model.py 93.3 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16 17 18
import inspect
import os
import pickle
19
import socket
20 21 22 23
import time
import warnings

import numpy as np
24

25
import paddle
26 27
import paddle.distributed as dist
import paddle.distributed.fleet as fleet
28
from paddle import fluid
29 30
from paddle.autograd import no_grad
from paddle.distributed.fleet.base import role_maker
31
from paddle.fluid import core
32 33
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.executor import global_scope
34
from paddle.fluid.framework import Variable
35
from paddle.fluid.framework import _current_expected_place as _get_device
36
from paddle.fluid.framework import _get_paddle_place, _non_static_mode
37
from paddle.fluid.io import is_belong_to_optimizer
38
from paddle.fluid.layers import collective
39 40
from paddle.fluid.layers.utils import flatten
from paddle.io import DataLoader, Dataset, DistributedBatchSampler
41
from paddle.jit.translated_layer import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
42
from paddle.metric import Metric
43 44
from paddle.static import InputSpec as Input

45
from .callbacks import EarlyStopping, config_callbacks
L
LielinJiang 已提交
46
from .model_summary import summary
47

48
__all__ = []
49 50 51 52 53 54 55 56 57 58 59 60 61

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
62 63 64
    assert isinstance(
        var, (Variable, fluid.core.VarBase, fluid.core.eager.Tensor)
    ), "not a variable"
H
hong 已提交
65
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
92
    return inspect.getfullargspec(func).args
93 94 95


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
96 97 98
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream
    )
99 100 101


def wait_server_ready(endpoints):
102
    assert not isinstance(endpoints, str)
103 104 105 106 107 108
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
109 110
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as sock:
111 112 113 114 115 116 117 118 119 120 121
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


122 123 124
def init_communicator(
    program, rank, nranks, wait_port, current_endpoint, endpoints
):
125 126 127 128
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
129
    block = program.global_block()
130 131
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
132 133 134 135
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
160 161
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
162
            name=fluid.unique_name.generate('hccl_id'),
163
            persistable=True,
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            type=core.VarDesc.VarType.RAW,
        )
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks,
            },
        )
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    elif core.is_compiled_with_xpu():
        bkcl_id_var = block.create_var(
            name=fluid.unique_name.generate('bkcl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_bkcl_id',
            inputs={},
            outputs={'Out': bkcl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': bkcl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
215 216 217 218


def prepare_distributed_context(place=None):
    if place is None:
219
        place = (
220 221
            fluid.CUDAPlace(paddle.distributed.ParallelEnv().dev_id)
            if paddle.distributed.ParallelEnv().nranks > 1
222
            else fluid.CUDAPlace(0)
223
        )
224

225
    place = _get_paddle_place(place)
226
    strategy = fluid.dygraph.parallel.ParallelStrategy()
227 228 229 230 231 232 233 234
    strategy.nranks = paddle.distributed.ParallelEnv().nranks
    strategy.local_rank = paddle.distributed.ParallelEnv().local_rank
    strategy.trainer_endpoints = (
        paddle.distributed.ParallelEnv().trainer_endpoints
    )
    strategy.current_endpoint = (
        paddle.distributed.ParallelEnv().current_endpoint
    )
235 236 237 238 239 240 241 242 243 244

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
245 246 247 248 249 250 251 252
            init_communicator(
                communicator_prog,
                strategy.local_rank,
                strategy.nranks,
                True,
                strategy.current_endpoint,
                strategy.trainer_endpoints,
            )
253 254 255
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
256
        if fluid._non_static_mode():
257 258 259 260 261
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
262
        assert "Only support CUDAPlace for now."
263 264 265

    _parallel_context_initialized = True
    return strategy
266 267


L
LiuChiachi 已提交
268
def _update_input_info(inputs):
L
LiuChiachi 已提交
269
    "Get input shape list by given inputs in Model initialization."
270
    shapes = None
L
LiuChiachi 已提交
271
    dtypes = None
L
LiuChiachi 已提交
272 273
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
274
        dtypes = [inputs.dtype]
275
    elif isinstance(inputs, (list, tuple)):
276
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
277
        dtypes = [input.dtype for input in inputs]
278 279
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
280 281 282 283
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
284 285


286
class StaticGraphAdapter:
287
    """
288

289
    Model traning/inference with a static graph.
290

291 292 293
    """

    def __init__(self, model):
294
        super().__init__()
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
313
            'test_batch': 0,
314 315
        }

316 317
        self._nranks = paddle.distributed.ParallelEnv().nranks
        self._local_rank = paddle.distributed.ParallelEnv().local_rank
318

J
Jiaqi Liu 已提交
319 320 321
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
322
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
323

324 325 326 327 328 329 330 331
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
332
    def train_batch(self, inputs, labels=None, update=True):
333 334 335
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
336
        self.mode = 'train'
337 338
        assert (
            update is True
339
        ), "Does not support `update == False` in static graph mode by now."
340 341 342 343 344 345
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

346
    def predict_batch(self, inputs):
347 348 349 350
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
351
        return self.model.network.parameters(*args, **kwargs)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
370
        _save(self.model.network.state_dict(), param_path)
371 372 373 374 375 376
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
377
            p.name: p for p in filter(is_belong_to_optimizer, prog.list_vars())
378 379 380 381 382 383
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
384
    # TODO: support save/load scaler state in static graph
385 386 387 388 389 390 391 392
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
393 394 395 396
            [param for param, state in param_state_pairs],
            global_scope(),
            executor,
        )
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
424 425 426 427
                    (np.array(converted_state.pop("global_step")) - 1)
                    if "global_step" in converted_state
                    else converted_state.pop("@LR_DECAY_COUNTER@", None)
                )
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
444 445 446 447 448 449 450 451 452
                        accum_name = (
                            name
                            if opt_name is None
                            else name[len(opt_name) + 1 :]
                        )
                        for (
                            param_name,
                            state_var,
                        ) in self.model._optimizer._accumulators[name].items():
453 454 455
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
                                for state_key in sorted(
                                    state.keys(),
                                    key=lambda x: len(x),
                                    reverse=True,
                                ):
                                    prefix = (
                                        param_name
                                        + "_"
                                        + (
                                            opt_cls_name
                                            if opt_name is None
                                            else opt_name
                                        )
                                        + "_"
                                    )
471
                                    if state_key.startswith(prefix):
472 473 474
                                        prefix_offset = state_key[
                                            len(prefix) :
                                        ].find("_") + len(prefix)
475
                                        opt_unq_name = state_key[
476 477 478 479
                                            len(
                                                param_name + "_"
                                            ) : prefix_offset
                                        ]
480 481 482 483
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
484 485 486 487 488 489 490 491
                            dy_state_name = (
                                param_name
                                + "_"
                                + opt_unq_name
                                + "_"
                                + accum_name
                                + "_0"
                            )
492
                            converted_state[
493 494
                                state_var.name
                            ] = converted_state.pop(dy_state_name)
495

496 497 498
            assert (
                var.name in converted_state
            ), "variable [{}] is not in optimizer state file".format(var.name)
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
517 518 519
        assert (
            compiled_prog
        ), "Model is not ready, please call `model.prepare()` first"
520 521 522 523

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
524 525
        assert len(inputs) == len(self._input_vars[self.mode]), (
            "number of inputs"
526
            + " does not match number of arguments of `forward` method"
527
        )
528 529 530

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
531 532
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

533 534 535 536
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
537 538 539 540
            if (
                self._amp_level == 'O2'
                and input_dtypes[idx] == core.VarDesc.VarType.FP16
            ):
L
Leo Chen 已提交
541 542
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
543
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
544 545
                    feed[n] = feed[n].astype('float16')

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

568 569 570 571 572 573
        rets = self._executor.run(
            compiled_prog,
            feed=feed,
            fetch_list=pruned_fetch_list,
            return_numpy=False,
        )
574 575 576 577 578 579 580 581 582 583

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
584

585 586 587 588
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
589 590 591 592 593 594
            if (
                self.mode != 'train'
                and self.model._test_dataloader is not None
                and isinstance(self.model._test_dataloader, DataLoader)
                and self._nranks > 1
            ):
595 596 597 598 599 600
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
601
                        s[: int(total_size - current_count), ...] for s in state
602 603
                    ]
                    self._merge_count[self.mode + '_total'] = 0
604 605 606
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
607 608 609 610 611
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
612 613 614 615 616

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
638 639 640 641 642
        if (
            mode == 'train'
            and self.model._optimizer
            and self.model._optimizer._learning_rate_map
        ):
643 644 645 646 647 648 649 650
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
651 652
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
653 654
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
655
            self._label_vars[mode] = labels
656
            outputs = to_list(self.model.network.forward(*inputs))
657

658 659
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
660 661 662 663 664 665 666 667

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
668
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
669 670

            if mode == 'train' and self.model._optimizer:
671
                self._loss_endpoint = paddle.add_n(losses)
672 673 674
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
675 676 677 678 679
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
680 681 682
                        dist_strategy.amp_configs['use_pure_fp16'] = (
                            self._amp_level == 'O2'
                        )
683
                    self.model._optimizer = fleet.distributed_optimizer(
684 685
                        self.model._optimizer, strategy=dist_strategy
                    )
J
Jiaqi Liu 已提交
686
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
687 688 689 690 691 692 693
                    amp_lists = (
                        paddle.static.amp.AutoMixedPrecisionLists(
                            **self._amp_custom_lists
                        )
                        if self._amp_custom_lists
                        else None
                    )
J
Jiaqi Liu 已提交
694 695 696 697 698
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
699 700
                        **self._amp_configs
                    )
701 702 703 704 705 706 707 708 709 710 711

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
712
            "loss": to_list(losses),
713
            "metric": metrics,
714 715 716 717 718 719 720
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

721 722 723
        assert (
            self.model._place is not None
        ), "device is not set, please call `model.prepare()` first"
724 725 726 727 728 729 730 731 732 733 734 735

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
736 737 738 739 740
                if (
                    not var_py.name.startswith('nccl_id')
                    and var
                    and var.get_tensor()._is_initialized()
                ):
741 742 743 744 745 746 747
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

748 749 750 751
        if (
            self._amp_level == "O2"
            and mode == 'train'
            and core.is_compiled_with_cuda()
J
Jiaqi Liu 已提交
752 753 754
        ):
            self.model._optimizer.amp_init(place)

755 756 757 758 759 760 761 762
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


763
class DynamicGraphAdapter:
764
    def __init__(self, model):
765
        super().__init__()
766
        self.model = model
767 768
        self._nranks = paddle.distributed.ParallelEnv().nranks
        self._local_rank = paddle.distributed.ParallelEnv().local_rank
769 770 771 772
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
773
            'test_batch': 0,
774 775
        }

L
LiuChiachi 已提交
776
        self._input_info = None
J
Jiaqi Liu 已提交
777 778 779 780 781
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

782
        if self._nranks > 1:
783
            dist.init_parallel_env()
784
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
785 786 787 788 789 790 791 792
            stradegy.nranks = paddle.distributed.ParallelEnv().nranks
            stradegy.local_rank = paddle.distributed.ParallelEnv().local_rank
            stradegy.trainer_endpoints = (
                paddle.distributed.ParallelEnv().trainer_endpoints
            )
            stradegy.current_endpoint = (
                paddle.distributed.ParallelEnv().current_endpoint
            )
793
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
794 795
                self.model.network, stradegy
            )
796 797 798 799 800 801 802 803 804 805

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
806
    def train_batch(self, inputs, labels=None, update=True):
807 808 809
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
810
        self.model.network.train()
811 812
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
813
        self._input_info = _update_input_info(inputs)
814 815 816
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
817 818 819 820
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

821 822 823 824 825
        with paddle.amp.auto_cast(
            enable=self._amp_level != 'O0',
            **self._amp_custom_lists,
            level=self._amp_level
        ):
J
Jiaqi Liu 已提交
826
            if self._nranks > 1:
827
                outputs = self.ddp_model(*[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
828
            else:
829
                outputs = self.model.network(*[to_variable(x) for x in inputs])
830

L
Leo Chen 已提交
831 832
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
833
        final_loss = paddle.add_n(losses)
834

J
Jiaqi Liu 已提交
835
        if self._amp_level != "O0":
L
Leo Chen 已提交
836
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
837
            scaled.backward()
L
lyuwenyu 已提交
838
            if update:
L
Leo Chen 已提交
839
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
840
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
841 842
        else:
            final_loss.backward()
L
lyuwenyu 已提交
843 844 845
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
846

847 848
        metrics = []
        for metric in self.model._metrics:
849
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
850
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
851 852
            metrics.append(m)

853 854 855 856 857
        return (
            ([to_numpy(l) for l in losses], metrics)
            if len(metrics) > 0
            else [to_numpy(l) for l in losses]
        )
858 859

    def eval_batch(self, inputs, labels=None):
860
        self.model.network.eval()
861 862
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
863
        self._input_info = _update_input_info(inputs)
864 865 866
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

867
        outputs = self.model.network(*[to_variable(x) for x in inputs])
868 869 870 871 872 873 874 875 876

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

877 878
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
879 880
            losses = to_list(losses)

881 882 883 884 885 886
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
887 888 889 890 891
            if (
                self.model._test_dataloader is not None
                and self._nranks > 1
                and isinstance(self.model._test_dataloader, DataLoader)
            ):
892 893 894 895 896
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
897
                        o[: int(total_size - current_count)] for o in outputs
898 899
                    ]
                    labels = [
900
                        l[: int(total_size - current_count)] for l in labels
901 902
                    ]
                    self._merge_count[self.mode + '_total'] = 0
903 904 905
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
906 907 908 909
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

910
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
911
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
912 913
            metrics.append(m)

914
        if self.model._loss and len(metrics):
915
            return [to_numpy(l) for l in losses], metrics
916
        elif self.model._loss:
917 918 919
            return [to_numpy(l) for l in losses]
        else:
            return metrics
920

921
    def predict_batch(self, inputs):
922
        self.model.network.eval()
923 924
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
925
        self._input_info = _update_input_info(inputs)
926
        outputs = self.model.network(*inputs)
927 928 929 930 931 932
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
933
        return self.model.network.parameters(*args, **kwargs)
934 935

    def save(self, path):
936
        params = self.model.network.state_dict()
937
        paddle.save(params, path + '.pdparams')
L
Leo Chen 已提交
938 939 940
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
941
                paddle.save(optim, path + '.pdopt')
L
Leo Chen 已提交
942 943 944 945 946 947
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
948 949 950 951
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
952 953 954 955
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

956 957 958 959
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

960 961
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
962 963 964 965 966 967 968 969 970 971
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
972
        opt_name = opt_unq_name[: opt_unq_name.rfind("_")]  # remove suffix idx
973
        param_names = [param.name for param in self.model.network.parameters()]
974 975 976
        for var_name, state_var in sorted(
            optim_state.items(), key=lambda x: len(x[0]), reverse=True
        ):
977 978 979 980 981
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
982 983 984
                    converted_state["global_step"] = (
                        np.array(converted_state.pop("@LR_DECAY_COUNTER@")) + 1
                    )
985 986 987 988 989 990
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
991 992 993 994 995 996 997
                        accum_name = var_name[
                            len(param_name + "_" + opt_name + "_") :
                        ]
                    elif (
                        var_name.startswith(param_name + "_")
                        and opt_name == opt_cls_name
                    ):
998
                        # when init optimizer without name
999
                        accum_name = var_name[len(param_name + "_") :]
1000 1001 1002
                    else:
                        continue
                    # remove suffix idx
1003
                    accum_name = accum_name[: accum_name.rfind("_")]
1004 1005
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
1006 1007 1008 1009 1010 1011 1012 1013
                    dy_state_name = (
                        param_name
                        + "_"
                        + opt_unq_name
                        + "_"
                        + accum_name
                        + "_0"
                    )
1014 1015
                    converted_state[dy_state_name] = state_var

1016 1017
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
1018
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
1019 1020 1021 1022
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
1023

L
Leo Chen 已提交
1024
    def prepare(self):
1025 1026 1027 1028
        if (
            self._amp_level == "O2"
            and self.model.mode == 'train'
            and core.is_compiled_with_cuda()
L
Leo Chen 已提交
1029 1030 1031 1032
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
1033 1034
                level='O2',
            )
L
Leo Chen 已提交
1035 1036 1037
        if self._amp_level != "O0":
            self.model._scaler = None

1038

1039
class Model:
1040
    """
1041

1042 1043
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
1044
    switched by `paddle.enable_static()`. The usage is as follows.
1045
    But note, the switching between dynamic and static should be before
1046
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
1047
    must be required for static graph.
1048

1049
    When training on GPU, auto mixed precision (AMP O1) and pure float16
1050
    (AMP O2) training are both supported in static graph mode and dynamic mode.
1051
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
1052 1053
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
1054 1055 1056 1057
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
1058

1059
    Args:
1060 1061
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
1062
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
1063
            could be a InputSpec instance, or list/tuple of InputSpec instances,
1064
            or dict ({name: InputSpec}), and it couldn't be None in static
1065 1066
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
1067
            could be a InputSpec instnace or list/tuple of InputSpec instances,
1068
            or None. For static graph, if labels is required in loss,
1069
            labels must be set. Otherwise, it could be None. Default: None.
1070 1071


1072
    Examples:
J
Jiaqi Liu 已提交
1073 1074
        1. A common example

1075
        .. code-block:: python
1076
          :name: code-example1
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
1094

1095 1096 1097 1098 1099
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
1100 1101
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
1102 1103 1104 1105 1106 1107 1108

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
1109 1110 1111 1112 1113


        2. An example using mixed precision training.

        .. code-block:: python
1114
          :name: code-example2
J
Jiaqi Liu 已提交
1115

1116 1117 1118 1119
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
1120

1121 1122
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
1123

1124 1125
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1126

1127 1128
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1139

1140 1141 1142 1143 1144 1145 1146
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1147

1148 1149
    """

1150
    def __init__(self, network, inputs=None, labels=None):
1151
        self.mode = 'train'
1152
        self.network = network
1153 1154
        self._inputs = None
        self._labels = None
1155
        self._loss = None
1156 1157
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1158
        self._input_info = None
1159
        self._is_shape_inferred = False
1160
        self._test_dataloader = None
L
LiuChiachi 已提交
1161
        self.stop_training = False
1162

J
Jiabin Yang 已提交
1163
        if not _non_static_mode():
1164
            if not isinstance(inputs, (list, tuple, dict, Input)):
1165
                raise TypeError(
1166 1167
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1168
        elif inputs:
L
LiuChiachi 已提交
1169
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1170

1171
        self._inputs = self._verify_spec(inputs, is_input=True)
1172
        self._labels = self._verify_spec(labels)
1173

1174
        # init backend
J
Jiabin Yang 已提交
1175
        if fluid._non_static_mode():
1176 1177 1178 1179
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1180
    def train_batch(self, inputs, labels=None, update=True):
1181
        """
1182

L
lyuwenyu 已提交
1183 1184
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1185 1186

        Args:
1187 1188
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1189
                tensors (in case the model has multiple inputs).
1190 1191 1192
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1193 1194 1195
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1196 1197 1198 1199 1200 1201 1202 1203 1204

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1205

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1228

1229
        """
L
lyuwenyu 已提交
1230
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1231
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1232
            self._update_inputs()
1233
        return loss
1234

Z
zhaoyingli 已提交
1235
    @no_grad()
1236 1237
    def eval_batch(self, inputs, labels=None):
        """
1238

1239 1240 1241
        Run one evaluating step on a batch of data.

        Args:
1242 1243
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1244
                tensors (in case the model has multiple inputs).
1245 1246 1247
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1248
                set None. Default: None.
1249 1250 1251 1252 1253 1254 1255 1256 1257

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1282

1283
        """
1284
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1285
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1286
            self._update_inputs()
1287
        return loss
1288

Z
zhaoyingli 已提交
1289
    @no_grad()
1290
    def predict_batch(self, inputs):
1291
        """
1292

1293
        Run one predicting step on a batch of data.
1294 1295

        Args:
1296 1297
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1298
                tensors (in case the model has multiple inputs).
1299 1300 1301 1302 1303 1304 1305 1306

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1307 1308 1309 1310 1311 1312

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1331

1332
        """
1333
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1334
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1335
            self._update_inputs()
1336
        return loss
1337

1338
    def save(self, path, training=True):
1339
        """
1340

1341
        This function saves parameters, optimizer information or model and
1342 1343
        paramters only for inference to path. It depends on the parameter
        `training`.
1344

1345
        If `training` is set to True, the parameters saved contain all
1346
        the trainable Variable, will save to a file with suffix ".pdparams".
1347 1348 1349 1350
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1351
        This function will silently overwrite existing file at the target location.
1352

1353
        If `training` is set to False, only inference model will be saved.
1354 1355

        Args:
1356 1357 1358
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1359 1360
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1361 1362 1363 1364 1365 1366 1367

        Returns:
            None

        Examples:

            .. code-block:: python
1368

1369
                import paddle
1370
                import paddle.nn as nn
1371
                import paddle.vision.transforms as T
1372
                from paddle.static import InputSpec
1373

1374
                class Mnist(nn.Layer):
1375
                    def __init__(self):
1376
                        super().__init__()
1377
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1378
                            nn.Flatten(1),
1379 1380 1381 1382
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1383

1384
                    def forward(self, x):
1385
                        return self.net(x)
1386

1387
                dynamic = True  # False
1388
                # if use static graph, do not set
1389 1390
                if not dynamic:
                    paddle.enable_static()
1391

1392 1393 1394
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1395
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1396
                    parameters=model.parameters())
1397
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1398

1399 1400 1401 1402 1403
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
1404

1405
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1406 1407
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1408

1409
        """
1410

1411
        if paddle.distributed.ParallelEnv().local_rank == 0:
1412 1413 1414 1415
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1416 1417 1418

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1435
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1436 1437
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1438 1439
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1440 1441
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1442
                a optimizer has been set to the model. Default: False.
1443 1444 1445 1446 1447 1448 1449

        Returns:
            None

        Examples:

            .. code-block:: python
1450 1451 1452 1453

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1454

1455
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1456

1457
                input = InputSpec([None, 784], 'float32', 'x')
1458

1459 1460 1461 1462 1463
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1464

1465 1466
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1467

1468 1469 1470 1471 1472 1473
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1474
                return pickle.load(f, encoding='latin1')
1475 1476 1477 1478 1479

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
1480 1481
                    "{} is not found in the providing file.".format(key)
                )
1482 1483
            if list(state.shape) != list(param.shape):
                raise ValueError(
1484 1485 1486 1487
                    "{} receives a shape {}, but the expected shape is {}.".format(
                        key, list(state.shape), list(param.shape)
                    )
                )
1488 1489 1490 1491
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
1492 1493 1494 1495 1496 1497
            assert ext in [
                '',
                '.pdparams',
                '.pdopt',
                '.pdmodel',
            ], "Unknown postfix {} from weights".format(ext)
1498 1499 1500 1501 1502 1503 1504
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1505
        for key, param in self.network.state_dict().items():
1506 1507 1508 1509 1510
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
1511 1512
                        ("Skip loading for {}. ".format(key) + str(err))
                    )
1513 1514 1515 1516 1517 1518
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

1519 1520 1521
        optim_state = (
            None if reset_optimizer else _load_state_from_path(path + ".pdopt")
        )
L
Leo Chen 已提交
1522 1523

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1524
        if _non_static_mode():
L
Leo Chen 已提交
1525 1526 1527 1528 1529
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

1530 1531 1532
            return self._adapter.load(
                matched_param_state, optim_state, scaler_state
            )
L
Leo Chen 已提交
1533 1534
        else:
            return self._adapter.load(matched_param_state, optim_state)
1535 1536 1537

    def parameters(self, *args, **kwargs):
        """
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1548

1549 1550 1551
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1552

1553
                input = InputSpec([None, 784], 'float32', 'x')
1554

1555 1556 1557 1558
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1559

1560
                params = model.parameters()
1561

1562 1563 1564
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1565 1566 1567
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1568 1569
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
1570 1571 1572
                assert isinstance(
                    self._optimizer._grad_clip,
                    (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm),
1573
                ), "Only ClipGradByNorm and ClipGradByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
1585 1586
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1587 1588 1589 1590 1591 1592 1593 1594
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
1595 1596
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1597 1598 1599 1600 1601 1602 1603 1604
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1605
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1606 1607 1608 1609 1610 1611 1612
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
1613 1614 1615
                'custom_white_list',
                'custom_black_list',
                'custom_black_varnames',
J
Jiaqi Liu 已提交
1616 1617 1618
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
1619 1620
                        param_name
                    ]
J
Jiaqi Liu 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1635 1636 1637 1638
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".format(
                        tuple(amp_config_key_set - accepted_param_set)
                    )
                )
J
Jiaqi Liu 已提交
1639 1640

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1641
                if _non_static_mode():
J
Jiaqi Liu 已提交
1642
                    raise ValueError(
1643
                        "'use_fp16_guard' is supported in static graph mode only."
1644
                    )
J
Jiaqi Liu 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1654 1655 1656
    def prepare(
        self, optimizer=None, loss=None, metrics=None, amp_configs=None
    ):
1657
        """
1658

1659 1660 1661
        Configures the model before runing.

        Args:
1662
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1663
                and should be a Optimizer instance. It can be None in eval
1664 1665
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1666
                be a `paddle.nn.Layer` instance or any callable function
1667
                taken the predicted values and ground truth values as input.
1668 1669 1670 1671
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1672 1673 1674
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1675 1676
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1677 1678 1679 1680
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1681
                'use_fp16_guard' is only supported in static graph mode. Mixed
1682 1683 1684 1685 1686
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1687

1688 1689
        Returns:
            None
1690

1691
        """
1692 1693
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1694
            global _parallel_context_initialized
1695 1696 1697 1698
            if (
                paddle.distributed.ParallelEnv().nranks > 1
                and not _parallel_context_initialized
            ):
J
Jiabin Yang 已提交
1699
                if fluid._non_static_mode():
1700
                    main_prog_seed = fluid.default_main_program().random_seed
1701 1702 1703
                    startup_prog_seed = (
                        fluid.default_startup_program().random_seed
                    )
1704
                    fluid.disable_dygraph()
1705
                    paddle.disable_static(self._place)
1706 1707 1708
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
1709 1710 1711
                    fluid.default_startup_program().random_seed = (
                        startup_prog_seed
                    )
1712 1713 1714 1715 1716
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1717 1718
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1719 1720 1721
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1722
        self._loss = loss
1723 1724 1725

        metrics = metrics or []
        for metric in to_list(metrics):
1726 1727 1728
            assert isinstance(
                metric, Metric
            ), "{} is not sub class of Metric".format(metric.__class__.__name__)
1729
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1730
        self._prepare_amp(amp_configs)
1731

L
Leo Chen 已提交
1732
        self._adapter.prepare()
1733

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
    def fit(
        self,
        train_data=None,
        eval_data=None,
        batch_size=1,
        epochs=1,
        eval_freq=1,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        verbose=2,
        drop_last=False,
        shuffle=True,
        num_workers=0,
        callbacks=None,
        accumulate_grad_batches=1,
        num_iters=None,
    ):
1752
        """
1753

1754 1755 1756 1757
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1758 1759
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for
                train. An instance of paddle paddle.io.Dataset or
1760
                paddle.io.Dataloader is recomended. Default: None.
1761
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1762 1763
                evaluation at the end of epoch. If None, will not do evaluation.
                An instance of paddle.io.Dataset or paddle.io.Dataloader
1764
                is recomended. Default: None.
1765
            batch_size (int|list, optional): The batch size of train_data and eval_data. When
1766 1767 1768 1769
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1770
                is performed. Default: 1.
1771
            log_freq (int, optional): The frequency, in number of steps, the training logs
1772
                are printed. Default: 10.
1773
            save_dir(str|None, optional): The directory to save checkpoint during training.
1774
                If None, will not save checkpoint. Default: None.
1775
            save_freq (int, optional): The frequency, in number of epochs, to save
1776
                checkpoint. Default: 1.
1777
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1778
                1 = progress bar, 2 = one line per epoch. Default: 2.
1779
            drop_last (bool, optional): Whether drop the last incomplete batch of
1780 1781 1782
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1783
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1784 1785
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1786
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1787 1788 1789
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1790 1791 1792
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
1793
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident
L
lyuwenyu 已提交
1794
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1795
                size. Default: 1.
1796 1797 1798 1799
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1800 1801 1802 1803
        Returns:
            None

        Examples:
1804
            1. An example use Dataset and set batch size, shuffle in fit.
1805 1806 1807
               How to make a batch is done internally.

            .. code-block:: python
1808
              :name: code-example3
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1843 1844 1845 1846 1847

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1848
              :name: code-example4
1849 1850 1851 1852 1853

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1854

1855 1856 1857
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
1858

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1885

1886
        """
1887
        assert train_data is not None, "train_data must be given!"
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
        if isinstance(batch_size, (tuple, list)) and all(
            [isinstance(x, int) for x in batch_size]
        ):
            assert (
                len(batch_size) == 2
            ), "batch_size length error, expected train_batch_size and eval_batch_size."
            train_batch_size, eval_batch_size = batch_size
        elif isinstance(batch_size, int):
            train_batch_size, eval_batch_size = batch_size, batch_size

1899
        if isinstance(train_data, Dataset):
1900 1901
            train_sampler = DistributedBatchSampler(
                train_data,
1902
                batch_size=train_batch_size,
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
                shuffle=shuffle,
                drop_last=drop_last,
            )
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1913 1914 1915 1916
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1917
            eval_sampler = DistributedBatchSampler(
1918
                eval_data, batch_size=eval_batch_size
1919 1920 1921 1922 1923 1924 1925 1926
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1927 1928 1929 1930 1931 1932 1933
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1934

L
lyuwenyu 已提交
1935
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1936

1937
        steps = self._len_data_loader(train_loader)
1938
        self.num_iters = num_iters
1939 1940 1941 1942 1943
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(steps, int)
        ):
1944 1945 1946
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1947 1948 1949 1950 1951 1952 1953 1954 1955
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1956 1957
            metrics=self._metrics_name(),
        )
1958

L
LiuChiachi 已提交
1959 1960 1961
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1962 1963 1964 1965 1966 1967 1968 1969 1970
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
1971 1972 1973 1974
                cbks.on_begin(
                    'eval',
                    {'steps': eval_steps, 'metrics': self._metrics_name()},
                )
1975 1976 1977 1978

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1979 1980
            if self.stop_training:
                break
1981 1982 1983

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1984

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
    def evaluate(
        self,
        eval_data,
        batch_size=1,
        log_freq=10,
        verbose=2,
        num_workers=0,
        callbacks=None,
        num_iters=None,
    ):
1995 1996 1997 1998 1999
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
2000
                evaluation. An instance of paddle.io.Dataset or
2001
                paddle.io.Dataloader is recomended.
2002 2003 2004 2005
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
2006
                are printed. Default: 10.
2007
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2008
                1 = progress bar, 2 = one line per epoch. Default: 2.
2009
            num_workers (int, optional): The number of subprocess to load data,
2010 2011 2012
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
2013
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
2014 2015
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
2016 2017 2018
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
2019 2020 2021 2022 2023
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
2024 2025

          .. code-block:: python
2026

2027 2028 2029
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
2030

2031 2032 2033 2034 2035 2036
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
2037

2038 2039 2040 2041 2042 2043 2044
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
2045 2046 2047
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
2068 2069
            metrics=self._metrics_name(),
        )
2070 2071

        eval_steps = self._len_data_loader(eval_loader)
2072
        self.num_iters = num_iters
2073 2074 2075 2076 2077
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(eval_steps, int)
        ):
2078 2079 2080
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
2081 2082 2083
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

2097 2098 2099 2100 2101 2102 2103 2104 2105
    def predict(
        self,
        test_data,
        batch_size=1,
        num_workers=0,
        stack_outputs=False,
        verbose=1,
        callbacks=None,
    ):
2106 2107 2108 2109 2110 2111 2112
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
2113 2114
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
2115
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess
2116 2117 2118 2119
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
2120
                output field will be in shape [N, X, Y] if stack_output is True, and will
2121
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
2122 2123
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
2124
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2125
                1 = progress bar, 2 = one line per batch. Default: 1.
2126
            callbacks(Callback, optional): A Callback instance, Default: None.
2127

2128 2129 2130 2131
        Returns:
            list: output of models.

        Examples:
2132 2133

          .. code-block:: python
2134

2135 2136 2137
                import numpy as np
                import paddle
                from paddle.static import InputSpec
2138

2139 2140
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
2141
                        super().__init__(mode=mode)
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
2173 2174 2175
        """

        if test_data is not None and isinstance(test_data, Dataset):
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size
            )
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2186 2187 2188 2189 2190
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

2191
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
2192 2193 2194 2195

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2196
        cbks.on_begin('predict', logs)
2197 2198 2199

        outputs = []

2200
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2211
        cbks.on_end('predict', logs)
2212 2213
        return outputs

2214
    def _save_inference_model(self, path):
2215
        """
2216
        Save inference model can be used in static or dynamic mode.
2217 2218

        Args:
2219 2220
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2221
        Returns:
2222
            None
2223 2224
        """

J
Jiabin Yang 已提交
2225
        if fluid._non_static_mode():
2226 2227
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2228
                if self._input_info is None:  # No provided or inferred
2229
                    raise RuntimeError(
L
LiuChiachi 已提交
2230
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2231 2232 2233 2234
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
2235 2236
                        % self._input_info[0]
                    )
L
LiuChiachi 已提交
2237

2238
                paddle.jit.save(layer, path, input_spec=self._inputs)
2239

2240
        else:
2241 2242 2243 2244 2245 2246
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
2247 2248
                    "file_prefix is empty string."
                )
2249 2250 2251 2252 2253 2254 2255 2256 2257

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2258
            prog = self._adapter._progs.get('test', None)
2259 2260 2261
            assert (
                prog
            ), "Model is not ready, please call `model.prepare()` first"
2262 2263 2264 2265 2266 2267

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2268 2269 2270 2271 2272 2273 2274 2275 2276
            fluid.io.save_inference_model(
                model_path,
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
                params_filename=params_filename,
            )
2277

L
update  
lyuwenyu 已提交
2278
    def _run_one_epoch(
2279 2280 2281 2282 2283 2284
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2295
            # 4. custumed iterator yield separated inputs and labels:
2296 2297 2298 2299 2300
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2301

2302 2303 2304 2305 2306
            batch_size = (
                data[0].shape()[0]
                if callable(data[0].shape)
                else data[0].shape[0]
            )
2307 2308 2309

            callbacks.on_batch_begin(mode, step, logs)

2310
            if mode != 'predict':
2311
                _inputs = [data[: len(self._inputs)], data[len(self._inputs) :]]
L
lyuwenyu 已提交
2312
                if mode == 'train':
2313 2314 2315 2316
                    _inputs.append(
                        (step + 1) % self._accumulate == 0
                        or step + 1 == len(data_loader)
                    )
L
update  
lyuwenyu 已提交
2317

L
lyuwenyu 已提交
2318
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2319

2320
                if self._metrics and self._loss:
2321
                    metrics = [[l[0] for l in outs[0]]]
2322
                elif self._loss:
2323 2324 2325
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2336
                if self._inputs is not None:
2337
                    outs = self.predict_batch(data[: len(self._inputs)])
L
LielinJiang 已提交
2338
                else:
2339
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2340

2341 2342 2343
                outputs.append(outs)

            logs['step'] = step
2344 2345 2346 2347
            if (
                mode == 'train'
                or self._adapter._merge_count.get(mode + '_batch', 0) <= 0
            ):
2348 2349 2350
                logs['batch_size'] = (
                    batch_size * paddle.distributed.ParallelEnv().nranks
                )
2351 2352 2353 2354
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2355 2356
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2357 2358 2359
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2360
                    break
2361 2362
        self._reset_metrics()

2363
        if mode == 'predict':
2364 2365 2366
            return logs, outputs
        return logs

L
LielinJiang 已提交
2367
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2368 2369 2370
        """Prints a string summary of the network.

        Args:
2371 2372 2373 2374
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
                    if not set, input_size will get from ``self._inputs`` if network only have
                    one input, input_size can be tuple or InputSpec. if model have multiple
                    input, input_size must be a list which contain every input's shape.
L
LielinJiang 已提交
2375
                    Default: None.
2376
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2377 2378 2379 2380 2381 2382

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2383 2384 2385 2386 2387 2388

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2389

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2401 2402

        """
2403 2404 2405
        assert (
            input_size is not None or self._inputs is not None
        ), "'input_size' or 'self._input' must be set"
2406 2407 2408 2409
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2410
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2411

L
LiuChiachi 已提交
2412
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2413 2414
        out_specs = []

2415 2416 2417 2418 2419 2420
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2421
                # While Saving inference model in dygraph, and providing inputs only in running.
2422 2423 2424 2425
                if (
                    shapes is not None
                    and dtypes is not None
                    and fluid._non_static_mode()
L
LiuChiachi 已提交
2426
                ):
2427
                    out_specs = [
2428
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2429 2430 2431 2432 2433 2434 2435
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2436 2437
            assert is_input is False
            out_specs = [
2438 2439
                specs[n]
                for n in extract_args(self.network.forward)
2440 2441
                if n != 'self'
            ]
2442 2443 2444 2445 2446 2447 2448 2449
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2450 2451 2452 2453
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
2454 2455 2456

        return out_specs

2457 2458 2459 2460 2461
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2462
        metrics_name = ['loss'] if self._loss else []
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2473 2474 2475

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2476 2477
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
2478 2479 2480
            self._inputs = self._verify_spec(
                None, self._input_info[0], self._input_info[1], True
            )
L
LiuChiachi 已提交
2481
            self._is_shape_inferred = True