1337

1338
                import paddle
1339
                import paddle.nn as nn
1340
                import paddle.vision.transforms as T
1341
                from paddle.static import InputSpec
1342

1343
                class Mnist(nn.Layer):
1344
                    def __init__(self):
1345
                        super().__init__()
1346
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1347
                            nn.Flatten(1),
1348 1349 1350 1351
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1352

1353
                    def forward(self, x):
1354
                        return self.net(x)
1355

1356
                dynamic = True  # False
1357
                # if use static graph, do not set
1358 1359
                if not dynamic:
                    paddle.enable_static()
1360

1361 1362 1363
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1364
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1365
                    parameters=model.parameters())
1366
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1367

1368 1369 1370 1371 1372
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
1373

1374
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1375 1376
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1377

1378
        """
1379

1380
        if ParallelEnv().local_rank == 0:
1381 1382 1383 1384
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1385 1386 1387

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1404
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1405 1406
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1407 1408
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1409 1410
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1411
                a optimizer has been set to the model. Default: False.
1412 1413 1414 1415 1416 1417 1418

        Returns:
            None

        Examples:

            .. code-block:: python
1419 1420 1421 1422

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1423

1424
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1425

1426
                input = InputSpec([None, 784], 'float32', 'x')
1427

1428 1429 1430 1431 1432
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1433

1434 1435
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1436

1437 1438 1439 1440 1441 1442
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1443
                return pickle.load(f, encoding='latin1')
1444 1445 1446 1447 1448

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
1449 1450
                    "{} is not found in the providing file.".format(key)
                )
1451 1452
            if list(state.shape) != list(param.shape):
                raise ValueError(
1453 1454 1455 1456
                    "{} receives a shape {}, but the expected shape is {}.".format(
                        key, list(state.shape), list(param.shape)
                    )
                )
1457 1458 1459 1460
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
1461 1462 1463 1464 1465 1466
            assert ext in [
                '',
                '.pdparams',
                '.pdopt',
                '.pdmodel',
            ], "Unknown postfix {} from weights".format(ext)
1467 1468 1469 1470 1471 1472 1473
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1474
        for key, param in self.network.state_dict().items():
1475 1476 1477 1478 1479
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
1480 1481
                        ("Skip loading for {}. ".format(key) + str(err))
                    )
1482 1483 1484 1485 1486 1487
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

1488 1489 1490
        optim_state = (
            None if reset_optimizer else _load_state_from_path(path + ".pdopt")
        )
L
Leo Chen 已提交
1491 1492

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1493
        if _non_static_mode():
L
Leo Chen 已提交
1494 1495 1496 1497 1498
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

1499 1500 1501
            return self._adapter.load(
                matched_param_state, optim_state, scaler_state
            )
L
Leo Chen 已提交
1502 1503
        else:
            return self._adapter.load(matched_param_state, optim_state)
1504 1505 1506

    def parameters(self, *args, **kwargs):
        """
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1517

1518 1519 1520
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1521

1522
                input = InputSpec([None, 784], 'float32', 'x')
1523

1524 1525 1526 1527
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1528

1529
                params = model.parameters()
1530

1531 1532 1533
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1534 1535 1536
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1537 1538
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
1539 1540 1541 1542
                assert isinstance(
                    self._optimizer._grad_clip,
                    (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm),
                ), "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
1554 1555
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1556 1557 1558 1559 1560 1561 1562 1563
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
1564 1565
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1566 1567 1568 1569 1570 1571 1572 1573
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1574
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1575 1576 1577 1578 1579 1580 1581
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
1582 1583 1584
                'custom_white_list',
                'custom_black_list',
                'custom_black_varnames',
J
Jiaqi Liu 已提交
1585 1586 1587
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
1588 1589
                        param_name
                    ]
J
Jiaqi Liu 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1604 1605 1606 1607
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".format(
                        tuple(amp_config_key_set - accepted_param_set)
                    )
                )
J
Jiaqi Liu 已提交
1608 1609

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1610
                if _non_static_mode():
J
Jiaqi Liu 已提交
1611
                    raise ValueError(
1612 1613
                        "'use_fp16_guard' is supported in static mode only."
                    )
J
Jiaqi Liu 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1623 1624 1625
    def prepare(
        self, optimizer=None, loss=None, metrics=None, amp_configs=None
    ):
1626
        """
1627

1628 1629 1630
        Configures the model before runing.

        Args:
1631
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1632
                and should be a Optimizer instance. It can be None in eval
1633 1634
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1635
                be a `paddle.nn.Layer` instance or any callable function
1636
                taken the predicted values and ground truth values as input.
1637 1638 1639 1640
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1641 1642 1643
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1644 1645
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1646 1647 1648 1649
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1650 1651 1652 1653 1654 1655
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1656

1657 1658
        Returns:
            None
1659

1660
        """
1661 1662
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1663 1664
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
J
Jiabin Yang 已提交
1665
                if fluid._non_static_mode():
1666
                    main_prog_seed = fluid.default_main_program().random_seed
1667 1668 1669
                    startup_prog_seed = (
                        fluid.default_startup_program().random_seed
                    )
1670
                    fluid.disable_dygraph()
1671
                    paddle.disable_static(self._place)
1672 1673 1674
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
1675 1676 1677
                    fluid.default_startup_program().random_seed = (
                        startup_prog_seed
                    )
1678 1679 1680 1681 1682
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1683 1684
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1685 1686 1687
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1688
        self._loss = loss
1689 1690 1691

        metrics = metrics or []
        for metric in to_list(metrics):
1692 1693 1694
            assert isinstance(
                metric, Metric
            ), "{} is not sub class of Metric".format(metric.__class__.__name__)
1695
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1696
        self._prepare_amp(amp_configs)
1697

L
Leo Chen 已提交
1698
        self._adapter.prepare()
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
    def fit(
        self,
        train_data=None,
        eval_data=None,
        batch_size=1,
        epochs=1,
        eval_freq=1,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        verbose=2,
        drop_last=False,
        shuffle=True,
        num_workers=0,
        callbacks=None,
        accumulate_grad_batches=1,
        num_iters=None,
    ):
1718
        """
1719

1720 1721 1722 1723
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1724 1725
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for
                train. An instance of paddle paddle.io.Dataset or
1726
                paddle.io.Dataloader is recomended. Default: None.
1727
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1728 1729
                evaluation at the end of epoch. If None, will not do evaluation.
                An instance of paddle.io.Dataset or paddle.io.Dataloader
1730
                is recomended. Default: None.
1731
            batch_size (int|list, optional): The batch size of train_data and eval_data. When
1732 1733 1734 1735
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1736
                is performed. Default: 1.
1737
            log_freq (int, optional): The frequency, in number of steps, the training logs
1738
                are printed. Default: 10.
1739
            save_dir(str|None, optional): The directory to save checkpoint during training.
1740
                If None, will not save checkpoint. Default: None.
1741
            save_freq (int, optional): The frequency, in number of epochs, to save
1742
                checkpoint. Default: 1.
1743
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1744
                1 = progress bar, 2 = one line per epoch. Default: 2.
1745
            drop_last (bool, optional): Whether drop the last incomplete batch of
1746 1747 1748
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1749
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1750 1751
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1752
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1753 1754 1755
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1756 1757 1758
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
1759
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident
L
lyuwenyu 已提交
1760
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1761
                size. Default: 1.
1762 1763 1764 1765
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1766 1767 1768 1769
        Returns:
            None

        Examples:
1770
            1. An example use Dataset and set batch size, shuffle in fit.
1771 1772 1773
               How to make a batch is done internally.

            .. code-block:: python
1774
              :name: code-example3
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1809 1810 1811 1812 1813

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1814
              :name: code-example4
1815 1816 1817 1818 1819

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1820

1821 1822 1823
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1851

1852
        """
1853
        assert train_data is not None, "train_data must be given!"
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
        if isinstance(batch_size, (tuple, list)) and all(
            [isinstance(x, int) for x in batch_size]
        ):
            assert (
                len(batch_size) == 2
            ), "batch_size length error, expected train_batch_size and eval_batch_size."
            train_batch_size, eval_batch_size = batch_size
        elif isinstance(batch_size, int):
            train_batch_size, eval_batch_size = batch_size, batch_size

1865
        if isinstance(train_data, Dataset):
1866 1867
            train_sampler = DistributedBatchSampler(
                train_data,
1868
                batch_size=train_batch_size,
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
                shuffle=shuffle,
                drop_last=drop_last,
            )
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1879 1880 1881 1882
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1883
            eval_sampler = DistributedBatchSampler(
1884
                eval_data, batch_size=eval_batch_size
1885 1886 1887 1888 1889 1890 1891 1892
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1893 1894 1895 1896 1897 1898 1899
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1900

L
lyuwenyu 已提交
1901
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1902

1903
        steps = self._len_data_loader(train_loader)
1904
        self.num_iters = num_iters
1905 1906 1907 1908 1909
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(steps, int)
        ):
1910 1911 1912
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1913 1914 1915 1916 1917 1918 1919 1920 1921
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1922 1923
            metrics=self._metrics_name(),
        )
1924

L
LiuChiachi 已提交
1925 1926 1927
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1928 1929 1930 1931 1932 1933 1934 1935 1936
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
1937 1938 1939 1940
                cbks.on_begin(
                    'eval',
                    {'steps': eval_steps, 'metrics': self._metrics_name()},
                )
1941 1942 1943 1944

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1945 1946
            if self.stop_training:
                break
1947 1948 1949

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1950

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    def evaluate(
        self,
        eval_data,
        batch_size=1,
        log_freq=10,
        verbose=2,
        num_workers=0,
        callbacks=None,
        num_iters=None,
    ):
1961 1962 1963 1964 1965
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
1966
                evaluation. An instance of paddle.io.Dataset or
1967
                paddle.io.Dataloader is recomended.
1968 1969 1970 1971
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
1972
                are printed. Default: 10.
1973
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1974
                1 = progress bar, 2 = one line per epoch. Default: 2.
1975
            num_workers (int, optional): The number of subprocess to load data,
1976 1977 1978
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
1979
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1980 1981
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1982 1983 1984
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
1985 1986 1987 1988 1989
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1990 1991

          .. code-block:: python
1992

1993 1994 1995
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
1996

1997 1998 1999 2000 2001 2002
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
2003

2004 2005 2006 2007 2008 2009 2010
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
2011 2012 2013
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
2034 2035
            metrics=self._metrics_name(),
        )
2036 2037

        eval_steps = self._len_data_loader(eval_loader)
2038
        self.num_iters = num_iters
2039 2040 2041 2042 2043
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(eval_steps, int)
        ):
2044 2045 2046
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
2047 2048 2049
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

2063 2064 2065 2066 2067 2068 2069 2070 2071
    def predict(
        self,
        test_data,
        batch_size=1,
        num_workers=0,
        stack_outputs=False,
        verbose=1,
        callbacks=None,
    ):
2072 2073 2074 2075 2076 2077 2078
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
2079 2080
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
2081
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess
2082 2083 2084 2085
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
2086
                output field will be in shape [N, X, Y] if stack_output is True, and will
2087
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
2088 2089
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
2090
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2091
                1 = progress bar, 2 = one line per batch. Default: 1.
2092
            callbacks(Callback, optional): A Callback instance, Default: None.
2093

2094 2095 2096 2097
        Returns:
            list: output of models.

        Examples:
2098 2099

          .. code-block:: python
2100

2101 2102 2103
                import numpy as np
                import paddle
                from paddle.static import InputSpec
2104

2105 2106
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
2107
                        super().__init__(mode=mode)
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
2139 2140 2141
        """

        if test_data is not None and isinstance(test_data, Dataset):
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size
            )
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2152 2153 2154 2155 2156
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

2157
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
2158 2159 2160 2161

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2162
        cbks.on_begin('predict', logs)
2163 2164 2165

        outputs = []

2166
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2177
        cbks.on_end('predict', logs)
2178 2179
        return outputs

2180
    def _save_inference_model(self, path):
2181
        """
2182
        Save inference model can be used in static or dynamic mode.
2183 2184

        Args:
2185 2186
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2187
        Returns:
2188
            None
2189 2190
        """

J
Jiabin Yang 已提交
2191
        if fluid._non_static_mode():
2192 2193
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2194
                if self._input_info is None:  # No provided or inferred
2195
                    raise RuntimeError(
L
LiuChiachi 已提交
2196
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2197 2198 2199 2200
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
2201 2202
                        % self._input_info[0]
                    )
L
LiuChiachi 已提交
2203

2204
                paddle.jit.save(layer, path, input_spec=self._inputs)
2205

2206
        else:
2207 2208 2209 2210 2211 2212
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
2213 2214
                    "file_prefix is empty string."
                )
2215 2216 2217 2218 2219 2220 2221 2222 2223

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2224
            prog = self._adapter._progs.get('test', None)
2225 2226 2227
            assert (
                prog
            ), "Model is not ready, please call `model.prepare()` first"
2228 2229 2230 2231 2232 2233

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2234 2235 2236 2237 2238 2239 2240 2241 2242
            fluid.io.save_inference_model(
                model_path,
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
                params_filename=params_filename,
            )
2243

L
update  
lyuwenyu 已提交
2244
    def _run_one_epoch(
2245 2246 2247 2248 2249 2250
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2261
            # 4. custumed iterator yield separated inputs and labels:
2262 2263 2264 2265 2266
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2267

2268 2269 2270 2271 2272
            batch_size = (
                data[0].shape()[0]
                if callable(data[0].shape)
                else data[0].shape[0]
            )
2273 2274 2275

            callbacks.on_batch_begin(mode, step, logs)

2276
            if mode != 'predict':
2277
                _inputs = [data[: len(self._inputs)], data[len(self._inputs) :]]
L
lyuwenyu 已提交
2278
                if mode == 'train':
2279 2280 2281 2282
                    _inputs.append(
                        (step + 1) % self._accumulate == 0
                        or step + 1 == len(data_loader)
                    )
L
update  
lyuwenyu 已提交
2283

L
lyuwenyu 已提交
2284
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2285

2286
                if self._metrics and self._loss:
2287
                    metrics = [[l[0] for l in outs[0]]]
2288
                elif self._loss:
2289 2290 2291
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2302
                if self._inputs is not None:
2303
                    outs = self.predict_batch(data[: len(self._inputs)])
L
LielinJiang 已提交
2304
                else:
2305
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2306

2307 2308 2309
                outputs.append(outs)

            logs['step'] = step
2310 2311 2312 2313
            if (
                mode == 'train'
                or self._adapter._merge_count.get(mode + '_batch', 0) <= 0
            ):
2314 2315 2316 2317 2318
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2319 2320
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2321 2322 2323
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2324
                    break
2325 2326
        self._reset_metrics()

2327
        if mode == 'predict':
2328 2329 2330
            return logs, outputs
        return logs

L
LielinJiang 已提交
2331
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2332 2333 2334
        """Prints a string summary of the network.

        Args:
2335 2336 2337 2338
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
                    if not set, input_size will get from ``self._inputs`` if network only have
                    one input, input_size can be tuple or InputSpec. if model have multiple
                    input, input_size must be a list which contain every input's shape.
L
LielinJiang 已提交
2339
                    Default: None.
2340
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2341 2342 2343 2344 2345 2346

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2347 2348 2349 2350 2351 2352

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2353

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2365 2366

        """
2367 2368 2369
        assert (
            input_size is not None or self._inputs is not None
        ), "'input_size' or 'self._input' must be set"
2370 2371 2372 2373
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2374
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2375

L
LiuChiachi 已提交
2376
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2377 2378
        out_specs = []

2379 2380 2381 2382 2383 2384
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2385
                # While Saving inference model in dygraph, and providing inputs only in running.
2386 2387 2388 2389
                if (
                    shapes is not None
                    and dtypes is not None
                    and fluid._non_static_mode()
L
LiuChiachi 已提交
2390
                ):
2391
                    out_specs = [
2392
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2393 2394 2395 2396 2397 2398 2399
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2400 2401
            assert is_input is False
            out_specs = [
2402 2403
                specs[n]
                for n in extract_args(self.network.forward)
2404 2405
                if n != 'self'
            ]
2406 2407 2408 2409 2410 2411 2412 2413
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2414 2415 2416 2417
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
2418 2419 2420

        return out_specs

2421 2422 2423 2424 2425
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2426
        metrics_name = ['loss'] if self._loss else []
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2437 2438 2439

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2440 2441
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
2442 2443 2444
            self._inputs = self._verify_spec(
                None, self._input_info[0], self._input_info[1], True
            )
L
LiuChiachi 已提交
2445
            self._is_shape_inferred = True