model.py 92.1 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16 17 18
import inspect
import os
import pickle
19
import socket
20 21 22 23
import time
import warnings

import numpy as np
24

25
import paddle
26 27
import paddle.distributed as dist
import paddle.distributed.fleet as fleet
28
from paddle import fluid
29 30
from paddle.autograd import no_grad
from paddle.distributed.fleet.base import role_maker
31
from paddle.fluid import core
32 33 34
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.fluid.executor import global_scope
35
from paddle.fluid.framework import Variable
36
from paddle.fluid.framework import _current_expected_place as _get_device
37
from paddle.fluid.framework import _get_paddle_place, _non_static_mode
38
from paddle.fluid.io import is_belong_to_optimizer
39
from paddle.fluid.layers import collective
40 41
from paddle.fluid.layers.utils import flatten
from paddle.io import DataLoader, Dataset, DistributedBatchSampler
42
from paddle.jit.translated_layer import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
43
from paddle.metric import Metric
44 45
from paddle.static import InputSpec as Input

46
from .callbacks import EarlyStopping, config_callbacks
L
LielinJiang 已提交
47
from .model_summary import summary
48

49
__all__ = []
50 51 52 53 54 55 56 57 58 59 60 61 62

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
63 64 65
    assert isinstance(
        var, (Variable, fluid.core.VarBase, fluid.core.eager.Tensor)
    ), "not a variable"
H
hong 已提交
66
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
93
    return inspect.getfullargspec(func).args
94 95 96


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
97 98 99
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream
    )
100 101 102


def wait_server_ready(endpoints):
103
    assert not isinstance(endpoints, str)
104 105 106 107 108 109
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
110 111
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as sock:
112 113 114 115 116 117 118 119 120 121 122
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


123 124 125
def init_communicator(
    program, rank, nranks, wait_port, current_endpoint, endpoints
):
126 127 128 129
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
130
    block = program.global_block()
131 132
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
133 134 135 136
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
161 162
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
163
            name=fluid.unique_name.generate('hccl_id'),
164
            persistable=True,
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            type=core.VarDesc.VarType.RAW,
        )
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks,
            },
        )
188 189 190 191


def prepare_distributed_context(place=None):
    if place is None:
192 193 194
        place = (
            fluid.CUDAPlace(ParallelEnv().dev_id)
            if ParallelEnv().nranks > 1
195
            else fluid.CUDAPlace(0)
196
        )
197

198
    place = _get_paddle_place(place)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
214 215 216 217 218 219 220 221
            init_communicator(
                communicator_prog,
                strategy.local_rank,
                strategy.nranks,
                True,
                strategy.current_endpoint,
                strategy.trainer_endpoints,
            )
222 223 224
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
225
        if fluid._non_static_mode():
226 227 228 229 230
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
231
        assert "Only support CUDAPlace for now."
232 233 234

    _parallel_context_initialized = True
    return strategy
235 236


L
LiuChiachi 已提交
237
def _update_input_info(inputs):
L
LiuChiachi 已提交
238
    "Get input shape list by given inputs in Model initialization."
239
    shapes = None
L
LiuChiachi 已提交
240
    dtypes = None
L
LiuChiachi 已提交
241 242
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
243
        dtypes = [inputs.dtype]
244
    elif isinstance(inputs, (list, tuple)):
245
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
246
        dtypes = [input.dtype for input in inputs]
247 248
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
249 250 251 252
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
253 254


255
class StaticGraphAdapter:
256
    """
257

258
    Model traning/inference with a static graph.
259

260 261 262
    """

    def __init__(self, model):
263
        super().__init__()
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
282
            'test_batch': 0,
283 284 285 286 287
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
288 289 290
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
291
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
292

293 294 295 296 297 298 299 300
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
301
    def train_batch(self, inputs, labels=None, update=True):
302 303 304
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
305
        self.mode = 'train'
306 307 308
        assert (
            update is True
        ), "Does not support `update == False` in static mode by now."
309 310 311 312 313 314
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

315
    def predict_batch(self, inputs):
316 317 318 319
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
320
        return self.model.network.parameters(*args, **kwargs)
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
339
        _save(self.model.network.state_dict(), param_path)
340 341 342 343 344 345
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
346
            p.name: p for p in filter(is_belong_to_optimizer, prog.list_vars())
347 348 349 350 351 352
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
353
    # TODO: support save/load scaler state in static graph
354 355 356 357 358 359 360 361
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
362 363 364 365
            [param for param, state in param_state_pairs],
            global_scope(),
            executor,
        )
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
393 394 395 396
                    (np.array(converted_state.pop("global_step")) - 1)
                    if "global_step" in converted_state
                    else converted_state.pop("@LR_DECAY_COUNTER@", None)
                )
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
413 414 415 416 417 418 419 420 421
                        accum_name = (
                            name
                            if opt_name is None
                            else name[len(opt_name) + 1 :]
                        )
                        for (
                            param_name,
                            state_var,
                        ) in self.model._optimizer._accumulators[name].items():
422 423 424
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
                                for state_key in sorted(
                                    state.keys(),
                                    key=lambda x: len(x),
                                    reverse=True,
                                ):
                                    prefix = (
                                        param_name
                                        + "_"
                                        + (
                                            opt_cls_name
                                            if opt_name is None
                                            else opt_name
                                        )
                                        + "_"
                                    )
440
                                    if state_key.startswith(prefix):
441 442 443
                                        prefix_offset = state_key[
                                            len(prefix) :
                                        ].find("_") + len(prefix)
444
                                        opt_unq_name = state_key[
445 446 447 448
                                            len(
                                                param_name + "_"
                                            ) : prefix_offset
                                        ]
449 450 451 452
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
453 454 455 456 457 458 459 460
                            dy_state_name = (
                                param_name
                                + "_"
                                + opt_unq_name
                                + "_"
                                + accum_name
                                + "_0"
                            )
461
                            converted_state[
462 463
                                state_var.name
                            ] = converted_state.pop(dy_state_name)
464

465 466 467
            assert (
                var.name in converted_state
            ), "variable [{}] is not in optimizer state file".format(var.name)
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
486 487 488
        assert (
            compiled_prog
        ), "Model is not ready, please call `model.prepare()` first"
489 490 491 492

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
493 494
        assert len(inputs) == len(self._input_vars[self.mode]), (
            "number of inputs"
495
            + " does not match number of arguments of `forward` method"
496
        )
497 498 499

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
500 501
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

502 503 504 505
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
506 507 508 509
            if (
                self._amp_level == 'O2'
                and input_dtypes[idx] == core.VarDesc.VarType.FP16
            ):
L
Leo Chen 已提交
510 511
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
512
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
513 514
                    feed[n] = feed[n].astype('float16')

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

537 538 539 540 541 542
        rets = self._executor.run(
            compiled_prog,
            feed=feed,
            fetch_list=pruned_fetch_list,
            return_numpy=False,
        )
543 544 545 546 547 548 549 550 551 552

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
553

554 555 556 557
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
558 559 560 561 562 563
            if (
                self.mode != 'train'
                and self.model._test_dataloader is not None
                and isinstance(self.model._test_dataloader, DataLoader)
                and self._nranks > 1
            ):
564 565 566 567 568 569
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
570
                        s[: int(total_size - current_count), ...] for s in state
571 572
                    ]
                    self._merge_count[self.mode + '_total'] = 0
573 574 575
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
576 577 578 579 580
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
581 582 583 584 585

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
607 608 609 610 611
        if (
            mode == 'train'
            and self.model._optimizer
            and self.model._optimizer._learning_rate_map
        ):
612 613 614 615 616 617 618 619
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
620 621
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
622 623
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
624
            self._label_vars[mode] = labels
625
            outputs = to_list(self.model.network.forward(*inputs))
626

627 628
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
629 630 631 632 633 634 635 636

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
637
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
638 639

            if mode == 'train' and self.model._optimizer:
640
                self._loss_endpoint = paddle.add_n(losses)
641 642 643
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
644 645 646 647 648
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
649 650 651
                        dist_strategy.amp_configs['use_pure_fp16'] = (
                            self._amp_level == 'O2'
                        )
652
                    self.model._optimizer = fleet.distributed_optimizer(
653 654
                        self.model._optimizer, strategy=dist_strategy
                    )
J
Jiaqi Liu 已提交
655
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
656 657 658 659 660 661 662
                    amp_lists = (
                        paddle.static.amp.AutoMixedPrecisionLists(
                            **self._amp_custom_lists
                        )
                        if self._amp_custom_lists
                        else None
                    )
J
Jiaqi Liu 已提交
663 664 665 666 667
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
668 669
                        **self._amp_configs
                    )
670 671 672 673 674 675 676 677 678 679 680

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
681
            "loss": to_list(losses),
682
            "metric": metrics,
683 684 685 686 687 688 689
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

690 691 692
        assert (
            self.model._place is not None
        ), "device is not set, please call `model.prepare()` first"
693 694 695 696 697 698 699 700 701 702 703 704

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
705 706 707 708 709
                if (
                    not var_py.name.startswith('nccl_id')
                    and var
                    and var.get_tensor()._is_initialized()
                ):
710 711 712 713 714 715 716
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

717 718 719 720
        if (
            self._amp_level == "O2"
            and mode == 'train'
            and core.is_compiled_with_cuda()
J
Jiaqi Liu 已提交
721 722 723
        ):
            self.model._optimizer.amp_init(place)

724 725 726 727 728 729 730 731
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


732
class DynamicGraphAdapter:
733
    def __init__(self, model):
734
        super().__init__()
735 736 737 738 739 740 741
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
742
            'test_batch': 0,
743 744
        }

L
LiuChiachi 已提交
745
        self._input_info = None
J
Jiaqi Liu 已提交
746 747 748 749 750
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

751
        if self._nranks > 1:
752
            dist.init_parallel_env()
753 754 755 756 757
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
758
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
759 760
                self.model.network, stradegy
            )
761 762 763 764 765 766 767 768 769 770

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
771
    def train_batch(self, inputs, labels=None, update=True):
772 773 774
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
775
        self.model.network.train()
776 777
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
778
        self._input_info = _update_input_info(inputs)
779 780 781
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
782 783 784 785
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

786 787 788 789 790
        with paddle.amp.auto_cast(
            enable=self._amp_level != 'O0',
            **self._amp_custom_lists,
            level=self._amp_level
        ):
J
Jiaqi Liu 已提交
791
            if self._nranks > 1:
792
                outputs = self.ddp_model(*[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
793
            else:
794
                outputs = self.model.network(*[to_variable(x) for x in inputs])
795

L
Leo Chen 已提交
796 797
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
798
        final_loss = paddle.add_n(losses)
799

J
Jiaqi Liu 已提交
800
        if self._amp_level != "O0":
L
Leo Chen 已提交
801
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
802
            scaled.backward()
L
lyuwenyu 已提交
803
            if update:
L
Leo Chen 已提交
804
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
805
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
806 807
        else:
            final_loss.backward()
L
lyuwenyu 已提交
808 809 810
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
811

812 813
        metrics = []
        for metric in self.model._metrics:
814
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
815
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
816 817
            metrics.append(m)

818 819 820 821 822
        return (
            ([to_numpy(l) for l in losses], metrics)
            if len(metrics) > 0
            else [to_numpy(l) for l in losses]
        )
823 824

    def eval_batch(self, inputs, labels=None):
825
        self.model.network.eval()
826 827
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
828
        self._input_info = _update_input_info(inputs)
829 830 831
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

832
        outputs = self.model.network(*[to_variable(x) for x in inputs])
833 834 835 836 837 838 839 840 841

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

842 843
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
844 845
            losses = to_list(losses)

846 847 848 849 850 851
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
852 853 854 855 856
            if (
                self.model._test_dataloader is not None
                and self._nranks > 1
                and isinstance(self.model._test_dataloader, DataLoader)
            ):
857 858 859 860 861
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
862
                        o[: int(total_size - current_count)] for o in outputs
863 864
                    ]
                    labels = [
865
                        l[: int(total_size - current_count)] for l in labels
866 867
                    ]
                    self._merge_count[self.mode + '_total'] = 0
868 869 870
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
871 872 873 874
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

875
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
876
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
877 878
            metrics.append(m)

879
        if self.model._loss and len(metrics):
880
            return [to_numpy(l) for l in losses], metrics
881
        elif self.model._loss:
882 883 884
            return [to_numpy(l) for l in losses]
        else:
            return metrics
885

886
    def predict_batch(self, inputs):
887
        self.model.network.eval()
888 889
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
890
        self._input_info = _update_input_info(inputs)
891
        outputs = self.model.network(*inputs)
892 893 894 895 896 897
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
898
        return self.model.network.parameters(*args, **kwargs)
899 900

    def save(self, path):
901
        params = self.model.network.state_dict()
902
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
903 904 905 906 907 908 909 910 911 912
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
913 914 915 916
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
917 918 919 920
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

921 922 923 924
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

925 926
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
927 928 929 930 931 932 933 934 935 936
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
937
        opt_name = opt_unq_name[: opt_unq_name.rfind("_")]  # remove suffix idx
938
        param_names = [param.name for param in self.model.network.parameters()]
939 940 941
        for var_name, state_var in sorted(
            optim_state.items(), key=lambda x: len(x[0]), reverse=True
        ):
942 943 944 945 946
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
947 948 949
                    converted_state["global_step"] = (
                        np.array(converted_state.pop("@LR_DECAY_COUNTER@")) + 1
                    )
950 951 952 953 954 955
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
956 957 958 959 960 961 962
                        accum_name = var_name[
                            len(param_name + "_" + opt_name + "_") :
                        ]
                    elif (
                        var_name.startswith(param_name + "_")
                        and opt_name == opt_cls_name
                    ):
963
                        # when init optimizer without name
964
                        accum_name = var_name[len(param_name + "_") :]
965 966 967
                    else:
                        continue
                    # remove suffix idx
968
                    accum_name = accum_name[: accum_name.rfind("_")]
969 970
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
971 972 973 974 975 976 977 978
                    dy_state_name = (
                        param_name
                        + "_"
                        + opt_unq_name
                        + "_"
                        + accum_name
                        + "_0"
                    )
979 980
                    converted_state[dy_state_name] = state_var

981 982
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
983
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
984 985 986 987
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
988

L
Leo Chen 已提交
989
    def prepare(self):
990 991 992 993
        if (
            self._amp_level == "O2"
            and self.model.mode == 'train'
            and core.is_compiled_with_cuda()
L
Leo Chen 已提交
994 995 996 997
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
998 999
                level='O2',
            )
L
Leo Chen 已提交
1000 1001 1002
        if self._amp_level != "O0":
            self.model._scaler = None

1003

1004
class Model:
1005
    """
1006

1007 1008
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
1009
    switched by `paddle.enable_static()`. The usage is as follows.
1010
    But note, the switching between dynamic and static should be before
1011
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
1012
    must be required for static graph.
1013

1014
    When training on GPU, auto mixed precision (AMP O1) and pure float16
L
Leo Chen 已提交
1015
    (AMP O2) training are both supported in static mode and dynamic mode.
1016
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
1017 1018
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
1019 1020 1021 1022
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
1023

1024
    Args:
1025 1026
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
1027
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
1028
            could be a InputSpec instance, or list/tuple of InputSpec instances,
1029
            or dict ({name: InputSpec}), and it couldn't be None in static
1030 1031
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
1032
            could be a InputSpec instnace or list/tuple of InputSpec instances,
1033
            or None. For static graph, if labels is required in loss,
1034
            labels must be set. Otherwise, it could be None. Default: None.
1035 1036


1037
    Examples:
J
Jiaqi Liu 已提交
1038 1039
        1. A common example

1040
        .. code-block:: python
1041
          :name: code-example1
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
1059

1060 1061 1062 1063 1064
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
1065 1066
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
1067 1068 1069 1070 1071 1072 1073

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
1074 1075 1076 1077 1078


        2. An example using mixed precision training.

        .. code-block:: python
1079
          :name: code-example2
J
Jiaqi Liu 已提交
1080

1081 1082 1083 1084
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
1085

1086 1087
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
1088

1089 1090
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1091

1092 1093
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1104

1105 1106 1107 1108 1109 1110 1111
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1112

1113 1114
    """

1115
    def __init__(self, network, inputs=None, labels=None):
1116
        self.mode = 'train'
1117
        self.network = network
1118 1119
        self._inputs = None
        self._labels = None
1120
        self._loss = None
1121 1122
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1123
        self._input_info = None
1124
        self._is_shape_inferred = False
1125
        self._test_dataloader = None
L
LiuChiachi 已提交
1126
        self.stop_training = False
1127

J
Jiabin Yang 已提交
1128
        if not _non_static_mode():
1129
            if not isinstance(inputs, (list, tuple, dict, Input)):
1130
                raise TypeError(
1131 1132
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1133
        elif inputs:
L
LiuChiachi 已提交
1134
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1135

1136
        self._inputs = self._verify_spec(inputs, is_input=True)
1137
        self._labels = self._verify_spec(labels)
1138

1139
        # init backend
J
Jiabin Yang 已提交
1140
        if fluid._non_static_mode():
1141 1142 1143 1144
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1145
    def train_batch(self, inputs, labels=None, update=True):
1146
        """
1147

L
lyuwenyu 已提交
1148 1149
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1150 1151

        Args:
1152 1153
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1154
                tensors (in case the model has multiple inputs).
1155 1156 1157
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1158 1159 1160
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1161 1162 1163 1164 1165 1166 1167 1168 1169

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1193

1194
        """
L
lyuwenyu 已提交
1195
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1196
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1197
            self._update_inputs()
1198
        return loss
1199

Z
zhaoyingli 已提交
1200
    @no_grad()
1201 1202
    def eval_batch(self, inputs, labels=None):
        """
1203

1204 1205 1206
        Run one evaluating step on a batch of data.

        Args:
1207 1208
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1209
                tensors (in case the model has multiple inputs).
1210 1211 1212
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1213
                set None. Default: None.
1214 1215 1216 1217 1218 1219 1220 1221 1222

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1247

1248
        """
1249
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1250
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1251
            self._update_inputs()
1252
        return loss
1253

Z
zhaoyingli 已提交
1254
    @no_grad()
1255
    def predict_batch(self, inputs):
1256
        """
1257

1258
        Run one predicting step on a batch of data.
1259 1260

        Args:
1261 1262
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1263
                tensors (in case the model has multiple inputs).
1264 1265 1266 1267 1268 1269 1270 1271

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1272 1273 1274 1275 1276 1277

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
1278

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1296

1297
        """
1298
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1299
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1300
            self._update_inputs()
1301
        return loss
1302

1303
    def save(self, path, training=True):
1304
        """
1305

1306
        This function saves parameters, optimizer information or model and
1307 1308
        paramters only for inference to path. It depends on the parameter
        `training`.
1309

1310
        If `training` is set to True, the parameters saved contain all
1311
        the trainable Variable, will save to a file with suffix ".pdparams".
1312 1313 1314 1315
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1316
        This function will silently overwrite existing file at the target location.
1317

1318
        If `training` is set to False, only inference model will be saved.
1319 1320

        Args:
1321 1322 1323
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1324 1325
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1326 1327 1328 1329 1330 1331 1332

        Returns:
            None

        Examples:

            .. code-block:: python
1333

1334
                import paddle
1335
                import paddle.nn as nn
1336
                import paddle.vision.transforms as T
1337
                from paddle.static import InputSpec
1338

1339
                class Mnist(nn.Layer):
1340
                    def __init__(self):
1341
                        super().__init__()
1342
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1343
                            nn.Flatten(1),
1344 1345 1346 1347
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1348

1349
                    def forward(self, x):
1350
                        return self.net(x)
1351

1352
                dynamic = True  # False
1353
                # if use static graph, do not set
1354 1355
                if not dynamic:
                    paddle.enable_static()
1356

1357 1358 1359
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1360
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1361
                    parameters=model.parameters())
1362
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1363

1364 1365 1366 1367 1368
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
1369

1370
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1371 1372
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1373

1374
        """
1375

1376
        if ParallelEnv().local_rank == 0:
1377 1378 1379 1380
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1381 1382 1383

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1400
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1401 1402
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1403 1404
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1405 1406
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1407
                a optimizer has been set to the model. Default: False.
1408 1409 1410 1411 1412 1413 1414

        Returns:
            None

        Examples:

            .. code-block:: python
1415 1416 1417 1418

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1419

1420
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1421

1422
                input = InputSpec([None, 784], 'float32', 'x')
1423

1424 1425 1426 1427 1428
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1429

1430 1431
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1432

1433 1434 1435 1436 1437 1438
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1439
                return pickle.load(f, encoding='latin1')
1440 1441 1442 1443 1444

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
1445 1446
                    "{} is not found in the providing file.".format(key)
                )
1447 1448
            if list(state.shape) != list(param.shape):
                raise ValueError(
1449 1450 1451 1452
                    "{} receives a shape {}, but the expected shape is {}.".format(
                        key, list(state.shape), list(param.shape)
                    )
                )
1453 1454 1455 1456
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
1457 1458 1459 1460 1461 1462
            assert ext in [
                '',
                '.pdparams',
                '.pdopt',
                '.pdmodel',
            ], "Unknown postfix {} from weights".format(ext)
1463 1464 1465 1466 1467 1468 1469
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1470
        for key, param in self.network.state_dict().items():
1471 1472 1473 1474 1475
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
1476 1477
                        ("Skip loading for {}. ".format(key) + str(err))
                    )
1478 1479 1480 1481 1482 1483
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

1484 1485 1486
        optim_state = (
            None if reset_optimizer else _load_state_from_path(path + ".pdopt")
        )
L
Leo Chen 已提交
1487 1488

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1489
        if _non_static_mode():
L
Leo Chen 已提交
1490 1491 1492 1493 1494
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

1495 1496 1497
            return self._adapter.load(
                matched_param_state, optim_state, scaler_state
            )
L
Leo Chen 已提交
1498 1499
        else:
            return self._adapter.load(matched_param_state, optim_state)
1500 1501 1502

    def parameters(self, *args, **kwargs):
        """
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1513

1514 1515 1516
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1517

1518
                input = InputSpec([None, 784], 'float32', 'x')
1519

1520 1521 1522 1523
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1524

1525
                params = model.parameters()
1526

1527 1528 1529
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1530 1531 1532
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1533 1534
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
1535 1536 1537 1538
                assert isinstance(
                    self._optimizer._grad_clip,
                    (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm),
                ), "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
1550 1551
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1552 1553 1554 1555 1556 1557 1558 1559
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
1560 1561
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1562 1563 1564 1565 1566 1567 1568 1569
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1570
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1571 1572 1573 1574 1575 1576 1577
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
1578 1579 1580
                'custom_white_list',
                'custom_black_list',
                'custom_black_varnames',
J
Jiaqi Liu 已提交
1581 1582 1583
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
1584 1585
                        param_name
                    ]
J
Jiaqi Liu 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1600 1601 1602 1603
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".format(
                        tuple(amp_config_key_set - accepted_param_set)
                    )
                )
J
Jiaqi Liu 已提交
1604 1605

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1606
                if _non_static_mode():
J
Jiaqi Liu 已提交
1607
                    raise ValueError(
1608 1609
                        "'use_fp16_guard' is supported in static mode only."
                    )
J
Jiaqi Liu 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1619 1620 1621
    def prepare(
        self, optimizer=None, loss=None, metrics=None, amp_configs=None
    ):
1622
        """
1623

1624 1625 1626
        Configures the model before runing.

        Args:
1627
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1628
                and should be a Optimizer instance. It can be None in eval
1629 1630
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1631
                be a `paddle.nn.Layer` instance or any callable function
1632
                taken the predicted values and ground truth values as input.
1633 1634 1635 1636
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1637 1638 1639
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1640 1641
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1642 1643 1644 1645
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1646 1647 1648 1649 1650 1651
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1652

1653 1654
        Returns:
            None
1655

1656
        """
1657 1658
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1659 1660
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
J
Jiabin Yang 已提交
1661
                if fluid._non_static_mode():
1662
                    main_prog_seed = fluid.default_main_program().random_seed
1663 1664 1665
                    startup_prog_seed = (
                        fluid.default_startup_program().random_seed
                    )
1666
                    fluid.disable_dygraph()
1667
                    paddle.disable_static(self._place)
1668 1669 1670
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
1671 1672 1673
                    fluid.default_startup_program().random_seed = (
                        startup_prog_seed
                    )
1674 1675 1676 1677 1678
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1679 1680
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1681 1682 1683
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1684
        self._loss = loss
1685 1686 1687

        metrics = metrics or []
        for metric in to_list(metrics):
1688 1689 1690
            assert isinstance(
                metric, Metric
            ), "{} is not sub class of Metric".format(metric.__class__.__name__)
1691
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1692
        self._prepare_amp(amp_configs)
1693

L
Leo Chen 已提交
1694
        self._adapter.prepare()
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
    def fit(
        self,
        train_data=None,
        eval_data=None,
        batch_size=1,
        epochs=1,
        eval_freq=1,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        verbose=2,
        drop_last=False,
        shuffle=True,
        num_workers=0,
        callbacks=None,
        accumulate_grad_batches=1,
        num_iters=None,
    ):
1714
        """
1715

1716 1717 1718 1719
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1720 1721
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for
                train. An instance of paddle paddle.io.Dataset or
1722
                paddle.io.Dataloader is recomended. Default: None.
1723
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1724 1725
                evaluation at the end of epoch. If None, will not do evaluation.
                An instance of paddle.io.Dataset or paddle.io.Dataloader
1726
                is recomended. Default: None.
1727
            batch_size (int|list, optional): The batch size of train_data and eval_data. When
1728 1729 1730 1731
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1732
                is performed. Default: 1.
1733
            log_freq (int, optional): The frequency, in number of steps, the training logs
1734
                are printed. Default: 10.
1735
            save_dir(str|None, optional): The directory to save checkpoint during training.
1736
                If None, will not save checkpoint. Default: None.
1737
            save_freq (int, optional): The frequency, in number of epochs, to save
1738
                checkpoint. Default: 1.
1739
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1740
                1 = progress bar, 2 = one line per epoch. Default: 2.
1741
            drop_last (bool, optional): Whether drop the last incomplete batch of
1742 1743 1744
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1745
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1746 1747
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1748
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1749 1750 1751
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1752 1753 1754
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
1755
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident
L
lyuwenyu 已提交
1756
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1757
                size. Default: 1.
1758 1759 1760 1761
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1762 1763 1764 1765
        Returns:
            None

        Examples:
1766
            1. An example use Dataset and set batch size, shuffle in fit.
1767 1768 1769
               How to make a batch is done internally.

            .. code-block:: python
1770
              :name: code-example3
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1805 1806 1807 1808 1809

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1810
              :name: code-example4
1811 1812 1813 1814 1815

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1816

1817 1818 1819
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1847

1848
        """
1849
        assert train_data is not None, "train_data must be given!"
1850

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
        if isinstance(batch_size, (tuple, list)) and all(
            [isinstance(x, int) for x in batch_size]
        ):
            assert (
                len(batch_size) == 2
            ), "batch_size length error, expected train_batch_size and eval_batch_size."
            train_batch_size, eval_batch_size = batch_size
        elif isinstance(batch_size, int):
            train_batch_size, eval_batch_size = batch_size, batch_size

1861
        if isinstance(train_data, Dataset):
1862 1863
            train_sampler = DistributedBatchSampler(
                train_data,
1864
                batch_size=train_batch_size,
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
                shuffle=shuffle,
                drop_last=drop_last,
            )
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1875 1876 1877 1878
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1879
            eval_sampler = DistributedBatchSampler(
1880
                eval_data, batch_size=eval_batch_size
1881 1882 1883 1884 1885 1886 1887 1888
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1889 1890 1891 1892 1893 1894 1895
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1896

L
lyuwenyu 已提交
1897
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1898

1899
        steps = self._len_data_loader(train_loader)
1900
        self.num_iters = num_iters
1901 1902 1903 1904 1905
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(steps, int)
        ):
1906 1907 1908
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1909 1910 1911 1912 1913 1914 1915 1916 1917
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1918 1919
            metrics=self._metrics_name(),
        )
1920

L
LiuChiachi 已提交
1921 1922 1923
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1924 1925 1926 1927 1928 1929 1930 1931 1932
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
1933 1934 1935 1936
                cbks.on_begin(
                    'eval',
                    {'steps': eval_steps, 'metrics': self._metrics_name()},
                )
1937 1938 1939 1940

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1941 1942
            if self.stop_training:
                break
1943 1944 1945

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1946

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
    def evaluate(
        self,
        eval_data,
        batch_size=1,
        log_freq=10,
        verbose=2,
        num_workers=0,
        callbacks=None,
        num_iters=None,
    ):
1957 1958 1959 1960 1961
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
1962
                evaluation. An instance of paddle.io.Dataset or
1963
                paddle.io.Dataloader is recomended.
1964 1965 1966 1967
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
1968
                are printed. Default: 10.
1969
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1970
                1 = progress bar, 2 = one line per epoch. Default: 2.
1971
            num_workers (int, optional): The number of subprocess to load data,
1972 1973 1974
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
1975
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1976 1977
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1978 1979 1980
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
1981 1982 1983 1984 1985
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1986 1987

          .. code-block:: python
1988

1989 1990 1991
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
1992

1993 1994 1995 1996 1997 1998
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1999

2000 2001 2002 2003 2004 2005 2006
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
2007 2008 2009
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
2030 2031
            metrics=self._metrics_name(),
        )
2032 2033

        eval_steps = self._len_data_loader(eval_loader)
2034
        self.num_iters = num_iters
2035 2036 2037 2038 2039
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(eval_steps, int)
        ):
2040 2041 2042
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
2043 2044 2045
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

2059 2060 2061 2062 2063 2064 2065 2066 2067
    def predict(
        self,
        test_data,
        batch_size=1,
        num_workers=0,
        stack_outputs=False,
        verbose=1,
        callbacks=None,
    ):
2068 2069 2070 2071 2072 2073 2074
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
2075 2076
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
2077
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess
2078 2079 2080 2081
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
2082
                output field will be in shape [N, X, Y] if stack_output is True, and will
2083
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
2084 2085
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
2086
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2087
                1 = progress bar, 2 = one line per batch. Default: 1.
2088
            callbacks(Callback, optional): A Callback instance, Default: None.
2089

2090 2091 2092 2093
        Returns:
            list: output of models.

        Examples:
2094 2095

          .. code-block:: python
2096

2097 2098 2099
                import numpy as np
                import paddle
                from paddle.static import InputSpec
2100

2101 2102
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
2103
                        super().__init__(mode=mode)
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
2135 2136 2137
        """

        if test_data is not None and isinstance(test_data, Dataset):
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size
            )
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2148 2149 2150 2151 2152
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

2153
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
2154 2155 2156 2157

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2158
        cbks.on_begin('predict', logs)
2159 2160 2161

        outputs = []

2162
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2173
        cbks.on_end('predict', logs)
2174 2175
        return outputs

2176
    def _save_inference_model(self, path):
2177
        """
2178
        Save inference model can be used in static or dynamic mode.
2179 2180

        Args:
2181 2182
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2183
        Returns:
2184
            None
2185 2186
        """

J
Jiabin Yang 已提交
2187
        if fluid._non_static_mode():
2188 2189
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2190
                if self._input_info is None:  # No provided or inferred
2191
                    raise RuntimeError(
L
LiuChiachi 已提交
2192
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2193 2194 2195 2196
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
2197 2198
                        % self._input_info[0]
                    )
L
LiuChiachi 已提交
2199

2200
                paddle.jit.save(layer, path, input_spec=self._inputs)
2201

2202
        else:
2203 2204 2205 2206 2207 2208
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
2209 2210
                    "file_prefix is empty string."
                )
2211 2212 2213 2214 2215 2216 2217 2218 2219

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2220
            prog = self._adapter._progs.get('test', None)
2221 2222 2223
            assert (
                prog
            ), "Model is not ready, please call `model.prepare()` first"
2224 2225 2226 2227 2228 2229

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2230 2231 2232 2233 2234 2235 2236 2237 2238
            fluid.io.save_inference_model(
                model_path,
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
                params_filename=params_filename,
            )
2239

L
update  
lyuwenyu 已提交
2240
    def _run_one_epoch(
2241 2242 2243 2244 2245 2246
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2257
            # 4. custumed iterator yield separated inputs and labels:
2258 2259 2260 2261 2262
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2263

2264 2265 2266 2267 2268
            batch_size = (
                data[0].shape()[0]
                if callable(data[0].shape)
                else data[0].shape[0]
            )
2269 2270 2271

            callbacks.on_batch_begin(mode, step, logs)

2272
            if mode != 'predict':
2273
                _inputs = [data[: len(self._inputs)], data[len(self._inputs) :]]
L
lyuwenyu 已提交
2274
                if mode == 'train':
2275 2276 2277 2278
                    _inputs.append(
                        (step + 1) % self._accumulate == 0
                        or step + 1 == len(data_loader)
                    )
L
update  
lyuwenyu 已提交
2279

L
lyuwenyu 已提交
2280
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2281

2282
                if self._metrics and self._loss:
2283
                    metrics = [[l[0] for l in outs[0]]]
2284
                elif self._loss:
2285 2286 2287
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2298
                if self._inputs is not None:
2299
                    outs = self.predict_batch(data[: len(self._inputs)])
L
LielinJiang 已提交
2300
                else:
2301
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2302

2303 2304 2305
                outputs.append(outs)

            logs['step'] = step
2306 2307 2308 2309
            if (
                mode == 'train'
                or self._adapter._merge_count.get(mode + '_batch', 0) <= 0
            ):
2310 2311 2312 2313 2314
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2315 2316
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2317 2318 2319
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2320
                    break
2321 2322
        self._reset_metrics()

2323
        if mode == 'predict':
2324 2325 2326
            return logs, outputs
        return logs

L
LielinJiang 已提交
2327
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2328 2329 2330
        """Prints a string summary of the network.

        Args:
2331 2332 2333 2334
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
                    if not set, input_size will get from ``self._inputs`` if network only have
                    one input, input_size can be tuple or InputSpec. if model have multiple
                    input, input_size must be a list which contain every input's shape.
L
LielinJiang 已提交
2335
                    Default: None.
2336
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2337 2338 2339 2340 2341 2342

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2343 2344 2345 2346 2347 2348

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2349

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2361 2362

        """
2363 2364 2365
        assert (
            input_size is not None or self._inputs is not None
        ), "'input_size' or 'self._input' must be set"
2366 2367 2368 2369
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2370
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2371

L
LiuChiachi 已提交
2372
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2373 2374
        out_specs = []

2375 2376 2377 2378 2379 2380
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2381
                # While Saving inference model in dygraph, and providing inputs only in running.
2382 2383 2384 2385
                if (
                    shapes is not None
                    and dtypes is not None
                    and fluid._non_static_mode()
L
LiuChiachi 已提交
2386
                ):
2387
                    out_specs = [
2388
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2389 2390 2391 2392 2393 2394 2395
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2396 2397
            assert is_input is False
            out_specs = [
2398 2399
                specs[n]
                for n in extract_args(self.network.forward)
2400 2401
                if n != 'self'
            ]
2402 2403 2404 2405 2406 2407 2408 2409
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2410 2411 2412 2413
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
2414 2415 2416

        return out_specs

2417 2418 2419 2420 2421
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2422
        metrics_name = ['loss'] if self._loss else []
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2433 2434 2435

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2436 2437
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
2438 2439 2440
            self._inputs = self._verify_spec(
                None, self._input_info[0], self._input_info[1], True
            )
L
LiuChiachi 已提交
2441
            self._is_shape_inferred = True