model.py 92.6 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16 17 18
import inspect
import os
import pickle
19
import socket
20 21 22 23
import time
import warnings

import numpy as np
24

25
import paddle
26 27
import paddle.distributed as dist
import paddle.distributed.fleet as fleet
28
from paddle import fluid
29 30
from paddle.autograd import no_grad
from paddle.distributed.fleet.base import role_maker
31
from paddle.fluid import core
32 33
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.executor import global_scope
34
from paddle.fluid.framework import Variable
35
from paddle.fluid.framework import _current_expected_place as _get_device
36
from paddle.fluid.framework import _get_paddle_place, _non_static_mode
37
from paddle.fluid.io import is_belong_to_optimizer
38
from paddle.fluid.layers import collective
39 40
from paddle.fluid.layers.utils import flatten
from paddle.io import DataLoader, Dataset, DistributedBatchSampler
41
from paddle.jit.translated_layer import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
42
from paddle.metric import Metric
43 44
from paddle.static import InputSpec as Input

45
from .callbacks import EarlyStopping, config_callbacks
L
LielinJiang 已提交
46
from .model_summary import summary
47

48
__all__ = []
49 50 51 52 53 54 55 56 57 58 59 60 61

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
62 63 64
    assert isinstance(
        var, (Variable, fluid.core.VarBase, fluid.core.eager.Tensor)
    ), "not a variable"
H
hong 已提交
65
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
92
    return inspect.getfullargspec(func).args
93 94 95


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
96 97 98
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream
    )
99 100 101


def wait_server_ready(endpoints):
102
    assert not isinstance(endpoints, str)
103 104 105 106 107 108
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
109 110
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as sock:
111 112 113 114 115 116 117 118 119 120 121
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


122 123 124
def init_communicator(
    program, rank, nranks, wait_port, current_endpoint, endpoints
):
125 126 127 128
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
129
    block = program.global_block()
130 131
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
132 133 134 135
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
160 161
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
162
            name=fluid.unique_name.generate('hccl_id'),
163
            persistable=True,
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            type=core.VarDesc.VarType.RAW,
        )
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks,
            },
        )
187 188 189 190


def prepare_distributed_context(place=None):
    if place is None:
191
        place = (
192 193
            fluid.CUDAPlace(paddle.distributed.ParallelEnv().dev_id)
            if paddle.distributed.ParallelEnv().nranks > 1
194
            else fluid.CUDAPlace(0)
195
        )
196

197
    place = _get_paddle_place(place)
198
    strategy = fluid.dygraph.parallel.ParallelStrategy()
199 200 201 202 203 204 205 206
    strategy.nranks = paddle.distributed.ParallelEnv().nranks
    strategy.local_rank = paddle.distributed.ParallelEnv().local_rank
    strategy.trainer_endpoints = (
        paddle.distributed.ParallelEnv().trainer_endpoints
    )
    strategy.current_endpoint = (
        paddle.distributed.ParallelEnv().current_endpoint
    )
207 208 209 210 211 212 213 214 215 216

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
217 218 219 220 221 222 223 224
            init_communicator(
                communicator_prog,
                strategy.local_rank,
                strategy.nranks,
                True,
                strategy.current_endpoint,
                strategy.trainer_endpoints,
            )
225 226 227
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
228
        if fluid._non_static_mode():
229 230 231 232 233
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
234
        assert "Only support CUDAPlace for now."
235 236 237

    _parallel_context_initialized = True
    return strategy
238 239


L
LiuChiachi 已提交
240
def _update_input_info(inputs):
L
LiuChiachi 已提交
241
    "Get input shape list by given inputs in Model initialization."
242
    shapes = None
L
LiuChiachi 已提交
243
    dtypes = None
L
LiuChiachi 已提交
244 245
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
246
        dtypes = [inputs.dtype]
247
    elif isinstance(inputs, (list, tuple)):
248
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
249
        dtypes = [input.dtype for input in inputs]
250 251
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
252 253 254 255
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
256 257


258
class StaticGraphAdapter:
259
    """
260

261
    Model traning/inference with a static graph.
262

263 264 265
    """

    def __init__(self, model):
266
        super().__init__()
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
285
            'test_batch': 0,
286 287
        }

288 289
        self._nranks = paddle.distributed.ParallelEnv().nranks
        self._local_rank = paddle.distributed.ParallelEnv().local_rank
290

J
Jiaqi Liu 已提交
291 292 293
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
294
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
295

296 297 298 299 300 301 302 303
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
304
    def train_batch(self, inputs, labels=None, update=True):
305 306 307
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
308
        self.mode = 'train'
309 310
        assert (
            update is True
311
        ), "Does not support `update == False` in static graph mode by now."
312 313 314 315 316 317
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

318
    def predict_batch(self, inputs):
319 320 321 322
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
323
        return self.model.network.parameters(*args, **kwargs)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
342
        _save(self.model.network.state_dict(), param_path)
343 344 345 346 347 348
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
349
            p.name: p for p in filter(is_belong_to_optimizer, prog.list_vars())
350 351 352 353 354 355
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
356
    # TODO: support save/load scaler state in static graph
357 358 359 360 361 362 363 364
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
365 366 367 368
            [param for param, state in param_state_pairs],
            global_scope(),
            executor,
        )
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
396 397 398 399
                    (np.array(converted_state.pop("global_step")) - 1)
                    if "global_step" in converted_state
                    else converted_state.pop("@LR_DECAY_COUNTER@", None)
                )
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
416 417 418 419 420 421 422 423 424
                        accum_name = (
                            name
                            if opt_name is None
                            else name[len(opt_name) + 1 :]
                        )
                        for (
                            param_name,
                            state_var,
                        ) in self.model._optimizer._accumulators[name].items():
425 426 427
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
                                for state_key in sorted(
                                    state.keys(),
                                    key=lambda x: len(x),
                                    reverse=True,
                                ):
                                    prefix = (
                                        param_name
                                        + "_"
                                        + (
                                            opt_cls_name
                                            if opt_name is None
                                            else opt_name
                                        )
                                        + "_"
                                    )
443
                                    if state_key.startswith(prefix):
444 445 446
                                        prefix_offset = state_key[
                                            len(prefix) :
                                        ].find("_") + len(prefix)
447
                                        opt_unq_name = state_key[
448 449 450 451
                                            len(
                                                param_name + "_"
                                            ) : prefix_offset
                                        ]
452 453 454 455
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
456 457 458 459 460 461 462 463
                            dy_state_name = (
                                param_name
                                + "_"
                                + opt_unq_name
                                + "_"
                                + accum_name
                                + "_0"
                            )
464
                            converted_state[
465 466
                                state_var.name
                            ] = converted_state.pop(dy_state_name)
467

468 469 470
            assert (
                var.name in converted_state
            ), "variable [{}] is not in optimizer state file".format(var.name)
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
489 490 491
        assert (
            compiled_prog
        ), "Model is not ready, please call `model.prepare()` first"
492 493 494 495

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
496 497
        assert len(inputs) == len(self._input_vars[self.mode]), (
            "number of inputs"
498
            + " does not match number of arguments of `forward` method"
499
        )
500 501 502

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
503 504
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

505 506 507 508
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
509 510 511 512
            if (
                self._amp_level == 'O2'
                and input_dtypes[idx] == core.VarDesc.VarType.FP16
            ):
L
Leo Chen 已提交
513 514
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
515
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
516 517
                    feed[n] = feed[n].astype('float16')

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

540 541 542 543 544 545
        rets = self._executor.run(
            compiled_prog,
            feed=feed,
            fetch_list=pruned_fetch_list,
            return_numpy=False,
        )
546 547 548 549 550 551 552 553 554 555

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
556

557 558 559 560
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
561 562 563 564 565 566
            if (
                self.mode != 'train'
                and self.model._test_dataloader is not None
                and isinstance(self.model._test_dataloader, DataLoader)
                and self._nranks > 1
            ):
567 568 569 570 571 572
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
573
                        s[: int(total_size - current_count), ...] for s in state
574 575
                    ]
                    self._merge_count[self.mode + '_total'] = 0
576 577 578
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
579 580 581 582 583
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
584 585 586 587 588

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
610 611 612 613 614
        if (
            mode == 'train'
            and self.model._optimizer
            and self.model._optimizer._learning_rate_map
        ):
615 616 617 618 619 620 621 622
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
623 624
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
625 626
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
627
            self._label_vars[mode] = labels
628
            outputs = to_list(self.model.network.forward(*inputs))
629

630 631
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
632 633 634 635 636 637 638 639

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
640
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
641 642

            if mode == 'train' and self.model._optimizer:
643
                self._loss_endpoint = paddle.add_n(losses)
644 645 646
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
647 648 649 650 651
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
652 653 654
                        dist_strategy.amp_configs['use_pure_fp16'] = (
                            self._amp_level == 'O2'
                        )
655
                    self.model._optimizer = fleet.distributed_optimizer(
656 657
                        self.model._optimizer, strategy=dist_strategy
                    )
J
Jiaqi Liu 已提交
658
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
659 660 661 662 663 664 665
                    amp_lists = (
                        paddle.static.amp.AutoMixedPrecisionLists(
                            **self._amp_custom_lists
                        )
                        if self._amp_custom_lists
                        else None
                    )
J
Jiaqi Liu 已提交
666 667 668 669 670
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
671 672
                        **self._amp_configs
                    )
673 674 675 676 677 678 679 680 681 682 683

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
684
            "loss": to_list(losses),
685
            "metric": metrics,
686 687 688 689 690 691 692
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

693 694 695
        assert (
            self.model._place is not None
        ), "device is not set, please call `model.prepare()` first"
696 697 698 699 700 701 702 703 704 705 706 707

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
708 709 710 711 712
                if (
                    not var_py.name.startswith('nccl_id')
                    and var
                    and var.get_tensor()._is_initialized()
                ):
713 714 715 716 717 718 719
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

720 721 722 723
        if (
            self._amp_level == "O2"
            and mode == 'train'
            and core.is_compiled_with_cuda()
J
Jiaqi Liu 已提交
724 725 726
        ):
            self.model._optimizer.amp_init(place)

727 728 729 730 731 732 733 734
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


735
class DynamicGraphAdapter:
736
    def __init__(self, model):
737
        super().__init__()
738
        self.model = model
739 740
        self._nranks = paddle.distributed.ParallelEnv().nranks
        self._local_rank = paddle.distributed.ParallelEnv().local_rank
741 742 743 744
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
745
            'test_batch': 0,
746 747
        }

L
LiuChiachi 已提交
748
        self._input_info = None
J
Jiaqi Liu 已提交
749 750 751 752 753
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

754
        if self._nranks > 1:
755
            dist.init_parallel_env()
756
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
757 758 759 760 761 762 763 764
            stradegy.nranks = paddle.distributed.ParallelEnv().nranks
            stradegy.local_rank = paddle.distributed.ParallelEnv().local_rank
            stradegy.trainer_endpoints = (
                paddle.distributed.ParallelEnv().trainer_endpoints
            )
            stradegy.current_endpoint = (
                paddle.distributed.ParallelEnv().current_endpoint
            )
765
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
766 767
                self.model.network, stradegy
            )
768 769 770 771 772 773 774 775 776 777

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
778
    def train_batch(self, inputs, labels=None, update=True):
779 780 781
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
782
        self.model.network.train()
783 784
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
785
        self._input_info = _update_input_info(inputs)
786 787 788
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
789 790 791 792
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

793 794 795 796 797
        with paddle.amp.auto_cast(
            enable=self._amp_level != 'O0',
            **self._amp_custom_lists,
            level=self._amp_level
        ):
J
Jiaqi Liu 已提交
798
            if self._nranks > 1:
799
                outputs = self.ddp_model(*[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
800
            else:
801
                outputs = self.model.network(*[to_variable(x) for x in inputs])
802

L
Leo Chen 已提交
803 804
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
805
        final_loss = paddle.add_n(losses)
806

J
Jiaqi Liu 已提交
807
        if self._amp_level != "O0":
L
Leo Chen 已提交
808
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
809
            scaled.backward()
L
lyuwenyu 已提交
810
            if update:
L
Leo Chen 已提交
811
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
812
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
813 814
        else:
            final_loss.backward()
L
lyuwenyu 已提交
815 816 817
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
818

819 820
        metrics = []
        for metric in self.model._metrics:
821
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
822
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
823 824
            metrics.append(m)

825 826 827 828 829
        return (
            ([to_numpy(l) for l in losses], metrics)
            if len(metrics) > 0
            else [to_numpy(l) for l in losses]
        )
830 831

    def eval_batch(self, inputs, labels=None):
832
        self.model.network.eval()
833 834
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
835
        self._input_info = _update_input_info(inputs)
836 837 838
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

839
        outputs = self.model.network(*[to_variable(x) for x in inputs])
840 841 842 843 844 845 846 847 848

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

849 850
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
851 852
            losses = to_list(losses)

853 854 855 856 857 858
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
859 860 861 862 863
            if (
                self.model._test_dataloader is not None
                and self._nranks > 1
                and isinstance(self.model._test_dataloader, DataLoader)
            ):
864 865 866 867 868
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
869
                        o[: int(total_size - current_count)] for o in outputs
870 871
                    ]
                    labels = [
872
                        l[: int(total_size - current_count)] for l in labels
873 874
                    ]
                    self._merge_count[self.mode + '_total'] = 0
875 876 877
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
878 879 880 881
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

882
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
883
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
884 885
            metrics.append(m)

886
        if self.model._loss and len(metrics):
887
            return [to_numpy(l) for l in losses], metrics
888
        elif self.model._loss:
889 890 891
            return [to_numpy(l) for l in losses]
        else:
            return metrics
892

893
    def predict_batch(self, inputs):
894
        self.model.network.eval()
895 896
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
897
        self._input_info = _update_input_info(inputs)
898
        outputs = self.model.network(*inputs)
899 900 901 902 903 904
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
905
        return self.model.network.parameters(*args, **kwargs)
906 907

    def save(self, path):
908
        params = self.model.network.state_dict()
909
        paddle.save(params, path + '.pdparams')
L
Leo Chen 已提交
910 911 912
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
913
                paddle.save(optim, path + '.pdopt')
L
Leo Chen 已提交
914 915 916 917 918 919
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
920 921 922 923
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
924 925 926 927
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

928 929 930 931
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

932 933
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
934 935 936 937 938 939 940 941 942 943
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
944
        opt_name = opt_unq_name[: opt_unq_name.rfind("_")]  # remove suffix idx
945
        param_names = [param.name for param in self.model.network.parameters()]
946 947 948
        for var_name, state_var in sorted(
            optim_state.items(), key=lambda x: len(x[0]), reverse=True
        ):
949 950 951 952 953
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
954 955 956
                    converted_state["global_step"] = (
                        np.array(converted_state.pop("@LR_DECAY_COUNTER@")) + 1
                    )
957 958 959 960 961 962
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
963 964 965 966 967 968 969
                        accum_name = var_name[
                            len(param_name + "_" + opt_name + "_") :
                        ]
                    elif (
                        var_name.startswith(param_name + "_")
                        and opt_name == opt_cls_name
                    ):
970
                        # when init optimizer without name
971
                        accum_name = var_name[len(param_name + "_") :]
972 973 974
                    else:
                        continue
                    # remove suffix idx
975
                    accum_name = accum_name[: accum_name.rfind("_")]
976 977
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
978 979 980 981 982 983 984 985
                    dy_state_name = (
                        param_name
                        + "_"
                        + opt_unq_name
                        + "_"
                        + accum_name
                        + "_0"
                    )
986 987
                    converted_state[dy_state_name] = state_var

988 989
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
990
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
991 992 993 994
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
995

L
Leo Chen 已提交
996
    def prepare(self):
997 998 999 1000
        if (
            self._amp_level == "O2"
            and self.model.mode == 'train'
            and core.is_compiled_with_cuda()
L
Leo Chen 已提交
1001 1002 1003 1004
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
1005 1006
                level='O2',
            )
L
Leo Chen 已提交
1007 1008 1009
        if self._amp_level != "O0":
            self.model._scaler = None

1010

1011
class Model:
1012
    """
1013

1014 1015
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
1016
    switched by `paddle.enable_static()`. The usage is as follows.
1017
    But note, the switching between dynamic and static should be before
1018
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
1019
    must be required for static graph.
1020

1021
    When training on GPU, auto mixed precision (AMP O1) and pure float16
1022
    (AMP O2) training are both supported in static graph mode and dynamic mode.
1023
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
1024 1025
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
1026 1027 1028 1029
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
1030

1031
    Args:
1032 1033
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
1034
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
1035
            could be a InputSpec instance, or list/tuple of InputSpec instances,
1036
            or dict ({name: InputSpec}), and it couldn't be None in static
1037 1038
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
1039
            could be a InputSpec instnace or list/tuple of InputSpec instances,
1040
            or None. For static graph, if labels is required in loss,
1041
            labels must be set. Otherwise, it could be None. Default: None.
1042 1043


1044
    Examples:
J
Jiaqi Liu 已提交
1045 1046
        1. A common example

1047
        .. code-block:: python
1048
          :name: code-example1
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
1066

1067 1068 1069 1070 1071
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
1072 1073
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
1074 1075 1076 1077 1078 1079 1080

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
1081 1082 1083 1084 1085


        2. An example using mixed precision training.

        .. code-block:: python
1086
          :name: code-example2
J
Jiaqi Liu 已提交
1087

1088 1089 1090 1091
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
1092

1093 1094
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
1095

1096 1097
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1098

1099 1100
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1111

1112 1113 1114 1115 1116 1117 1118
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1119

1120 1121
    """

1122
    def __init__(self, network, inputs=None, labels=None):
1123
        self.mode = 'train'
1124
        self.network = network
1125 1126
        self._inputs = None
        self._labels = None
1127
        self._loss = None
1128 1129
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1130
        self._input_info = None
1131
        self._is_shape_inferred = False
1132
        self._test_dataloader = None
L
LiuChiachi 已提交
1133
        self.stop_training = False
1134

J
Jiabin Yang 已提交
1135
        if not _non_static_mode():
1136
            if not isinstance(inputs, (list, tuple, dict, Input)):
1137
                raise TypeError(
1138 1139
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1140
        elif inputs:
L
LiuChiachi 已提交
1141
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1142

1143
        self._inputs = self._verify_spec(inputs, is_input=True)
1144
        self._labels = self._verify_spec(labels)
1145

1146
        # init backend
J
Jiabin Yang 已提交
1147
        if fluid._non_static_mode():
1148 1149 1150 1151
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1152
    def train_batch(self, inputs, labels=None, update=True):
1153
        """
1154

L
lyuwenyu 已提交
1155 1156
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1157 1158

        Args:
1159 1160
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1161
                tensors (in case the model has multiple inputs).
1162 1163 1164
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1165 1166 1167
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1168 1169 1170 1171 1172 1173 1174 1175 1176

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1200

1201
        """
L
lyuwenyu 已提交
1202
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1203
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1204
            self._update_inputs()
1205
        return loss
1206

Z
zhaoyingli 已提交
1207
    @no_grad()
1208 1209
    def eval_batch(self, inputs, labels=None):
        """
1210

1211 1212 1213
        Run one evaluating step on a batch of data.

        Args:
1214 1215
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1216
                tensors (in case the model has multiple inputs).
1217 1218 1219
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1220
                set None. Default: None.
1221 1222 1223 1224 1225 1226 1227 1228 1229

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1254

1255
        """
1256
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1257
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1258
            self._update_inputs()
1259
        return loss
1260

Z
zhaoyingli 已提交
1261
    @no_grad()
1262
    def predict_batch(self, inputs):
1263
        """
1264

1265
        Run one predicting step on a batch of data.
1266 1267

        Args:
1268 1269
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1270
                tensors (in case the model has multiple inputs).
1271 1272 1273 1274 1275 1276 1277 1278

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1279 1280 1281 1282 1283 1284

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1303

1304
        """
1305
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1306
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1307
            self._update_inputs()
1308
        return loss
1309

1310
    def save(self, path, training=True):
1311
        """
1312

1313
        This function saves parameters, optimizer information or model and
1314 1315
        paramters only for inference to path. It depends on the parameter
        `training`.
1316

1317
        If `training` is set to True, the parameters saved contain all
1318
        the trainable Variable, will save to a file with suffix ".pdparams".
1319 1320 1321 1322
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1323
        This function will silently overwrite existing file at the target location.
1324

1325
        If `training` is set to False, only inference model will be saved.
1326 1327

        Args:
1328 1329 1330
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1331 1332
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1333 1334 1335 1336 1337 1338 1339

        Returns:
            None

        Examples:

            .. code-block:: python
1340

1341
                import paddle
1342
                import paddle.nn as nn
1343
                import paddle.vision.transforms as T
1344
                from paddle.static import InputSpec
1345

1346
                class Mnist(nn.Layer):
1347
                    def __init__(self):
1348
                        super().__init__()
1349
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1350
                            nn.Flatten(1),
1351 1352 1353 1354
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1355

1356
                    def forward(self, x):
1357
                        return self.net(x)
1358

1359
                dynamic = True  # False
1360
                # if use static graph, do not set
1361 1362
                if not dynamic:
                    paddle.enable_static()
1363

1364 1365 1366
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1367
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1368
                    parameters=model.parameters())
1369
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1370

1371 1372 1373 1374 1375
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
1376

1377
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1378 1379
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1380

1381
        """
1382

1383
        if paddle.distributed.ParallelEnv().local_rank == 0:
1384 1385 1386 1387
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1388 1389 1390

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1407
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1408 1409
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1410 1411
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1412 1413
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1414
                a optimizer has been set to the model. Default: False.
1415 1416 1417 1418 1419 1420 1421

        Returns:
            None

        Examples:

            .. code-block:: python
1422 1423 1424 1425

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1426

1427
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1428

1429
                input = InputSpec([None, 784], 'float32', 'x')
1430

1431 1432 1433 1434 1435
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1436

1437 1438
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1439

1440 1441 1442 1443 1444 1445
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1446
                return pickle.load(f, encoding='latin1')
1447 1448 1449 1450 1451

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
1452 1453
                    "{} is not found in the providing file.".format(key)
                )
1454 1455
            if list(state.shape) != list(param.shape):
                raise ValueError(
1456 1457 1458 1459
                    "{} receives a shape {}, but the expected shape is {}.".format(
                        key, list(state.shape), list(param.shape)
                    )
                )
1460 1461 1462 1463
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
1464 1465 1466 1467 1468 1469
            assert ext in [
                '',
                '.pdparams',
                '.pdopt',
                '.pdmodel',
            ], "Unknown postfix {} from weights".format(ext)
1470 1471 1472 1473 1474 1475 1476
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1477
        for key, param in self.network.state_dict().items():
1478 1479 1480 1481 1482
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
1483 1484
                        ("Skip loading for {}. ".format(key) + str(err))
                    )
1485 1486 1487 1488 1489 1490
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

1491 1492 1493
        optim_state = (
            None if reset_optimizer else _load_state_from_path(path + ".pdopt")
        )
L
Leo Chen 已提交
1494 1495

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1496
        if _non_static_mode():
L
Leo Chen 已提交
1497 1498 1499 1500 1501
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

1502 1503 1504
            return self._adapter.load(
                matched_param_state, optim_state, scaler_state
            )
L
Leo Chen 已提交
1505 1506
        else:
            return self._adapter.load(matched_param_state, optim_state)
1507 1508 1509

    def parameters(self, *args, **kwargs):
        """
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1520

1521 1522 1523
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1524

1525
                input = InputSpec([None, 784], 'float32', 'x')
1526

1527 1528 1529 1530
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1531

1532
                params = model.parameters()
1533

1534 1535 1536
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1537 1538 1539
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1540 1541
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
1542 1543 1544
                assert isinstance(
                    self._optimizer._grad_clip,
                    (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm),
1545
                ), "Only ClipGradByNorm and ClipGradByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
1557 1558
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1559 1560 1561 1562 1563 1564 1565 1566
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
1567 1568
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1569 1570 1571 1572 1573 1574 1575 1576
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1577
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1578 1579 1580 1581 1582 1583 1584
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
1585 1586 1587
                'custom_white_list',
                'custom_black_list',
                'custom_black_varnames',
J
Jiaqi Liu 已提交
1588 1589 1590
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
1591 1592
                        param_name
                    ]
J
Jiaqi Liu 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1607 1608 1609 1610
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".format(
                        tuple(amp_config_key_set - accepted_param_set)
                    )
                )
J
Jiaqi Liu 已提交
1611 1612

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1613
                if _non_static_mode():
J
Jiaqi Liu 已提交
1614
                    raise ValueError(
1615
                        "'use_fp16_guard' is supported in static graph mode only."
1616
                    )
J
Jiaqi Liu 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1626 1627 1628
    def prepare(
        self, optimizer=None, loss=None, metrics=None, amp_configs=None
    ):
1629
        """
1630

1631 1632 1633
        Configures the model before runing.

        Args:
1634
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1635
                and should be a Optimizer instance. It can be None in eval
1636 1637
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1638
                be a `paddle.nn.Layer` instance or any callable function
1639
                taken the predicted values and ground truth values as input.
1640 1641 1642 1643
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1644 1645 1646
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1647 1648
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1649 1650 1651 1652
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1653
                'use_fp16_guard' is only supported in static graph mode. Mixed
1654 1655 1656 1657 1658
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1659

1660 1661
        Returns:
            None
1662

1663
        """
1664 1665
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1666
            global _parallel_context_initialized
1667 1668 1669 1670
            if (
                paddle.distributed.ParallelEnv().nranks > 1
                and not _parallel_context_initialized
            ):
J
Jiabin Yang 已提交
1671
                if fluid._non_static_mode():
1672
                    main_prog_seed = fluid.default_main_program().random_seed
1673 1674 1675
                    startup_prog_seed = (
                        fluid.default_startup_program().random_seed
                    )
1676
                    fluid.disable_dygraph()
1677
                    paddle.disable_static(self._place)
1678 1679 1680
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
1681 1682 1683
                    fluid.default_startup_program().random_seed = (
                        startup_prog_seed
                    )
1684 1685 1686 1687 1688
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1689 1690
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1691 1692 1693
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1694
        self._loss = loss
1695 1696 1697

        metrics = metrics or []
        for metric in to_list(metrics):
1698 1699 1700
            assert isinstance(
                metric, Metric
            ), "{} is not sub class of Metric".format(metric.__class__.__name__)
1701
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1702
        self._prepare_amp(amp_configs)
1703

L
Leo Chen 已提交
1704
        self._adapter.prepare()
1705

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
    def fit(
        self,
        train_data=None,
        eval_data=None,
        batch_size=1,
        epochs=1,
        eval_freq=1,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        verbose=2,
        drop_last=False,
        shuffle=True,
        num_workers=0,
        callbacks=None,
        accumulate_grad_batches=1,
        num_iters=None,
    ):
1724
        """
1725

1726 1727 1728 1729
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1730 1731
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for
                train. An instance of paddle paddle.io.Dataset or
1732
                paddle.io.Dataloader is recomended. Default: None.
1733
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1734 1735
                evaluation at the end of epoch. If None, will not do evaluation.
                An instance of paddle.io.Dataset or paddle.io.Dataloader
1736
                is recomended. Default: None.
1737
            batch_size (int|list, optional): The batch size of train_data and eval_data. When
1738 1739 1740 1741
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1742
                is performed. Default: 1.
1743
            log_freq (int, optional): The frequency, in number of steps, the training logs
1744
                are printed. Default: 10.
1745
            save_dir(str|None, optional): The directory to save checkpoint during training.
1746
                If None, will not save checkpoint. Default: None.
1747
            save_freq (int, optional): The frequency, in number of epochs, to save
1748
                checkpoint. Default: 1.
1749
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1750
                1 = progress bar, 2 = one line per epoch. Default: 2.
1751
            drop_last (bool, optional): Whether drop the last incomplete batch of
1752 1753 1754
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1755
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1756 1757
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1758
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1759 1760 1761
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1762 1763 1764
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
1765
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident
L
lyuwenyu 已提交
1766
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1767
                size. Default: 1.
1768 1769 1770 1771
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1772 1773 1774 1775
        Returns:
            None

        Examples:
1776
            1. An example use Dataset and set batch size, shuffle in fit.
1777 1778 1779
               How to make a batch is done internally.

            .. code-block:: python
1780
              :name: code-example3
1781

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1815 1816 1817 1818 1819

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1820
              :name: code-example4
1821 1822 1823 1824 1825

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1826

1827 1828 1829
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
1830

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1857

1858
        """
1859
        assert train_data is not None, "train_data must be given!"
1860

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
        if isinstance(batch_size, (tuple, list)) and all(
            [isinstance(x, int) for x in batch_size]
        ):
            assert (
                len(batch_size) == 2
            ), "batch_size length error, expected train_batch_size and eval_batch_size."
            train_batch_size, eval_batch_size = batch_size
        elif isinstance(batch_size, int):
            train_batch_size, eval_batch_size = batch_size, batch_size

1871
        if isinstance(train_data, Dataset):
1872 1873
            train_sampler = DistributedBatchSampler(
                train_data,
1874
                batch_size=train_batch_size,
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
                shuffle=shuffle,
                drop_last=drop_last,
            )
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1885 1886 1887 1888
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1889
            eval_sampler = DistributedBatchSampler(
1890
                eval_data, batch_size=eval_batch_size
1891 1892 1893 1894 1895 1896 1897 1898
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1899 1900 1901 1902 1903 1904 1905
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1906

L
lyuwenyu 已提交
1907
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1908

1909
        steps = self._len_data_loader(train_loader)
1910
        self.num_iters = num_iters
1911 1912 1913 1914 1915
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(steps, int)
        ):
1916 1917 1918
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1919 1920 1921 1922 1923 1924 1925 1926 1927
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1928 1929
            metrics=self._metrics_name(),
        )
1930

L
LiuChiachi 已提交
1931 1932 1933
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1934 1935 1936 1937 1938 1939 1940 1941 1942
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
1943 1944 1945 1946
                cbks.on_begin(
                    'eval',
                    {'steps': eval_steps, 'metrics': self._metrics_name()},
                )
1947 1948 1949 1950

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1951 1952
            if self.stop_training:
                break
1953 1954 1955

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1956

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
    def evaluate(
        self,
        eval_data,
        batch_size=1,
        log_freq=10,
        verbose=2,
        num_workers=0,
        callbacks=None,
        num_iters=None,
    ):
1967 1968 1969 1970 1971
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
1972
                evaluation. An instance of paddle.io.Dataset or
1973
                paddle.io.Dataloader is recomended.
1974 1975 1976 1977
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
1978
                are printed. Default: 10.
1979
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1980
                1 = progress bar, 2 = one line per epoch. Default: 2.
1981
            num_workers (int, optional): The number of subprocess to load data,
1982 1983 1984
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
1985
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1986 1987
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1988 1989 1990
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
1991 1992 1993 1994 1995
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1996 1997

          .. code-block:: python
1998

1999 2000 2001
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
2002

2003 2004 2005 2006 2007 2008
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
2009

2010 2011 2012 2013 2014 2015 2016
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
2017 2018 2019
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
2040 2041
            metrics=self._metrics_name(),
        )
2042 2043

        eval_steps = self._len_data_loader(eval_loader)
2044
        self.num_iters = num_iters
2045 2046 2047 2048 2049
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(eval_steps, int)
        ):
2050 2051 2052
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
2053 2054 2055
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

2069 2070 2071 2072 2073 2074 2075 2076 2077
    def predict(
        self,
        test_data,
        batch_size=1,
        num_workers=0,
        stack_outputs=False,
        verbose=1,
        callbacks=None,
    ):
2078 2079 2080 2081 2082 2083 2084
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
2085 2086
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
2087
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess
2088 2089 2090 2091
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
2092
                output field will be in shape [N, X, Y] if stack_output is True, and will
2093
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
2094 2095
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
2096
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2097
                1 = progress bar, 2 = one line per batch. Default: 1.
2098
            callbacks(Callback, optional): A Callback instance, Default: None.
2099

2100 2101 2102 2103
        Returns:
            list: output of models.

        Examples:
2104 2105

          .. code-block:: python
2106

2107 2108 2109
                import numpy as np
                import paddle
                from paddle.static import InputSpec
2110

2111 2112
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
2113
                        super().__init__(mode=mode)
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
2145 2146 2147
        """

        if test_data is not None and isinstance(test_data, Dataset):
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size
            )
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2158 2159 2160 2161 2162
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

2163
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
2164 2165 2166 2167

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2168
        cbks.on_begin('predict', logs)
2169 2170 2171

        outputs = []

2172
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2183
        cbks.on_end('predict', logs)
2184 2185
        return outputs

2186
    def _save_inference_model(self, path):
2187
        """
2188
        Save inference model can be used in static or dynamic mode.
2189 2190

        Args:
2191 2192
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2193
        Returns:
2194
            None
2195 2196
        """

J
Jiabin Yang 已提交
2197
        if fluid._non_static_mode():
2198 2199
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2200
                if self._input_info is None:  # No provided or inferred
2201
                    raise RuntimeError(
L
LiuChiachi 已提交
2202
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2203 2204 2205 2206
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
2207 2208
                        % self._input_info[0]
                    )
L
LiuChiachi 已提交
2209

2210
                paddle.jit.save(layer, path, input_spec=self._inputs)
2211

2212
        else:
2213 2214 2215 2216 2217 2218
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
2219 2220
                    "file_prefix is empty string."
                )
2221 2222 2223 2224 2225 2226 2227 2228 2229

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2230
            prog = self._adapter._progs.get('test', None)
2231 2232 2233
            assert (
                prog
            ), "Model is not ready, please call `model.prepare()` first"
2234 2235 2236 2237 2238 2239

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2240 2241 2242 2243 2244 2245 2246 2247 2248
            fluid.io.save_inference_model(
                model_path,
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
                params_filename=params_filename,
            )
2249

L
update  
lyuwenyu 已提交
2250
    def _run_one_epoch(
2251 2252 2253 2254 2255 2256
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2267
            # 4. custumed iterator yield separated inputs and labels:
2268 2269 2270 2271 2272
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2273

2274 2275 2276 2277 2278
            batch_size = (
                data[0].shape()[0]
                if callable(data[0].shape)
                else data[0].shape[0]
            )
2279 2280 2281

            callbacks.on_batch_begin(mode, step, logs)

2282
            if mode != 'predict':
2283
                _inputs = [data[: len(self._inputs)], data[len(self._inputs) :]]
L
lyuwenyu 已提交
2284
                if mode == 'train':
2285 2286 2287 2288
                    _inputs.append(
                        (step + 1) % self._accumulate == 0
                        or step + 1 == len(data_loader)
                    )
L
update  
lyuwenyu 已提交
2289

L
lyuwenyu 已提交
2290
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2291

2292
                if self._metrics and self._loss:
2293
                    metrics = [[l[0] for l in outs[0]]]
2294
                elif self._loss:
2295 2296 2297
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2308
                if self._inputs is not None:
2309
                    outs = self.predict_batch(data[: len(self._inputs)])
L
LielinJiang 已提交
2310
                else:
2311
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2312

2313 2314 2315
                outputs.append(outs)

            logs['step'] = step
2316 2317 2318 2319
            if (
                mode == 'train'
                or self._adapter._merge_count.get(mode + '_batch', 0) <= 0
            ):
2320 2321 2322
                logs['batch_size'] = (
                    batch_size * paddle.distributed.ParallelEnv().nranks
                )
2323 2324 2325 2326
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2327 2328
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2329 2330 2331
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2332
                    break
2333 2334
        self._reset_metrics()

2335
        if mode == 'predict':
2336 2337 2338
            return logs, outputs
        return logs

L
LielinJiang 已提交
2339
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2340 2341 2342
        """Prints a string summary of the network.

        Args:
2343 2344 2345 2346
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
                    if not set, input_size will get from ``self._inputs`` if network only have
                    one input, input_size can be tuple or InputSpec. if model have multiple
                    input, input_size must be a list which contain every input's shape.
L
LielinJiang 已提交
2347
                    Default: None.
2348
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2349 2350 2351 2352 2353 2354

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2355 2356 2357 2358 2359 2360

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2361

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2373 2374

        """
2375 2376 2377
        assert (
            input_size is not None or self._inputs is not None
        ), "'input_size' or 'self._input' must be set"
2378 2379 2380 2381
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2382
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2383

L
LiuChiachi 已提交
2384
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2385 2386
        out_specs = []

2387 2388 2389 2390 2391 2392
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2393
                # While Saving inference model in dygraph, and providing inputs only in running.
2394 2395 2396 2397
                if (
                    shapes is not None
                    and dtypes is not None
                    and fluid._non_static_mode()
L
LiuChiachi 已提交
2398
                ):
2399
                    out_specs = [
2400
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2401 2402 2403 2404 2405 2406 2407
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2408 2409
            assert is_input is False
            out_specs = [
2410 2411
                specs[n]
                for n in extract_args(self.network.forward)
2412 2413
                if n != 'self'
            ]
2414 2415 2416 2417 2418 2419 2420 2421
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2422 2423 2424 2425
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
2426 2427 2428

        return out_specs

2429 2430 2431 2432 2433
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2434
        metrics_name = ['loss'] if self._loss else []
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2445 2446 2447

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2448 2449
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
2450 2451 2452
            self._inputs = self._verify_spec(
                None, self._input_info[0], self._input_info[1], True
            )
L
LiuChiachi 已提交
2453
            self._is_shape_inferred = True