model.py 88.8 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import os
import pickle
import numpy as np
import six
import warnings
25 26 27
import time
import socket
import contextlib
28

29
import paddle
30
from paddle import fluid
31
from paddle.fluid import core
32
from paddle.fluid.framework import _non_static_mode, in_dygraph_mode
33 34
from paddle.fluid.framework import Variable
from paddle.fluid.framework import _get_paddle_place
35
from paddle.fluid.framework import _current_expected_place as _get_device
36 37 38 39
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
40 41
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
42
from paddle.fluid.layers.utils import flatten
43
from paddle.fluid.layers import collective
44

45 46 47
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
48
from paddle.metric import Metric
49
from paddle.static import InputSpec as Input
50
import paddle.distributed as dist
J
Jiaqi Liu 已提交
51 52
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet.base import role_maker
53

L
LiuChiachi 已提交
54
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
55
from .model_summary import summary
56

57
__all__ = []
58 59 60 61 62 63 64 65 66 67 68 69 70

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
H
hong 已提交
71 72 73
    assert isinstance(var, (Variable, fluid.core.VarBase,
                            fluid.core.eager.Tensor)), "not a variable"
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream)


def wait_server_ready(endpoints):
    assert not isinstance(endpoints, six.string_types)
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
                    socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


def init_communicator(program, rank, nranks, wait_port, current_endpoint,
                      endpoints):
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
137
    block = program.global_block()
138 139
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints
            })

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            })
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
167
            name=fluid.unique_name.generate('hccl_id'),
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints
            })
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks
            })
189 190 191 192 193 194 195


def prepare_distributed_context(place=None):
    if place is None:
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
            else fluid.CUDAPlace(0)

196
    place = _get_paddle_place(place)
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
            init_communicator(communicator_prog, strategy.local_rank,
                              strategy.nranks, True, strategy.current_endpoint,
                              strategy.trainer_endpoints)
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
218
        if fluid._non_static_mode():
219 220 221 222 223 224 225 226 227
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
        assert ("Only support CUDAPlace for now.")

    _parallel_context_initialized = True
    return strategy
228 229


L
LiuChiachi 已提交
230
def _update_input_info(inputs):
L
LiuChiachi 已提交
231
    "Get input shape list by given inputs in Model initialization."
232
    shapes = None
L
LiuChiachi 已提交
233
    dtypes = None
L
LiuChiachi 已提交
234 235
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
236
        dtypes = [inputs.dtype]
237
    elif isinstance(inputs, (list, tuple)):
238
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
239
        dtypes = [input.dtype for input in inputs]
240 241
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
242 243 244 245
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
246 247


248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
class StaticGraphAdapter(object):
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
279 280 281
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
282
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
283

284 285 286 287 288 289 290 291
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
292
    def train_batch(self, inputs, labels=None, update=True):
293 294 295
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
        self.mode = 'train'
L
update  
lyuwenyu 已提交
296
        assert update is True, "Does not support `update == False` in static mode by now."
297 298 299 300 301 302
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

303
    def predict_batch(self, inputs):
304 305 306 307
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
308
        return self.model.network.parameters(*args, **kwargs)
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
327
        _save(self.model.network.state_dict(), param_path)
328 329 330 331 332 333 334 335 336 337 338 339 340 341
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
            p.name: p
            for p in filter(is_belong_to_optimizer, prog.list_vars())
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
342
    # TODO: support save/load scaler state in static graph
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
            [param for param, state in param_state_pairs],
            global_scope(), executor)
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
                    np.array(converted_state.pop("global_step")) - 1
                ) if "global_step" in converted_state else converted_state.pop(
                    "@LR_DECAY_COUNTER@", None)
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
                        accum_name = name if opt_name is None else name[len(
                            opt_name) + 1:]
                        for param_name, state_var in self.model._optimizer._accumulators[
                                name].items():
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
                                for state_key in sorted(
                                        state.keys(),
                                        key=lambda x: len(x),
                                        reverse=True):
                                    prefix = param_name + "_" + (
                                        opt_cls_name
                                        if opt_name is None else opt_name) + "_"
                                    if state_key.startswith(prefix):
                                        prefix_offset = state_key[len(
                                            prefix):].find("_") + len(prefix)
                                        opt_unq_name = state_key[len(
                                            param_name + "_"):prefix_offset]
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
                            dy_state_name = (param_name + "_" + opt_unq_name +
                                             "_" + accum_name + "_0")
                            converted_state[
                                state_var.name] = converted_state.pop(
                                    dy_state_name)

            assert var.name in converted_state, \
                "variable [{}] is not in optimizer state file".format(var.name)
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
        assert compiled_prog, \
            "Model is not ready, please call `model.prepare()` first"

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
        assert len(inputs) == len(self._input_vars[self.mode]), \
            "number of inputs" \
            + " does not match number of arguments of `forward` method"

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
460 461
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

462 463 464 465
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
L
Leo Chen 已提交
466 467 468 469 470 471 472
            if self._amp_level == 'O2' and input_dtypes[
                    idx] == core.VarDesc.VarType.FP16:
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
                elif isinstance(feed[n], numpy.array):
                    feed[n] = feed[n].astype('float16')

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

        rets = self._executor.run(compiled_prog,
                                  feed=feed,
                                  fetch_list=pruned_fetch_list,
                                  return_numpy=False)

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
509

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
            if self.mode != 'train' and self.model._test_dataloader is not None \
                    and isinstance(self.model._test_dataloader, DataLoader) \
                    and self._nranks > 1:
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
                        s[:int(total_size - current_count), ...] for s in state
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
533 534 535 536 537

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
        if mode == 'train' and self.model._optimizer \
                and self.model._optimizer._learning_rate_map:
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
569 570
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
571 572
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
573
            self._label_vars[mode] = labels
574
            outputs = to_list(self.model.network.forward(*inputs))
575

576 577
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
578 579 580 581 582 583 584 585

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
586
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
587 588 589 590 591 592

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
593 594 595 596 597 598 599
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
                        dist_strategy.amp_configs[
                            'use_pure_fp16'] = self._amp_level == 'O2'
600 601
                    self.model._optimizer = fleet.distributed_optimizer(
                        self.model._optimizer, strategy=dist_strategy)
J
Jiaqi Liu 已提交
602 603 604 605 606 607 608 609 610 611
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
                    amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
                        **self.
                        _amp_custom_lists) if self._amp_custom_lists else None
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
                        **self._amp_configs)
612 613 614 615 616 617 618 619 620 621 622

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
623
            "loss": to_list(losses),
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
            "metric": metrics
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

        assert self.model._place is not None, \
            "device is not set, please call `model.prepare()` first"

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
                if not var_py.name.startswith('nccl_id') and var and \
                        var.get_tensor()._is_initialized():
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

J
Jiaqi Liu 已提交
655 656 657 658
        if self._amp_level == "O2" and mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model._optimizer.amp_init(place)

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

L
LiuChiachi 已提交
680
        self._input_info = None
J
Jiaqi Liu 已提交
681 682 683 684 685
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

686
        if self._nranks > 1:
687
            dist.init_parallel_env()
688 689 690 691 692
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
693 694
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
                self.model.network, stradegy)
695 696 697 698 699 700 701 702 703 704

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
705
    def train_batch(self, inputs, labels=None, update=True):
706 707
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
708
        self.model.network.train()
709 710
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
711
        self._input_info = _update_input_info(inputs)
712 713 714
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
715 716 717 718
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

J
Jiaqi Liu 已提交
719
        with paddle.amp.auto_cast(
L
Leo Chen 已提交
720 721 722
                enable=self._amp_level != 'O0',
                **self._amp_custom_lists,
                level=self._amp_level):
J
Jiaqi Liu 已提交
723 724
            if self._nranks > 1:
                outputs = self.ddp_model.forward(
Z
zhangchunle 已提交
725
                    *[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
726 727
            else:
                outputs = self.model.network.forward(
Z
zhangchunle 已提交
728
                    *[to_variable(x) for x in inputs])
729

L
Leo Chen 已提交
730 731 732
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
733

J
Jiaqi Liu 已提交
734
        if self._amp_level != "O0":
L
Leo Chen 已提交
735
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
736
            scaled.backward()
L
lyuwenyu 已提交
737
            if update:
L
Leo Chen 已提交
738
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
739
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
740 741
        else:
            final_loss.backward()
L
lyuwenyu 已提交
742 743 744
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
745

746 747
        metrics = []
        for metric in self.model._metrics:
748
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
749
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
750 751 752 753 754 755
            metrics.append(m)

        return ([to_numpy(l) for l in losses], metrics) \
            if len(metrics) > 0 else [to_numpy(l) for l in losses]

    def eval_batch(self, inputs, labels=None):
756
        self.model.network.eval()
757 758
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
759
        self._input_info = _update_input_info(inputs)
760 761 762
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

Z
zhangchunle 已提交
763
        outputs = self.model.network.forward(*[to_variable(x) for x in inputs])
764 765 766 767 768 769 770 771 772

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

773 774
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
775 776
            losses = to_list(losses)

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
            if self.model._test_dataloader is not None and self._nranks > 1 \
                    and isinstance(self.model._test_dataloader, DataLoader):
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
                        o[:int(total_size - current_count)] for o in outputs
                    ]
                    labels = [
                        l[:int(total_size - current_count)] for l in labels
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

802
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
803
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
804 805
            metrics.append(m)

806
        if self.model._loss and len(metrics):
807
            return [to_numpy(l) for l in losses], metrics
808
        elif self.model._loss:
809 810 811
            return [to_numpy(l) for l in losses]
        else:
            return metrics
812

813
    def predict_batch(self, inputs):
814
        self.model.network.eval()
815 816
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
817
        self._input_info = _update_input_info(inputs)
818
        outputs = self.model.network.forward(*inputs)
819 820 821 822 823 824
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
825
        return self.model.network.parameters(*args, **kwargs)
826 827

    def save(self, path):
828
        params = self.model.network.state_dict()
829
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
830 831 832 833 834 835 836 837 838 839
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
840 841 842 843
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
844 845 846 847
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

848 849 850 851
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

852 853
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
854 855 856 857 858 859 860 861 862 863 864
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
        opt_name = opt_unq_name[:opt_unq_name.rfind("_")]  # remove suffix idx
865
        param_names = [param.name for param in self.model.network.parameters()]
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
        for var_name, state_var in sorted(
                optim_state.items(), key=lambda x: len(x[0]), reverse=True):
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
                    converted_state["global_step"] = np.array(
                        converted_state.pop("@LR_DECAY_COUNTER@")) + 1
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
                        accum_name = var_name[len(param_name + "_" + opt_name +
                                                  "_"):]
                    elif var_name.startswith(param_name +
                                             "_") and opt_name == opt_cls_name:
                        # when init optimizer without name
                        accum_name = var_name[len(param_name + "_"):]
                    else:
                        continue
                    # remove suffix idx
                    accum_name = accum_name[:accum_name.rfind("_")]
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
                    dy_state_name = (param_name + "_" + opt_unq_name + "_" +
                                     accum_name + "_0")
                    converted_state[dy_state_name] = state_var

897 898
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
899
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
900 901 902 903
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
904

L
Leo Chen 已提交
905 906 907 908 909 910 911 912 913 914
    def prepare(self):
        if self._amp_level == "O2" and self.model.mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
                level='O2')
        if self._amp_level != "O0":
            self.model._scaler = None

915

916
class Model(object):
917 918 919
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
920
    switched by `paddle.enable_static()`. The usage is as follows.
921
    But note, the switching between dynamic and static should be before
922
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
923
    must be required for static graph.
924

L
Leo Chen 已提交
925 926
    When training on GPU, auto mixed precision (AMP O1) and pure float16 
    (AMP O2) training are both supported in static mode and dynamic mode.
927
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
928 929
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
930 931 932 933
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
934

935
    Args:
936 937
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
938 939
        inputs (InputSpec|list|tuple|dict|None): `inputs`, entry points of network,
            could be a InputSpec instance, or list/tuple of InputSpec instances,
940 941
            or dict ({name: InputSpec}), and it couldn't be None in static
            graph.
942 943
        labels (InputSpec|list|tuple|None): `labels`, entry points of network,
            could be a InputSpec instnace or list/tuple of InputSpec instances,
944
            or None. For static graph, if labels is required in loss,
945 946 947
            labels must be set. Otherwise, it could be None.


948
    Examples:
J
Jiaqi Liu 已提交
949 950
        1. A common example

951 952
        .. code-block:: python

953 954 955 956 957 958
          import paddle
          import paddle.nn as nn
          import paddle.vision.transforms as T
          from paddle.static import InputSpec
  
          device = paddle.set_device('cpu') # or 'gpu'
J
Jiaqi Liu 已提交
959

960 961 962 963 964 965 966 967 968 969 970 971 972
          net = nn.Sequential(
              nn.Flatten(1),
              nn.Linear(784, 200),
              nn.Tanh(),
              nn.Linear(200, 10))
  
          # inputs and labels are not required for dynamic graph.
          input = InputSpec([None, 784], 'float32', 'x')
          label = InputSpec([None, 1], 'int64', 'label')
          
          model = paddle.Model(net, input, label)
          optim = paddle.optimizer.SGD(learning_rate=1e-3,
              parameters=model.parameters())
J
Jiaqi Liu 已提交
973

974 975 976 977 978 979 980 981 982 983
          model.prepare(optim,
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
          
          transform = T.Compose([
              T.Transpose(),
              T.Normalize([127.5], [127.5])
          ])
          data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
          model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
984 985 986 987 988


        2. An example using mixed precision training.

        .. code-block:: python
L
Leo Chen 已提交
989 990
        
          # required: gpu
J
Jiaqi Liu 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
          import paddle
          import paddle.nn as nn
          import paddle.vision.transforms as T

          def run_example_code():
            device = paddle.set_device('gpu')

            net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                nn.Linear(200, 10))

            model = paddle.Model(net)
            optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())

            amp_configs = {
                "level": "O1",
                "custom_white_list": {'conv2d'},
                "use_dynamic_loss_scaling": True
            }
            model.prepare(optim,
                paddle.nn.CrossEntropyLoss(),
                paddle.metric.Accuracy(),
                amp_configs=amp_configs)

            transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)

1018
          # mixed precision training is only supported on GPU now.
J
Jiaqi Liu 已提交
1019 1020 1021
          if paddle.is_compiled_with_cuda():
            run_example_code()

1022 1023
    """

1024
    def __init__(self, network, inputs=None, labels=None):
1025
        self.mode = 'train'
1026
        self.network = network
1027 1028
        self._inputs = None
        self._labels = None
1029
        self._loss = None
1030 1031
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1032
        self._input_info = None
1033
        self._is_shape_inferred = False
1034
        self._test_dataloader = None
L
LiuChiachi 已提交
1035
        self.stop_training = False
1036

J
Jiabin Yang 已提交
1037
        if not _non_static_mode():
1038
            if not isinstance(inputs, (list, tuple, dict, Input)):
1039
                raise TypeError(
1040 1041
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1042
        elif inputs:
L
LiuChiachi 已提交
1043
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1044

1045
        self._inputs = self._verify_spec(inputs, is_input=True)
1046
        self._labels = self._verify_spec(labels)
1047

1048
        # init backend
J
Jiabin Yang 已提交
1049
        if fluid._non_static_mode():
1050 1051 1052 1053
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1054
    def train_batch(self, inputs, labels=None, update=True):
1055
        """
L
lyuwenyu 已提交
1056 1057
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1058 1059

        Args:
1060 1061 1062 1063 1064 1065 1066
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
            labels (numpy.ndarray|Tensor|list): Batch of labels. It could be 
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
                set None. Default is None.
L
lyuwenyu 已提交
1067 1068
            update (bool): Whether update parameters after loss.backward() computing.
                Using it to accumulate gradients. Default is True.
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
1080
              import paddle
1081 1082
              import paddle.nn as nn
              from paddle.static import InputSpec
1083

1084
              device = paddle.set_device('cpu') # or 'gpu'
1085

1086 1087 1088 1089 1090 1091 1092 1093
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10))

              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
              model = paddle.Model(net, input, label)
1094
              optim = paddle.optimizer.SGD(learning_rate=1e-3,
1095
                  parameters=model.parameters())
1096
              model.prepare(optim, paddle.nn.CrossEntropyLoss())
1097 1098 1099 1100 1101
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.train_batch([data], [label])
              print(loss)
        """
L
lyuwenyu 已提交
1102
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1103
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1104
            self._update_inputs()
1105
        return loss
1106

1107
    @paddle.no_grad()
1108 1109 1110 1111 1112
    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
1113 1114 1115 1116 1117 1118 1119
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
            labels (numpy.ndarray|Tensor|list): Batch of labels. It could be 
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
                set None. Default is None.
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
1131
              import paddle
1132 1133
              import paddle.nn as nn
              from paddle.static import InputSpec
1134

1135
              device = paddle.set_device('cpu') # or 'gpu'
1136

1137 1138 1139 1140 1141 1142 1143 1144
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10))

              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
              model = paddle.Model(net, input, label)
1145
              optim = paddle.optimizer.SGD(learning_rate=1e-3,
1146
                  parameters=model.parameters())
1147
              model.prepare(optim,
1148
                            paddle.nn.CrossEntropyLoss())
1149 1150 1151 1152 1153
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.eval_batch([data], [label])
              print(loss)
        """
1154
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1155
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1156
            self._update_inputs()
1157
        return loss
1158

1159
    @paddle.no_grad()
1160
    def predict_batch(self, inputs):
1161
        """
1162
        Run one predicting step on a batch of data.
1163 1164

        Args:
1165 1166 1167
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
            
              import numpy as np
1178
              import paddle
1179
              import paddle.nn as nn
L
LielinJiang 已提交
1180
              from paddle.static import InputSpec
1181

1182
              device = paddle.set_device('cpu') # or 'gpu'
L
LielinJiang 已提交
1183 1184 1185
              
              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
1186

1187 1188 1189 1190 1191 1192
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10),
                  nn.Softmax())

L
LielinJiang 已提交
1193
              model = paddle.Model(net, input, label)
1194
              model.prepare()
1195
              data = np.random.random(size=(4,784)).astype(np.float32)
1196
              out = model.predict_batch([data])
1197 1198
              print(out)
        """
1199
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1200
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1201
            self._update_inputs()
1202
        return loss
1203

1204 1205 1206 1207 1208
    def save(self, path, training=True):
        """  
        This function saves parameters, optimizer information or model and 
        paramters only for inference to path. It depends on the parameter
        `training`.
1209

1210 1211
        If `training` is set to True, the parameters saved contain all 
        the trainable Variable, will save to a file with suffix ".pdparams".
1212 1213 1214 1215
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1216
        This function will silently overwrite existing file at the target location.
1217

1218
        If `training` is set to False, only inference model will be saved.
1219 1220

        Args:
1221 1222 1223
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1224 1225
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1226 1227 1228 1229 1230 1231 1232

        Returns:
            None

        Examples:

            .. code-block:: python
1233

1234
                import paddle
1235
                import paddle.nn as nn
1236
                import paddle.vision.transforms as T
1237
                from paddle.static import InputSpec
1238

1239
                class Mnist(nn.Layer):
1240
                    def __init__(self):
1241
                        super(Mnist, self).__init__()
1242
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1243
                            nn.Flatten(1),
1244 1245 1246 1247
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1248

1249
                    def forward(self, x):
1250
                        return self.net(x)
1251

1252
                dynamic = True  # False
1253
                # if use static graph, do not set
1254 1255
                if not dynamic:
                    paddle.enable_static()
1256

1257 1258 1259
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1260
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1261
                    parameters=model.parameters())
1262
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1263 1264 1265 1266 1267 1268 1269
                
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                
1270
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1271 1272
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1273
        """
1274

1275
        if ParallelEnv().local_rank == 0:
1276 1277 1278 1279
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
            skip_mismatch (bool): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
                mismatch shape).
            reset_optimizer (bool): If True, ignore the providing file storing
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
                a optimizer has been set to the model. Default False.

        Returns:
            None

        Examples:

            .. code-block:: python
            
1314
              import paddle
1315
              import paddle.nn as nn
L
LielinJiang 已提交
1316 1317
              from paddle.static import InputSpec

1318
              device = paddle.set_device('cpu')
L
LielinJiang 已提交
1319 1320

              input = InputSpec([None, 784], 'float32', 'x')
1321 1322 1323 1324 1325

              model = paddle.Model(nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10),
L
LielinJiang 已提交
1326 1327
                  nn.Softmax()), input)

1328
              model.save('checkpoint/test')
1329 1330 1331 1332 1333 1334 1335
              model.load('checkpoint/test')
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1336
                return pickle.load(f, encoding='latin1')
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
                    "{} is not found in the providing file.".format(key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
            assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
                    "Unknown postfix {} from weights".format(ext)
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1360
        for key, param in self.network.state_dict().items():
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
                        ("Skip loading for {}. ".format(key) + str(err)))
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

        optim_state = None if reset_optimizer else _load_state_from_path(
            path + ".pdopt")
L
Leo Chen 已提交
1375 1376

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1377
        if _non_static_mode():
L
Leo Chen 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

            return self._adapter.load(matched_param_state, optim_state,
                                      scaler_state)
        else:
            return self._adapter.load(matched_param_state, optim_state)
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python

1400
              import paddle
1401
              import paddle.nn as nn
L
LielinJiang 已提交
1402
              from paddle.static import InputSpec
1403

L
LielinJiang 已提交
1404 1405
              input = InputSpec([None, 784], 'float32', 'x')
              
1406 1407 1408
              model = paddle.Model(nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
L
LielinJiang 已提交
1409 1410
                  nn.Linear(200, 10)), input)

1411 1412 1413 1414
              params = model.parameters()
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1415 1416 1417
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1418 1419 1420 1421
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
                assert isinstance(self._optimizer._grad_clip, (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm)), \
                     "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'.")
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'.")
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1451
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
                    'custom_white_list', 'custom_black_list',
                    'custom_black_varnames'
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
                        param_name]
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1479 1480
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".
                    format(tuple(amp_config_key_set - accepted_param_set)))
J
Jiaqi Liu 已提交
1481 1482

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1483
                if _non_static_mode():
J
Jiaqi Liu 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
                    raise ValueError(
                        "'use_fp16_guard' is supported in static mode only.")
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

    def prepare(self, optimizer=None, loss=None, metrics=None,
                amp_configs=None):
1497 1498 1499 1500 1501 1502 1503
        """
        Configures the model before runing.

        Args:
            optimizer (Optimizer|None): Optimizer must be set in training
                and should be a Optimizer instance. It can be None in eval
                and test mode.
1504 1505
            loss (Loss|callable function|None): Loss function can
                be a `paddle.nn.Layer` instance or any callable function
1506 1507
                taken the predicted values and ground truth values as input.
                It can be None when there is no loss.
1508 1509
            metrics (Metric|list of Metric|None): If metrics is set, all
                metrics will be calculated and output in train/eval mode.
J
Jiaqi Liu 已提交
1510 1511 1512 1513
            amp_configs (str|dict|None): AMP configurations. If AMP or pure
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1514 1515
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1516 1517 1518 1519
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1520 1521 1522 1523 1524 1525
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1526 1527 1528
        Returns:
            None
        """
1529 1530
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1531 1532
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
J
Jiabin Yang 已提交
1533
                if fluid._non_static_mode():
1534 1535 1536 1537
                    main_prog_seed = fluid.default_main_program().random_seed
                    startup_prog_seed = fluid.default_startup_program(
                    ).random_seed
                    fluid.disable_dygraph()
1538
                    paddle.disable_static(self._place)
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
                    fluid.default_startup_program(
                    ).random_seed = startup_prog_seed
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1549 1550
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1551 1552 1553
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1554
        self._loss = loss
1555 1556 1557 1558 1559 1560 1561

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1562
        self._prepare_amp(amp_configs)
1563

L
Leo Chen 已提交
1564
        self._adapter.prepare()
1565

1566
    def fit(self,
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
            train_data=None,
            eval_data=None,
            batch_size=1,
            epochs=1,
            eval_freq=1,
            log_freq=10,
            save_dir=None,
            save_freq=1,
            verbose=2,
            drop_last=False,
            shuffle=True,
            num_workers=0,
L
update  
lyuwenyu 已提交
1579
            callbacks=None,
1580 1581
            accumulate_grad_batches=1,
            num_iters=None):
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset|DataLoader): An iterable data loader is used for 
                train. An instance of paddle paddle.io.Dataset or 
                paddle.io.Dataloader is recomended. Default: None.
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation at the end of epoch. If None, will not do evaluation. 
                An instance of paddle.io.Dataset or paddle.io.Dataloader 
                is recomended. Default: None.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data. When train_data and eval_data are both the
                instance of Dataloader, this parameter will be ignored.
                Default: 1.
            epochs (int): Integer number. The number of epochs to train
                the model. Default: 1.
            eval_freq (int): The frequency, in number of epochs, an evalutation
                is performed. Default: 1.
            log_freq (int): The frequency, in number of steps, the training logs
                are printed. Default: 10.
            save_dir(str|None): The directory to save checkpoint during training.
                If None, will not save checkpoint. Default: None.
            save_freq (int): The frequency, in number of epochs, to save
                checkpoint. Default: 1.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            drop_last (bool): Whether drop the last incomplete batch of
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
            shuffle (bool): Whther to shuffle train_data. When train_data is
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
            num_workers (int): The number of subprocess to load data, 0 for no
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
L
lyuwenyu 已提交
1624 1625
            accumulate_grad_batches (int): The number of batches to accumulate gradident 
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1626
                size. Default: 1.
1627 1628 1629
            num_iters (int|None): Integer number. The number of iterations to train
                the model. If None, follow `epochs` to train the model, otherwise, train
                the model `num_iters` times. Default: None.
L
lyuwenyu 已提交
1630
            
1631 1632 1633 1634 1635 1636 1637 1638 1639
        Returns:
            None

        Examples:
            1. An example use Dataset and set btch size, shuffle in fit.
               How to make a batch is done internally.

            .. code-block:: python

1640
              import paddle
1641
              import paddle.vision.transforms as T
1642
              from paddle.vision.datasets import MNIST
1643
              from paddle.static import InputSpec
1644 1645

              dynamic = True
1646 1647 1648
              if not dynamic:
                  paddle.enable_static()

1649 1650 1651 1652
              transform = T.Compose([
                  T.Transpose(),
                  T.Normalize([127.5], [127.5])
              ])
1653 1654
              train_dataset = MNIST(mode='train', transform=transform)
              val_dataset = MNIST(mode='test', transform=transform)
1655
           
1656 1657
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
1658
           
1659
              model = paddle.Model(
L
LielinJiang 已提交
1660
                  paddle.vision.models.LeNet(),
1661
                  input, label)
1662 1663
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
1664 1665
              model.prepare(
                  optim,
1666
                  paddle.nn.CrossEntropyLoss(),
1667
                  paddle.metric.Accuracy(topk=(1, 2)))
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
              model.fit(train_dataset,
                        val_dataset,
                        epochs=2,
                        batch_size=64,
                        save_dir='mnist_checkpoint')

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python

1679
              import paddle
1680
              import paddle.vision.transforms as T
1681
              from paddle.vision.datasets import MNIST
1682
              from paddle.static import InputSpec
1683 1684

              dynamic = True
1685 1686
              if not dynamic:
                  paddle.enable_static()
1687 1688 1689 1690 1691
              
              transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
1692
              train_dataset = MNIST(mode='train', transform=transform)
1693
              train_loader = paddle.io.DataLoader(train_dataset,
1694 1695
                  batch_size=64)
              val_dataset = MNIST(mode='test', transform=transform)
1696
              val_loader = paddle.io.DataLoader(val_dataset,
1697
                  batch_size=64)
1698
           
1699 1700
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
1701
           
1702
              model = paddle.Model(
L
LielinJiang 已提交
1703
                  paddle.vision.models.LeNet(), input, label)
1704 1705
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
1706 1707
              model.prepare(
                  optim,
1708
                  paddle.nn.CrossEntropyLoss(),
1709
                  paddle.metric.Accuracy(topk=(1, 2)))
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
              model.fit(train_loader,
                        val_loader,
                        epochs=2,
                        save_dir='mnist_checkpoint')
        """
        assert train_data is not None, \
                "train_data must be given!"

        if isinstance(train_data, Dataset):
            train_sampler = DistributedBatchSampler(
                train_data,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last)
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1749

L
lyuwenyu 已提交
1750
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1751

1752
        steps = self._len_data_loader(train_loader)
1753
        self.num_iters = num_iters
1754 1755
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                steps, int):
1756 1757 1758
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(), )

L
LiuChiachi 已提交
1770 1771 1772
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
                cbks.on_begin('eval', {
                    'steps': eval_steps,
                    'metrics': self._metrics_name()
                })

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1790 1791
            if self.stop_training:
                break
1792 1793 1794

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1795

1796 1797 1798 1799 1800 1801 1802 1803
    def evaluate(self,
                 eval_data,
                 batch_size=1,
                 log_freq=10,
                 verbose=2,
                 num_workers=0,
                 callbacks=None,
                 num_iters=None):
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation. An instance of paddle.io.Dataset or 
                paddle.io.Dataloader is recomended.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data.  When eval_data is the instance of Dataloader,
                this argument will be ignored. Default: 1.
            log_freq (int): The frequency, in number of steps, the eval logs
                are printed. Default: 10.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            num_workers (int): The number of subprocess to load data,
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1825 1826 1827
            num_iters (int|None): Integer number. The number of iterations to
                evaluate the model. If None, evaluate on whole input dataset,
                otherwise, evaluate `num_iters` times. Default: None.
1828 1829 1830 1831 1832
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1833 1834

          .. code-block:: python
1835

1836
            import paddle
1837
            import paddle.vision.transforms as T
1838
            from paddle.static import InputSpec
1839

1840
            # declarative mode
1841 1842 1843 1844 1845
            transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
            val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1846

1847 1848 1849
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            label = InputSpec([None, 1], 'int64', 'label')
            model = paddle.Model(paddle.vision.models.LeNet(), input, label)
1850
            model.prepare(metrics=paddle.metric.Accuracy())
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
            result = model.evaluate(val_dataset, batch_size=64)
            print(result)
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(), )

        eval_steps = self._len_data_loader(eval_loader)
1877
        self.num_iters = num_iters
1878 1879
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                eval_steps, int):
1880 1881 1882
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
        cbks.on_begin('eval',
                      {'steps': eval_steps,
                       'metrics': self._metrics_name()})

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

    def predict(self,
                test_data,
                batch_size=1,
                num_workers=0,
                stack_outputs=False,
1904
                verbose=1,
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
            batch_size (int): Integer number. The batch size of train_data and eval_data.
                When train_data and eval_data are both the instance of Dataloader, this
                argument will be ignored. Default: 1.
            num_workers (int): The number of subprocess to load data, 0 for no subprocess 
                used and loading data in main process. When train_data and eval_data are
                both the instance of Dataloader, this argument will be ignored. Default: 0.
1919
            stack_outputs (bool): Whether stack output field like a batch, as for an output
1920 1921 1922 1923 1924
                filed of a sample is in shape [X, Y], test_data contains N samples, predict
                output field will be in shape [N, X, Y] if stack_output is True, and will
                be a length N list in shape [[X, Y], [X, Y], ....[X, Y]] if stack_outputs
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
1925 1926
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per batch. Default: 1.
1927
            callbacks(Callback): A Callback instance, default None.
1928

1929 1930 1931 1932
        Returns:
            list: output of models.

        Examples:
1933 1934

          .. code-block:: python
1935 1936

            import numpy as np
1937
            import paddle
1938
            from paddle.static import InputSpec
1939

1940
            class MnistDataset(paddle.vision.datasets.MNIST):
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
                def __init__(self, mode, return_label=True):
                    super(MnistDataset, self).__init__(mode=mode)
                    self.return_label = return_label

                def __getitem__(self, idx):
                    img = np.reshape(self.images[idx], [1, 28, 28])
                    if self.return_label:
                        return img, np.array(self.labels[idx]).astype('int64')
                    return img,

                def __len__(self):
                    return len(self.images)

            test_dataset = MnistDataset(mode='test', return_label=False)

L
LielinJiang 已提交
1956
            # imperative mode
1957 1958
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            model = paddle.Model(paddle.vision.models.LeNet(), input)
1959
            model.prepare()
1960
            result = model.predict(test_dataset, batch_size=64)
1961
            print(len(result[0]), result[0][0].shape)
1962

L
LielinJiang 已提交
1963
            # declarative mode
1964
            device = paddle.set_device('cpu')
L
LielinJiang 已提交
1965 1966 1967
            paddle.enable_static()
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            model = paddle.Model(paddle.vision.models.LeNet(), input)
1968
            model.prepare()
L
LielinJiang 已提交
1969

1970 1971
            result = model.predict(test_dataset, batch_size=64)
            print(len(result[0]), result[0][0].shape)
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
        """

        if test_data is not None and isinstance(test_data, Dataset):
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size)
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

1988
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
1989 1990 1991 1992

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

1993
        cbks.on_begin('predict', logs)
1994 1995 1996

        outputs = []

1997
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2008
        cbks.on_end('predict', logs)
2009 2010
        return outputs

2011
    def _save_inference_model(self, path):
2012
        """
2013
        Save inference model can be used in static or dynamic mode.
2014 2015

        Args:
2016 2017
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2018
        Returns:
2019
            None
2020 2021
        """

J
Jiabin Yang 已提交
2022
        if fluid._non_static_mode():
2023 2024
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2025
                if self._input_info is None:  # No provided or inferred
2026
                    raise RuntimeError(
L
LiuChiachi 已提交
2027
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2028 2029 2030 2031
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
L
LiuChiachi 已提交
2032 2033
                        % self._input_info[0])

2034
                paddle.jit.save(layer, path, input_spec=self._inputs)
2035

2036
        else:
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
                    "file_prefix is empty string.")

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2053 2054 2055 2056 2057 2058 2059 2060 2061
            prog = self._adapter._progs.get('test', None)
            assert prog, \
                "Model is not ready, please call `model.prepare()` first"

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2062 2063
            fluid.io.save_inference_model(
                model_path,
2064 2065 2066 2067 2068
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
2069
                params_filename=params_filename)
2070

L
update  
lyuwenyu 已提交
2071 2072 2073 2074 2075 2076
    def _run_one_epoch(
            self,
            data_loader,
            callbacks,
            mode,
            logs={}, ):
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2087
            # 4. custumed iterator yield separated inputs and labels:
2088 2089 2090 2091 2092
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2093

2094 2095 2096 2097 2098
            batch_size = data[0].shape()[0] if callable(data[
                0].shape) else data[0].shape[0]

            callbacks.on_batch_begin(mode, step, logs)

2099
            if mode != 'predict':
L
lyuwenyu 已提交
2100 2101
                _inputs = [data[:len(self._inputs)], data[len(self._inputs):]]
                if mode == 'train':
L
lyuwenyu 已提交
2102 2103
                    _inputs.append((step + 1) % self._accumulate == 0 or
                                   step + 1 == len(data_loader))
L
update  
lyuwenyu 已提交
2104

L
lyuwenyu 已提交
2105
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2106

2107
                if self._metrics and self._loss:
2108
                    metrics = [[l[0] for l in outs[0]]]
2109
                elif self._loss:
2110 2111 2112
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2123
                if self._inputs is not None:
2124
                    outs = self.predict_batch(data[:len(self._inputs)])
L
LielinJiang 已提交
2125
                else:
2126
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2127

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
                outputs.append(outs)

            logs['step'] = step
            if mode == 'train' or self._adapter._merge_count.get(
                    mode + '_batch', 0) <= 0:
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2138 2139
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2140 2141 2142
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2143
                    break
2144 2145
        self._reset_metrics()

2146
        if mode == 'predict':
2147 2148 2149
            return logs, outputs
        return logs

L
LielinJiang 已提交
2150
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2151 2152 2153 2154 2155 2156 2157 2158
        """Prints a string summary of the network.

        Args:
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor. 
                    if not set, input_size will get from ``self._inputs`` if network only have 
                    one input, input_size can be tuple or InputSpec. if model have multiple 
                    input, input_size must be a list which contain every input's shape. 
                    Default: None.
2159
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python

              import paddle
              from paddle.static import InputSpec
           
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
           
2173
              model = paddle.Model(paddle.vision.models.LeNet(),
L
LielinJiang 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
                  input, label)
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
              model.prepare(
                  optim,
                  paddle.nn.CrossEntropyLoss())

              params_info = model.summary()
              print(params_info)

        """
2185 2186 2187 2188 2189 2190
        assert (input_size is not None or self._inputs is not None
                ), "'input_size' or 'self._input' must be set"
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2191
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2192

L
LiuChiachi 已提交
2193
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2194 2195
        out_specs = []

2196 2197 2198 2199 2200 2201
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2202
                # While Saving inference model in dygraph, and providing inputs only in running.
J
Jiabin Yang 已提交
2203
                if shapes is not None and dtypes is not None and fluid._non_static_mode(
L
LiuChiachi 已提交
2204
                ):
2205 2206
                    out_specs = [
                        Input(
L
LiuChiachi 已提交
2207
                            name=n, dtype=dtypes[i], shape=shapes[i])
2208 2209 2210 2211 2212 2213 2214
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2215 2216 2217 2218 2219
            assert is_input is False
            out_specs = [
                specs[n] for n in extract_args(self.network.forward)
                if n != 'self'
            ]
2220 2221 2222 2223 2224 2225 2226 2227
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2228 2229
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
2230 2231 2232

        return out_specs

2233 2234 2235 2236 2237
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2238
        metrics_name = ['loss'] if self._loss else []
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2249 2250 2251

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2252 2253 2254 2255 2256
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
            self._inputs = self._verify_spec(None, self._input_info[0],
                                             self._input_info[1], True)
            self._is_shape_inferred = True