Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
40bd7a7a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2310
Star
20933
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
40bd7a7a
编写于
7月 29, 2021
作者:
W
wangna11BD
提交者:
GitHub
7月 29, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add parameter of input in model.summary (#34165)
* add input option in model.summary
上级
d3dae0ce
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
105 addition
and
12 deletion
+105
-12
python/paddle/hapi/model.py
python/paddle/hapi/model.py
+1
-1
python/paddle/hapi/model_summary.py
python/paddle/hapi/model_summary.py
+67
-11
python/paddle/tests/test_model.py
python/paddle/tests/test_model.py
+37
-0
未找到文件。
python/paddle/hapi/model.py
浏览文件 @
40bd7a7a
...
...
@@ -2145,7 +2145,7 @@ class Model(object):
_input_size
=
input_size
else
:
_input_size
=
self
.
_inputs
return
summary
(
self
.
network
,
_input_size
,
dtype
)
return
summary
(
self
.
network
,
_input_size
,
dtype
s
=
dtype
)
def
_verify_spec
(
self
,
specs
,
shapes
=
None
,
dtypes
=
None
,
is_input
=
False
):
out_specs
=
[]
...
...
python/paddle/hapi/model_summary.py
浏览文件 @
40bd7a7a
...
...
@@ -25,7 +25,7 @@ from collections import OrderedDict
__all__
=
[]
def
summary
(
net
,
input_size
,
dtypes
=
None
):
def
summary
(
net
,
input_size
=
None
,
dtypes
=
None
,
input
=
None
):
"""Prints a string summary of the network.
Args:
...
...
@@ -34,8 +34,10 @@ def summary(net, input_size, dtypes=None):
have one input, input_size can be tuple or InputSpec. if model
have multiple input, input_size must be a list which contain
every input's shape. Note that input_size only dim of
batch_size can be None or -1.
batch_size can be None or -1. Default: None. Note that
input_size and input cannot be None at the same time.
dtypes (str, optional): if dtypes is None, 'float32' will be used, Default: None.
input: the input tensor. if input is given, input_size and dtype will be ignored, Default: None.
Returns:
Dict: a summary of the network including total params and total trainable params.
...
...
@@ -94,10 +96,62 @@ def summary(net, input_size, dtypes=None):
lenet_multi_input = LeNetMultiInput()
params_info = paddle.summary(lenet_multi_input, [(1, 1, 28, 28), (1, 400)],
['float32', 'float32'])
dtypes=['float32', 'float32'])
print(params_info)
# list input demo
class LeNetListInput(LeNet):
def forward(self, inputs):
x = self.features(inputs[0])
if self.num_classes > 0:
x = paddle.flatten(x, 1)
x = self.fc(x + inputs[1])
return x
lenet_list_input = LeNetListInput()
input_data = [paddle.rand([1, 1, 28, 28]), paddle.rand([1, 400])]
params_info = paddle.summary(lenet_list_input, input=input_data)
print(params_info)
# dict input demo
class LeNetDictInput(LeNet):
def forward(self, inputs):
x = self.features(inputs['x1'])
if self.num_classes > 0:
x = paddle.flatten(x, 1)
x = self.fc(x + inputs['x2'])
return x
lenet_dict_input = LeNetDictInput()
input_data = {'x1': paddle.rand([1, 1, 28, 28]),
'x2': paddle.rand([1, 400])}
params_info = paddle.summary(lenet_dict_input, input=input_data)
print(params_info)
"""
if
input_size
is
None
and
input
is
None
:
raise
ValueError
(
"input_size and input cannot be None at the same time"
)
if
input_size
is
None
and
input
is
not
None
:
if
paddle
.
is_tensor
(
input
):
input_size
=
tuple
(
input
.
shape
)
elif
isinstance
(
input
,
(
list
,
tuple
)):
input_size
=
[]
for
x
in
input
:
input_size
.
append
(
tuple
(
x
.
shape
))
elif
isinstance
(
input
,
dict
):
input_size
=
[]
for
key
in
input
.
keys
():
input_size
.
append
(
tuple
(
input
[
key
].
shape
))
else
:
raise
ValueError
(
"Input is not tensor, list, tuple and dict, unable to determine input_size, please input input_size."
)
if
isinstance
(
input_size
,
InputSpec
):
_input_size
=
tuple
(
input_size
.
shape
)
elif
isinstance
(
input_size
,
list
):
...
...
@@ -163,7 +217,8 @@ def summary(net, input_size, dtypes=None):
return
[
_check_input
(
i
)
for
i
in
input_size
]
_input_size
=
_check_input
(
_input_size
)
result
,
params_info
=
summary_string
(
net
,
_input_size
,
dtypes
)
result
,
params_info
=
summary_string
(
net
,
_input_size
,
dtypes
,
input
)
print
(
result
)
if
in_train_mode
:
...
...
@@ -173,7 +228,7 @@ def summary(net, input_size, dtypes=None):
@
paddle
.
no_grad
()
def
summary_string
(
model
,
input_size
,
dtypes
=
None
):
def
summary_string
(
model
,
input_size
=
None
,
dtypes
=
None
,
input
=
None
):
def
_all_is_numper
(
items
):
for
item
in
items
:
if
not
isinstance
(
item
,
numbers
.
Number
):
...
...
@@ -280,17 +335,18 @@ def summary_string(model, input_size, dtypes=None):
build_input
(
i
,
dtype
)
for
i
,
dtype
in
zip
(
input_size
,
dtypes
)
]
x
=
build_input
(
input_size
,
dtypes
)
# create properties
summary
=
OrderedDict
()
hooks
=
[]
# register hook
model
.
apply
(
register_hook
)
# make a forward pass
model
(
*
x
)
if
input
is
not
None
:
x
=
input
model
(
x
)
else
:
x
=
build_input
(
input_size
,
dtypes
)
# make a forward pass
model
(
*
x
)
# remove these hooks
for
h
in
hooks
:
...
...
python/paddle/tests/test_model.py
浏览文件 @
40bd7a7a
...
...
@@ -68,6 +68,27 @@ class LeNetDygraph(paddle.nn.Layer):
return
x
class
LeNetListInput
(
LeNetDygraph
):
def
forward
(
self
,
inputs
):
x
=
inputs
[
0
]
x
=
self
.
features
(
x
)
if
self
.
num_classes
>
0
:
x
=
paddle
.
flatten
(
x
,
1
)
x
=
self
.
fc
(
x
+
inputs
[
1
])
return
x
class
LeNetDictInput
(
LeNetDygraph
):
def
forward
(
self
,
inputs
):
x
=
self
.
features
(
inputs
[
'x1'
])
if
self
.
num_classes
>
0
:
x
=
paddle
.
flatten
(
x
,
1
)
x
=
self
.
fc
(
x
+
inputs
[
'x2'
])
return
x
class
MnistDataset
(
MNIST
):
def
__init__
(
self
,
mode
,
return_label
=
True
,
sample_num
=
None
):
super
(
MnistDataset
,
self
).
__init__
(
mode
=
mode
)
...
...
@@ -615,6 +636,22 @@ class TestModelFunction(unittest.TestCase):
gt_params
=
_get_param_from_state_dict
(
rnn
.
state_dict
())
np
.
testing
.
assert_allclose
(
params_info
[
'total_params'
],
gt_params
/
2.0
)
def
test_summary_input
(
self
):
rnn
=
paddle
.
nn
.
SimpleRNN
(
16
,
32
,
2
,
direction
=
'bidirectional'
)
input_data
=
paddle
.
rand
([
4
,
23
,
16
])
paddle
.
summary
(
rnn
,
input
=
input_data
)
lenet_List_input
=
LeNetListInput
()
input_data
=
[
paddle
.
rand
([
1
,
1
,
28
,
28
]),
paddle
.
rand
([
1
,
400
])]
paddle
.
summary
(
lenet_List_input
,
input
=
input_data
)
lenet_dict_input
=
LeNetDictInput
()
input_data
=
{
'x1'
:
paddle
.
rand
([
1
,
1
,
28
,
28
]),
'x2'
:
paddle
.
rand
([
1
,
400
])
}
paddle
.
summary
(
lenet_dict_input
,
input
=
input_data
)
def
test_summary_dtype
(
self
):
input_shape
=
(
3
,
1
)
net
=
paddle
.
nn
.
Embedding
(
10
,
3
,
sparse
=
True
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录