model.py 92.2 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import os
import pickle
import numpy as np
import warnings
20 21 22
import time
import socket
import contextlib
23

24
import paddle
25
from paddle import fluid
26
from paddle.fluid import core
27
from paddle.fluid.framework import _non_static_mode
28 29
from paddle.fluid.framework import Variable
from paddle.fluid.framework import _get_paddle_place
30
from paddle.fluid.framework import _current_expected_place as _get_device
31 32 33 34
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
35 36
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
37
from paddle.fluid.layers.utils import flatten
38
from paddle.fluid.layers import collective
39

40 41 42
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
43
from paddle.metric import Metric
44
from paddle.static import InputSpec as Input
45
import paddle.distributed as dist
J
Jiaqi Liu 已提交
46 47
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet.base import role_maker
Z
zhaoyingli 已提交
48
from paddle.autograd import no_grad
49

L
LiuChiachi 已提交
50
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
51
from .model_summary import summary
52

53
__all__ = []
54 55 56 57 58 59 60 61 62 63 64 65 66

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
67 68 69
    assert isinstance(
        var, (Variable, fluid.core.VarBase, fluid.core.eager.Tensor)
    ), "not a variable"
H
hong 已提交
70
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
97
    return inspect.getfullargspec(func).args
98 99 100


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
101 102 103
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream
    )
104 105 106


def wait_server_ready(endpoints):
107
    assert not isinstance(endpoints, str)
108 109 110 111 112 113
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
114 115
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as sock:
116 117 118 119 120 121 122 123 124 125 126
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


127 128 129
def init_communicator(
    program, rank, nranks, wait_port, current_endpoint, endpoints
):
130 131 132 133
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
134
    block = program.global_block()
135 136
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
137 138 139 140
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
165 166
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
167
            name=fluid.unique_name.generate('hccl_id'),
168
            persistable=True,
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
            type=core.VarDesc.VarType.RAW,
        )
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks,
            },
        )
192 193 194 195


def prepare_distributed_context(place=None):
    if place is None:
196 197 198
        place = (
            fluid.CUDAPlace(ParallelEnv().dev_id)
            if ParallelEnv().nranks > 1
199
            else fluid.CUDAPlace(0)
200
        )
201

202
    place = _get_paddle_place(place)
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
218 219 220 221 222 223 224 225
            init_communicator(
                communicator_prog,
                strategy.local_rank,
                strategy.nranks,
                True,
                strategy.current_endpoint,
                strategy.trainer_endpoints,
            )
226 227 228
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
229
        if fluid._non_static_mode():
230 231 232 233 234
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
235
        assert "Only support CUDAPlace for now."
236 237 238

    _parallel_context_initialized = True
    return strategy
239 240


L
LiuChiachi 已提交
241
def _update_input_info(inputs):
L
LiuChiachi 已提交
242
    "Get input shape list by given inputs in Model initialization."
243
    shapes = None
L
LiuChiachi 已提交
244
    dtypes = None
L
LiuChiachi 已提交
245 246
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
247
        dtypes = [inputs.dtype]
248
    elif isinstance(inputs, (list, tuple)):
249
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
250
        dtypes = [input.dtype for input in inputs]
251 252
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
253 254 255 256
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
257 258


259
class StaticGraphAdapter:
260 261 262 263 264
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
265
        super().__init__()
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
284
            'test_batch': 0,
285 286 287 288 289
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
290 291 292
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
293
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
294

295 296 297 298 299 300 301 302
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
303
    def train_batch(self, inputs, labels=None, update=True):
304 305 306
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
307
        self.mode = 'train'
308 309 310
        assert (
            update is True
        ), "Does not support `update == False` in static mode by now."
311 312 313 314 315 316
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

317
    def predict_batch(self, inputs):
318 319 320 321
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
322
        return self.model.network.parameters(*args, **kwargs)
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
341
        _save(self.model.network.state_dict(), param_path)
342 343 344 345 346 347
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
348
            p.name: p for p in filter(is_belong_to_optimizer, prog.list_vars())
349 350 351 352 353 354
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
355
    # TODO: support save/load scaler state in static graph
356 357 358 359 360 361 362 363
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
364 365 366 367
            [param for param, state in param_state_pairs],
            global_scope(),
            executor,
        )
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
395 396 397 398
                    (np.array(converted_state.pop("global_step")) - 1)
                    if "global_step" in converted_state
                    else converted_state.pop("@LR_DECAY_COUNTER@", None)
                )
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
415 416 417 418 419 420 421 422 423
                        accum_name = (
                            name
                            if opt_name is None
                            else name[len(opt_name) + 1 :]
                        )
                        for (
                            param_name,
                            state_var,
                        ) in self.model._optimizer._accumulators[name].items():
424 425 426
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
                                for state_key in sorted(
                                    state.keys(),
                                    key=lambda x: len(x),
                                    reverse=True,
                                ):
                                    prefix = (
                                        param_name
                                        + "_"
                                        + (
                                            opt_cls_name
                                            if opt_name is None
                                            else opt_name
                                        )
                                        + "_"
                                    )
442
                                    if state_key.startswith(prefix):
443 444 445
                                        prefix_offset = state_key[
                                            len(prefix) :
                                        ].find("_") + len(prefix)
446
                                        opt_unq_name = state_key[
447 448 449 450
                                            len(
                                                param_name + "_"
                                            ) : prefix_offset
                                        ]
451 452 453 454
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
455 456 457 458 459 460 461 462
                            dy_state_name = (
                                param_name
                                + "_"
                                + opt_unq_name
                                + "_"
                                + accum_name
                                + "_0"
                            )
463
                            converted_state[
464 465
                                state_var.name
                            ] = converted_state.pop(dy_state_name)
466

467 468 469
            assert (
                var.name in converted_state
            ), "variable [{}] is not in optimizer state file".format(var.name)
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
488 489 490
        assert (
            compiled_prog
        ), "Model is not ready, please call `model.prepare()` first"
491 492 493 494

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
495 496
        assert len(inputs) == len(self._input_vars[self.mode]), (
            "number of inputs"
497
            + " does not match number of arguments of `forward` method"
498
        )
499 500 501

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
502 503
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

504 505 506 507
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
508 509 510 511
            if (
                self._amp_level == 'O2'
                and input_dtypes[idx] == core.VarDesc.VarType.FP16
            ):
L
Leo Chen 已提交
512 513
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
514
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
515 516
                    feed[n] = feed[n].astype('float16')

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

539 540 541 542 543 544
        rets = self._executor.run(
            compiled_prog,
            feed=feed,
            fetch_list=pruned_fetch_list,
            return_numpy=False,
        )
545 546 547 548 549 550 551 552 553 554

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
555

556 557 558 559
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
560 561 562 563 564 565
            if (
                self.mode != 'train'
                and self.model._test_dataloader is not None
                and isinstance(self.model._test_dataloader, DataLoader)
                and self._nranks > 1
            ):
566 567 568 569 570 571
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
572
                        s[: int(total_size - current_count), ...] for s in state
573 574
                    ]
                    self._merge_count[self.mode + '_total'] = 0
575 576 577
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
578 579 580 581 582
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
583 584 585 586 587

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
609 610 611 612 613
        if (
            mode == 'train'
            and self.model._optimizer
            and self.model._optimizer._learning_rate_map
        ):
614 615 616 617 618 619 620 621
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
622 623
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
624 625
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
626
            self._label_vars[mode] = labels
627
            outputs = to_list(self.model.network.forward(*inputs))
628

629 630
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
631 632 633 634 635 636 637 638

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
639
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
640 641 642 643 644 645

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
646 647 648 649 650
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
651 652 653
                        dist_strategy.amp_configs['use_pure_fp16'] = (
                            self._amp_level == 'O2'
                        )
654
                    self.model._optimizer = fleet.distributed_optimizer(
655 656
                        self.model._optimizer, strategy=dist_strategy
                    )
J
Jiaqi Liu 已提交
657
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
658 659 660 661 662 663 664
                    amp_lists = (
                        paddle.static.amp.AutoMixedPrecisionLists(
                            **self._amp_custom_lists
                        )
                        if self._amp_custom_lists
                        else None
                    )
J
Jiaqi Liu 已提交
665 666 667 668 669
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
670 671
                        **self._amp_configs
                    )
672 673 674 675 676 677 678 679 680 681 682

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
683
            "loss": to_list(losses),
684
            "metric": metrics,
685 686 687 688 689 690 691
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

692 693 694
        assert (
            self.model._place is not None
        ), "device is not set, please call `model.prepare()` first"
695 696 697 698 699 700 701 702 703 704 705 706

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
707 708 709 710 711
                if (
                    not var_py.name.startswith('nccl_id')
                    and var
                    and var.get_tensor()._is_initialized()
                ):
712 713 714 715 716 717 718
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

719 720 721 722
        if (
            self._amp_level == "O2"
            and mode == 'train'
            and core.is_compiled_with_cuda()
J
Jiaqi Liu 已提交
723 724 725
        ):
            self.model._optimizer.amp_init(place)

726 727 728 729 730 731 732 733
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


734
class DynamicGraphAdapter:
735
    def __init__(self, model):
736
        super().__init__()
737 738 739 740 741 742 743
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
744
            'test_batch': 0,
745 746
        }

L
LiuChiachi 已提交
747
        self._input_info = None
J
Jiaqi Liu 已提交
748 749 750 751 752
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

753
        if self._nranks > 1:
754
            dist.init_parallel_env()
755 756 757 758 759
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
760
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
761 762
                self.model.network, stradegy
            )
763 764 765 766 767 768 769 770 771 772

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
773
    def train_batch(self, inputs, labels=None, update=True):
774 775 776
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
777
        self.model.network.train()
778 779
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
780
        self._input_info = _update_input_info(inputs)
781 782 783
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
784 785 786 787
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

788 789 790 791 792
        with paddle.amp.auto_cast(
            enable=self._amp_level != 'O0',
            **self._amp_custom_lists,
            level=self._amp_level
        ):
J
Jiaqi Liu 已提交
793
            if self._nranks > 1:
794
                outputs = self.ddp_model(*[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
795
            else:
796
                outputs = self.model.network(*[to_variable(x) for x in inputs])
797

L
Leo Chen 已提交
798 799 800
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
801

J
Jiaqi Liu 已提交
802
        if self._amp_level != "O0":
L
Leo Chen 已提交
803
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
804
            scaled.backward()
L
lyuwenyu 已提交
805
            if update:
L
Leo Chen 已提交
806
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
807
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
808 809
        else:
            final_loss.backward()
L
lyuwenyu 已提交
810 811 812
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
813

814 815
        metrics = []
        for metric in self.model._metrics:
816
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
817
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
818 819
            metrics.append(m)

820 821 822 823 824
        return (
            ([to_numpy(l) for l in losses], metrics)
            if len(metrics) > 0
            else [to_numpy(l) for l in losses]
        )
825 826

    def eval_batch(self, inputs, labels=None):
827
        self.model.network.eval()
828 829
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
830
        self._input_info = _update_input_info(inputs)
831 832 833
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

834
        outputs = self.model.network(*[to_variable(x) for x in inputs])
835 836 837 838 839 840 841 842 843

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

844 845
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
846 847
            losses = to_list(losses)

848 849 850 851 852 853
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
854 855 856 857 858
            if (
                self.model._test_dataloader is not None
                and self._nranks > 1
                and isinstance(self.model._test_dataloader, DataLoader)
            ):
859 860 861 862 863
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
864
                        o[: int(total_size - current_count)] for o in outputs
865 866
                    ]
                    labels = [
867
                        l[: int(total_size - current_count)] for l in labels
868 869
                    ]
                    self._merge_count[self.mode + '_total'] = 0
870 871 872
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
873 874 875 876
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

877
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
878
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
879 880
            metrics.append(m)

881
        if self.model._loss and len(metrics):
882
            return [to_numpy(l) for l in losses], metrics
883
        elif self.model._loss:
884 885 886
            return [to_numpy(l) for l in losses]
        else:
            return metrics
887

888
    def predict_batch(self, inputs):
889
        self.model.network.eval()
890 891
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
892
        self._input_info = _update_input_info(inputs)
893
        outputs = self.model.network(*inputs)
894 895 896 897 898 899
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
900
        return self.model.network.parameters(*args, **kwargs)
901 902

    def save(self, path):
903
        params = self.model.network.state_dict()
904
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
905 906 907 908 909 910 911 912 913 914
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
915 916 917 918
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
919 920 921 922
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

923 924 925 926
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

927 928
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
929 930 931 932 933 934 935 936 937 938
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
939
        opt_name = opt_unq_name[: opt_unq_name.rfind("_")]  # remove suffix idx
940
        param_names = [param.name for param in self.model.network.parameters()]
941 942 943
        for var_name, state_var in sorted(
            optim_state.items(), key=lambda x: len(x[0]), reverse=True
        ):
944 945 946 947 948
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
949 950 951
                    converted_state["global_step"] = (
                        np.array(converted_state.pop("@LR_DECAY_COUNTER@")) + 1
                    )
952 953 954 955 956 957
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
958 959 960 961 962 963 964
                        accum_name = var_name[
                            len(param_name + "_" + opt_name + "_") :
                        ]
                    elif (
                        var_name.startswith(param_name + "_")
                        and opt_name == opt_cls_name
                    ):
965
                        # when init optimizer without name
966
                        accum_name = var_name[len(param_name + "_") :]
967 968 969
                    else:
                        continue
                    # remove suffix idx
970
                    accum_name = accum_name[: accum_name.rfind("_")]
971 972
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
973 974 975 976 977 978 979 980
                    dy_state_name = (
                        param_name
                        + "_"
                        + opt_unq_name
                        + "_"
                        + accum_name
                        + "_0"
                    )
981 982
                    converted_state[dy_state_name] = state_var

983 984
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
985
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
986 987 988 989
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
990

L
Leo Chen 已提交
991
    def prepare(self):
992 993 994 995
        if (
            self._amp_level == "O2"
            and self.model.mode == 'train'
            and core.is_compiled_with_cuda()
L
Leo Chen 已提交
996 997 998 999
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
1000 1001
                level='O2',
            )
L
Leo Chen 已提交
1002 1003 1004
        if self._amp_level != "O0":
            self.model._scaler = None

1005

1006
class Model:
1007 1008 1009
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
1010
    switched by `paddle.enable_static()`. The usage is as follows.
1011
    But note, the switching between dynamic and static should be before
1012
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
1013
    must be required for static graph.
1014

1015
    When training on GPU, auto mixed precision (AMP O1) and pure float16
L
Leo Chen 已提交
1016
    (AMP O2) training are both supported in static mode and dynamic mode.
1017
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
1018 1019
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
1020 1021 1022 1023
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
1024

1025
    Args:
1026 1027
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
1028
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
1029
            could be a InputSpec instance, or list/tuple of InputSpec instances,
1030
            or dict ({name: InputSpec}), and it couldn't be None in static
1031 1032
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
1033
            could be a InputSpec instnace or list/tuple of InputSpec instances,
1034
            or None. For static graph, if labels is required in loss,
1035
            labels must be set. Otherwise, it could be None. Default: None.
1036 1037


1038
    Examples:
J
Jiaqi Liu 已提交
1039 1040
        1. A common example

1041
        .. code-block:: python
1042
          :name: code-example1
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
1060

1061 1062 1063 1064 1065
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
1066 1067
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
1068 1069 1070 1071 1072 1073 1074

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
1075 1076 1077 1078 1079


        2. An example using mixed precision training.

        .. code-block:: python
1080
          :name: code-example2
J
Jiaqi Liu 已提交
1081

1082 1083 1084 1085
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
1086

1087 1088
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
1089

1090 1091
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1092

1093 1094
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1105

1106 1107 1108 1109 1110 1111 1112
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1113

1114 1115
    """

1116
    def __init__(self, network, inputs=None, labels=None):
1117
        self.mode = 'train'
1118
        self.network = network
1119 1120
        self._inputs = None
        self._labels = None
1121
        self._loss = None
1122 1123
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1124
        self._input_info = None
1125
        self._is_shape_inferred = False
1126
        self._test_dataloader = None
L
LiuChiachi 已提交
1127
        self.stop_training = False
1128

J
Jiabin Yang 已提交
1129
        if not _non_static_mode():
1130
            if not isinstance(inputs, (list, tuple, dict, Input)):
1131
                raise TypeError(
1132 1133
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1134
        elif inputs:
L
LiuChiachi 已提交
1135
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1136

1137
        self._inputs = self._verify_spec(inputs, is_input=True)
1138
        self._labels = self._verify_spec(labels)
1139

1140
        # init backend
J
Jiabin Yang 已提交
1141
        if fluid._non_static_mode():
1142 1143 1144 1145
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1146
    def train_batch(self, inputs, labels=None, update=True):
1147
        """
L
lyuwenyu 已提交
1148 1149
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1150 1151

        Args:
1152 1153
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1154
                tensors (in case the model has multiple inputs).
1155 1156 1157
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1158 1159 1160
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1161 1162 1163 1164 1165 1166 1167 1168 1169

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1193
        """
L
lyuwenyu 已提交
1194
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1195
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1196
            self._update_inputs()
1197
        return loss
1198

Z
zhaoyingli 已提交
1199
    @no_grad()
1200 1201 1202 1203 1204
    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
1205 1206
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1207
                tensors (in case the model has multiple inputs).
1208 1209 1210
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1211
                set None. Default: None.
1212 1213 1214 1215 1216 1217 1218 1219 1220

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1245
        """
1246
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1247
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1248
            self._update_inputs()
1249
        return loss
1250

Z
zhaoyingli 已提交
1251
    @no_grad()
1252
    def predict_batch(self, inputs):
1253
        """
1254
        Run one predicting step on a batch of data.
1255 1256

        Args:
1257 1258
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1259
                tensors (in case the model has multiple inputs).
1260 1261 1262 1263 1264 1265 1266 1267

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1268 1269 1270 1271 1272 1273

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1292
        """
1293
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1294
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1295
            self._update_inputs()
1296
        return loss
1297

1298
    def save(self, path, training=True):
1299 1300
        """
        This function saves parameters, optimizer information or model and
1301 1302
        paramters only for inference to path. It depends on the parameter
        `training`.
1303

1304
        If `training` is set to True, the parameters saved contain all
1305
        the trainable Variable, will save to a file with suffix ".pdparams".
1306 1307 1308 1309
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1310
        This function will silently overwrite existing file at the target location.
1311

1312
        If `training` is set to False, only inference model will be saved.
1313 1314

        Args:
1315 1316 1317
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1318 1319
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1320 1321 1322 1323 1324 1325 1326

        Returns:
            None

        Examples:

            .. code-block:: python
1327

1328
                import paddle
1329
                import paddle.nn as nn
1330
                import paddle.vision.transforms as T
1331
                from paddle.static import InputSpec
1332

1333
                class Mnist(nn.Layer):
1334
                    def __init__(self):
1335
                        super().__init__()
1336
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1337
                            nn.Flatten(1),
1338 1339 1340 1341
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1342

1343
                    def forward(self, x):
1344
                        return self.net(x)
1345

1346
                dynamic = True  # False
1347
                # if use static graph, do not set
1348 1349
                if not dynamic:
                    paddle.enable_static()
1350

1351 1352 1353
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1354
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1355
                    parameters=model.parameters())
1356
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1357

1358 1359 1360 1361 1362
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
1363

1364
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1365 1366
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1367
        """
1368

1369
        if ParallelEnv().local_rank == 0:
1370 1371 1372 1373
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1392
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1393 1394
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1395 1396
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1397 1398
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1399
                a optimizer has been set to the model. Default: False.
1400 1401 1402 1403 1404 1405 1406

        Returns:
            None

        Examples:

            .. code-block:: python
1407 1408 1409 1410

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1411

1412
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1413

1414
                input = InputSpec([None, 784], 'float32', 'x')
1415

1416 1417 1418 1419 1420
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1421

1422 1423
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1424 1425 1426 1427 1428 1429
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1430
                return pickle.load(f, encoding='latin1')
1431 1432 1433 1434 1435

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
1436 1437
                    "{} is not found in the providing file.".format(key)
                )
1438 1439
            if list(state.shape) != list(param.shape):
                raise ValueError(
1440 1441 1442 1443
                    "{} receives a shape {}, but the expected shape is {}.".format(
                        key, list(state.shape), list(param.shape)
                    )
                )
1444 1445 1446 1447
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
1448 1449 1450 1451 1452 1453
            assert ext in [
                '',
                '.pdparams',
                '.pdopt',
                '.pdmodel',
            ], "Unknown postfix {} from weights".format(ext)
1454 1455 1456 1457 1458 1459 1460
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1461
        for key, param in self.network.state_dict().items():
1462 1463 1464 1465 1466
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
1467 1468
                        ("Skip loading for {}. ".format(key) + str(err))
                    )
1469 1470 1471 1472 1473 1474
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

1475 1476 1477
        optim_state = (
            None if reset_optimizer else _load_state_from_path(path + ".pdopt")
        )
L
Leo Chen 已提交
1478 1479

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1480
        if _non_static_mode():
L
Leo Chen 已提交
1481 1482 1483 1484 1485
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

1486 1487 1488
            return self._adapter.load(
                matched_param_state, optim_state, scaler_state
            )
L
Leo Chen 已提交
1489 1490
        else:
            return self._adapter.load(matched_param_state, optim_state)
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1503

1504 1505 1506
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1507

1508
                input = InputSpec([None, 784], 'float32', 'x')
1509

1510 1511 1512 1513
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1514

1515
                params = model.parameters()
1516 1517 1518
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1519 1520 1521
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1522 1523
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
1524 1525 1526 1527
                assert isinstance(
                    self._optimizer._grad_clip,
                    (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm),
                ), "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
1539 1540
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1541 1542 1543 1544 1545 1546 1547 1548
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
1549 1550
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1551 1552 1553 1554 1555 1556 1557 1558
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1559
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1560 1561 1562 1563 1564 1565 1566
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
1567 1568 1569
                'custom_white_list',
                'custom_black_list',
                'custom_black_varnames',
J
Jiaqi Liu 已提交
1570 1571 1572
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
1573 1574
                        param_name
                    ]
J
Jiaqi Liu 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1589 1590 1591 1592
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".format(
                        tuple(amp_config_key_set - accepted_param_set)
                    )
                )
J
Jiaqi Liu 已提交
1593 1594

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1595
                if _non_static_mode():
J
Jiaqi Liu 已提交
1596
                    raise ValueError(
1597 1598
                        "'use_fp16_guard' is supported in static mode only."
                    )
J
Jiaqi Liu 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1608 1609 1610
    def prepare(
        self, optimizer=None, loss=None, metrics=None, amp_configs=None
    ):
1611 1612 1613 1614
        """
        Configures the model before runing.

        Args:
1615
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1616
                and should be a Optimizer instance. It can be None in eval
1617 1618
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1619
                be a `paddle.nn.Layer` instance or any callable function
1620
                taken the predicted values and ground truth values as input.
1621 1622 1623 1624
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1625 1626 1627
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1628 1629
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1630 1631 1632 1633
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1634 1635 1636 1637 1638 1639
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1640

1641 1642 1643
        Returns:
            None
        """
1644 1645
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1646 1647
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
J
Jiabin Yang 已提交
1648
                if fluid._non_static_mode():
1649
                    main_prog_seed = fluid.default_main_program().random_seed
1650 1651 1652
                    startup_prog_seed = (
                        fluid.default_startup_program().random_seed
                    )
1653
                    fluid.disable_dygraph()
1654
                    paddle.disable_static(self._place)
1655 1656 1657
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
1658 1659 1660
                    fluid.default_startup_program().random_seed = (
                        startup_prog_seed
                    )
1661 1662 1663 1664 1665
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1666 1667
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1668 1669 1670
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1671
        self._loss = loss
1672 1673 1674

        metrics = metrics or []
        for metric in to_list(metrics):
1675 1676 1677
            assert isinstance(
                metric, Metric
            ), "{} is not sub class of Metric".format(metric.__class__.__name__)
1678
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1679
        self._prepare_amp(amp_configs)
1680

L
Leo Chen 已提交
1681
        self._adapter.prepare()
1682

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    def fit(
        self,
        train_data=None,
        eval_data=None,
        batch_size=1,
        epochs=1,
        eval_freq=1,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        verbose=2,
        drop_last=False,
        shuffle=True,
        num_workers=0,
        callbacks=None,
        accumulate_grad_batches=1,
        num_iters=None,
    ):
1701 1702 1703 1704 1705
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1706 1707
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for
                train. An instance of paddle paddle.io.Dataset or
1708
                paddle.io.Dataloader is recomended. Default: None.
1709
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1710 1711
                evaluation at the end of epoch. If None, will not do evaluation.
                An instance of paddle.io.Dataset or paddle.io.Dataloader
1712
                is recomended. Default: None.
1713
            batch_size (int|list, optional): The batch size of train_data and eval_data. When
1714 1715 1716 1717
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1718
                is performed. Default: 1.
1719
            log_freq (int, optional): The frequency, in number of steps, the training logs
1720
                are printed. Default: 10.
1721
            save_dir(str|None, optional): The directory to save checkpoint during training.
1722
                If None, will not save checkpoint. Default: None.
1723
            save_freq (int, optional): The frequency, in number of epochs, to save
1724
                checkpoint. Default: 1.
1725
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1726
                1 = progress bar, 2 = one line per epoch. Default: 2.
1727
            drop_last (bool, optional): Whether drop the last incomplete batch of
1728 1729 1730
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1731
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1732 1733
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1734
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1735 1736 1737
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1738 1739 1740
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
1741
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident
L
lyuwenyu 已提交
1742
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1743
                size. Default: 1.
1744 1745 1746 1747
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1748 1749 1750 1751
        Returns:
            None

        Examples:
1752
            1. An example use Dataset and set batch size, shuffle in fit.
1753 1754 1755
               How to make a batch is done internally.

            .. code-block:: python
1756
              :name: code-example1
1757

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1791 1792 1793 1794 1795

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1796
              :name: code-example2
1797 1798 1799 1800 1801

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1802

1803 1804 1805
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1833
        """
1834
        assert train_data is not None, "train_data must be given!"
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
        if isinstance(batch_size, (tuple, list)) and all(
            [isinstance(x, int) for x in batch_size]
        ):
            assert (
                len(batch_size) == 2
            ), "batch_size length error, expected train_batch_size and eval_batch_size."
            train_batch_size, eval_batch_size = batch_size
        elif isinstance(batch_size, int):
            train_batch_size, eval_batch_size = batch_size, batch_size

1846
        if isinstance(train_data, Dataset):
1847 1848
            train_sampler = DistributedBatchSampler(
                train_data,
1849
                batch_size=train_batch_size,
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
                shuffle=shuffle,
                drop_last=drop_last,
            )
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1860 1861 1862 1863
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1864
            eval_sampler = DistributedBatchSampler(
1865
                eval_data, batch_size=eval_batch_size
1866 1867 1868 1869 1870 1871 1872 1873
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1874 1875 1876 1877 1878 1879 1880
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1881

L
lyuwenyu 已提交
1882
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1883

1884
        steps = self._len_data_loader(train_loader)
1885
        self.num_iters = num_iters
1886 1887 1888 1889 1890
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(steps, int)
        ):
1891 1892 1893
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1894 1895 1896 1897 1898 1899 1900 1901 1902
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1903 1904
            metrics=self._metrics_name(),
        )
1905

L
LiuChiachi 已提交
1906 1907 1908
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1909 1910 1911 1912 1913 1914 1915 1916 1917
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
1918 1919 1920 1921
                cbks.on_begin(
                    'eval',
                    {'steps': eval_steps, 'metrics': self._metrics_name()},
                )
1922 1923 1924 1925

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1926 1927
            if self.stop_training:
                break
1928 1929 1930

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1931

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
    def evaluate(
        self,
        eval_data,
        batch_size=1,
        log_freq=10,
        verbose=2,
        num_workers=0,
        callbacks=None,
        num_iters=None,
    ):
1942 1943 1944 1945 1946
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
1947
                evaluation. An instance of paddle.io.Dataset or
1948
                paddle.io.Dataloader is recomended.
1949 1950 1951 1952
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
1953
                are printed. Default: 10.
1954
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1955
                1 = progress bar, 2 = one line per epoch. Default: 2.
1956
            num_workers (int, optional): The number of subprocess to load data,
1957 1958 1959
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
1960
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1961 1962
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1963 1964 1965
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
1966 1967 1968 1969 1970
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1971 1972

          .. code-block:: python
1973

1974 1975 1976
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
1977

1978 1979 1980 1981 1982 1983
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1984

1985 1986 1987 1988 1989 1990 1991
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
1992 1993 1994
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
2015 2016
            metrics=self._metrics_name(),
        )
2017 2018

        eval_steps = self._len_data_loader(eval_loader)
2019
        self.num_iters = num_iters
2020 2021 2022 2023 2024
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(eval_steps, int)
        ):
2025 2026 2027
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
2028 2029 2030
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

2044 2045 2046 2047 2048 2049 2050 2051 2052
    def predict(
        self,
        test_data,
        batch_size=1,
        num_workers=0,
        stack_outputs=False,
        verbose=1,
        callbacks=None,
    ):
2053 2054 2055 2056 2057 2058 2059
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
2060 2061
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
2062
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess
2063 2064 2065 2066
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
2067
                output field will be in shape [N, X, Y] if stack_output is True, and will
2068
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
2069 2070
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
2071
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2072
                1 = progress bar, 2 = one line per batch. Default: 1.
2073
            callbacks(Callback, optional): A Callback instance, Default: None.
2074

2075 2076 2077 2078
        Returns:
            list: output of models.

        Examples:
2079 2080

          .. code-block:: python
2081

2082 2083 2084
                import numpy as np
                import paddle
                from paddle.static import InputSpec
2085

2086 2087
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
2088
                        super().__init__(mode=mode)
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
2120 2121 2122
        """

        if test_data is not None and isinstance(test_data, Dataset):
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size
            )
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2133 2134 2135 2136 2137
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

2138
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
2139 2140 2141 2142

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2143
        cbks.on_begin('predict', logs)
2144 2145 2146

        outputs = []

2147
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2158
        cbks.on_end('predict', logs)
2159 2160
        return outputs

2161
    def _save_inference_model(self, path):
2162
        """
2163
        Save inference model can be used in static or dynamic mode.
2164 2165

        Args:
2166 2167
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2168
        Returns:
2169
            None
2170 2171
        """

J
Jiabin Yang 已提交
2172
        if fluid._non_static_mode():
2173 2174
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2175
                if self._input_info is None:  # No provided or inferred
2176
                    raise RuntimeError(
L
LiuChiachi 已提交
2177
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2178 2179 2180 2181
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
2182 2183
                        % self._input_info[0]
                    )
L
LiuChiachi 已提交
2184

2185
                paddle.jit.save(layer, path, input_spec=self._inputs)
2186

2187
        else:
2188 2189 2190 2191 2192 2193
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
2194 2195
                    "file_prefix is empty string."
                )
2196 2197 2198 2199 2200 2201 2202 2203 2204

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2205
            prog = self._adapter._progs.get('test', None)
2206 2207 2208
            assert (
                prog
            ), "Model is not ready, please call `model.prepare()` first"
2209 2210 2211 2212 2213 2214

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2215 2216 2217 2218 2219 2220 2221 2222 2223
            fluid.io.save_inference_model(
                model_path,
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
                params_filename=params_filename,
            )
2224

L
update  
lyuwenyu 已提交
2225
    def _run_one_epoch(
2226 2227 2228 2229 2230 2231
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2242
            # 4. custumed iterator yield separated inputs and labels:
2243 2244 2245 2246 2247
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2248

2249 2250 2251 2252 2253
            batch_size = (
                data[0].shape()[0]
                if callable(data[0].shape)
                else data[0].shape[0]
            )
2254 2255 2256

            callbacks.on_batch_begin(mode, step, logs)

2257
            if mode != 'predict':
2258
                _inputs = [data[: len(self._inputs)], data[len(self._inputs) :]]
L
lyuwenyu 已提交
2259
                if mode == 'train':
2260 2261 2262 2263
                    _inputs.append(
                        (step + 1) % self._accumulate == 0
                        or step + 1 == len(data_loader)
                    )
L
update  
lyuwenyu 已提交
2264

L
lyuwenyu 已提交
2265
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2266

2267
                if self._metrics and self._loss:
2268
                    metrics = [[l[0] for l in outs[0]]]
2269
                elif self._loss:
2270 2271 2272
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2283
                if self._inputs is not None:
2284
                    outs = self.predict_batch(data[: len(self._inputs)])
L
LielinJiang 已提交
2285
                else:
2286
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2287

2288 2289 2290
                outputs.append(outs)

            logs['step'] = step
2291 2292 2293 2294
            if (
                mode == 'train'
                or self._adapter._merge_count.get(mode + '_batch', 0) <= 0
            ):
2295 2296 2297 2298 2299
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2300 2301
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2302 2303 2304
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2305
                    break
2306 2307
        self._reset_metrics()

2308
        if mode == 'predict':
2309 2310 2311
            return logs, outputs
        return logs

L
LielinJiang 已提交
2312
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2313 2314 2315
        """Prints a string summary of the network.

        Args:
2316 2317 2318 2319
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
                    if not set, input_size will get from ``self._inputs`` if network only have
                    one input, input_size can be tuple or InputSpec. if model have multiple
                    input, input_size must be a list which contain every input's shape.
L
LielinJiang 已提交
2320
                    Default: None.
2321
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2322 2323 2324 2325 2326 2327

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2328 2329 2330 2331 2332 2333

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2334

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2346 2347

        """
2348 2349 2350
        assert (
            input_size is not None or self._inputs is not None
        ), "'input_size' or 'self._input' must be set"
2351 2352 2353 2354
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2355
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2356

L
LiuChiachi 已提交
2357
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2358 2359
        out_specs = []

2360 2361 2362 2363 2364 2365
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2366
                # While Saving inference model in dygraph, and providing inputs only in running.
2367 2368 2369 2370
                if (
                    shapes is not None
                    and dtypes is not None
                    and fluid._non_static_mode()
L
LiuChiachi 已提交
2371
                ):
2372
                    out_specs = [
2373
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2374 2375 2376 2377 2378 2379 2380
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2381 2382
            assert is_input is False
            out_specs = [
2383 2384
                specs[n]
                for n in extract_args(self.network.forward)
2385 2386
                if n != 'self'
            ]
2387 2388 2389 2390 2391 2392 2393 2394
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2395 2396 2397 2398
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
2399 2400 2401

        return out_specs

2402 2403 2404 2405 2406
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2407
        metrics_name = ['loss'] if self._loss else []
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2418 2419 2420

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2421 2422
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
2423 2424 2425
            self._inputs = self._verify_spec(
                None, self._input_info[0], self._input_info[1], True
            )
L
LiuChiachi 已提交
2426
            self._is_shape_inferred = True