model.py 90.8 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import os
import pickle
import numpy as np
import six
import warnings
21 22 23
import time
import socket
import contextlib
24

25
import paddle
26
from paddle import fluid
27
from paddle.fluid import core
28
from paddle.fluid.framework import _non_static_mode
29 30
from paddle.fluid.framework import Variable
from paddle.fluid.framework import _get_paddle_place
31
from paddle.fluid.framework import _current_expected_place as _get_device
32 33 34 35
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
36 37
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
38
from paddle.fluid.layers.utils import flatten
39
from paddle.fluid.layers import collective
40

41 42 43
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
44
from paddle.metric import Metric
45
from paddle.static import InputSpec as Input
46
import paddle.distributed as dist
J
Jiaqi Liu 已提交
47 48
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet.base import role_maker
Z
zhaoyingli 已提交
49
from paddle.autograd import no_grad
50

L
LiuChiachi 已提交
51
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
52
from .model_summary import summary
53

54
__all__ = []
55 56 57 58 59 60 61 62 63 64 65 66 67

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
H
hong 已提交
68 69 70
    assert isinstance(var, (Variable, fluid.core.VarBase,
                            fluid.core.eager.Tensor)), "not a variable"
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
104 105 106 107
    return collective._c_allgather(x,
                                   nranks,
                                   ring_id=ring_id,
                                   use_calc_stream=use_calc_stream)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135


def wait_server_ready(endpoints):
    assert not isinstance(endpoints, six.string_types)
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
                    socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


def init_communicator(program, rank, nranks, wait_port, current_endpoint,
                      endpoints):
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
136
    block = program.global_block()
137 138
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
139 140 141 142 143 144
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        block.append_op(type='c_gen_nccl_id',
                        inputs={},
                        outputs={'Out': nccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })

        block.append_op(type='c_comm_init',
                        inputs={'X': nccl_id_var},
                        outputs={},
                        attrs={
                            'nranks': nranks,
                            'rank': rank,
                            'ring_id': 0,
                        })
162 163
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
164
            name=fluid.unique_name.generate('hccl_id'),
165 166
            persistable=True,
            type=core.VarDesc.VarType.RAW)
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        block.append_op(type='c_gen_hccl_id',
                        inputs={},
                        outputs={'Out': hccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })
        block.append_op(type='c_comm_init_hccl',
                        inputs={'X': hccl_id_var},
                        outputs={},
                        attrs={
                            'rank': rank,
                            'ring_id': 0,
                            'device_id': int(os.getenv("FLAGS_selected_npus")),
                            'rank_ids': nranks
                        })
184 185 186 187 188 189 190


def prepare_distributed_context(place=None):
    if place is None:
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
            else fluid.CUDAPlace(0)

191
    place = _get_paddle_place(place)
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
            init_communicator(communicator_prog, strategy.local_rank,
                              strategy.nranks, True, strategy.current_endpoint,
                              strategy.trainer_endpoints)
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
213
        if fluid._non_static_mode():
214 215 216 217 218 219 220 221 222
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
        assert ("Only support CUDAPlace for now.")

    _parallel_context_initialized = True
    return strategy
223 224


L
LiuChiachi 已提交
225
def _update_input_info(inputs):
L
LiuChiachi 已提交
226
    "Get input shape list by given inputs in Model initialization."
227
    shapes = None
L
LiuChiachi 已提交
228
    dtypes = None
L
LiuChiachi 已提交
229 230
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
231
        dtypes = [inputs.dtype]
232
    elif isinstance(inputs, (list, tuple)):
233
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
234
        dtypes = [input.dtype for input in inputs]
235 236
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
237 238 239 240
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
241 242


243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
class StaticGraphAdapter(object):
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
274 275 276
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
277
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
278

279 280 281 282 283 284 285 286
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
287
    def train_batch(self, inputs, labels=None, update=True):
288 289 290
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
        self.mode = 'train'
L
update  
lyuwenyu 已提交
291
        assert update is True, "Does not support `update == False` in static mode by now."
292 293 294 295 296 297
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

298
    def predict_batch(self, inputs):
299 300 301 302
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
303
        return self.model.network.parameters(*args, **kwargs)
304 305

    def save(self, path):
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
323
        _save(self.model.network.state_dict(), param_path)
324 325 326 327 328 329 330 331 332 333 334 335 336 337
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
            p.name: p
            for p in filter(is_belong_to_optimizer, prog.list_vars())
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
338
    # TODO: support save/load scaler state in static graph
339 340 341 342 343 344 345 346
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
347 348
            [param for param, state in param_state_pairs], global_scope(),
            executor)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
                    np.array(converted_state.pop("global_step")) - 1
                ) if "global_step" in converted_state else converted_state.pop(
                    "@LR_DECAY_COUNTER@", None)
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
395 396
                        accum_name = name if opt_name is None else name[
                            len(opt_name) + 1:]
397 398 399 400 401
                        for param_name, state_var in self.model._optimizer._accumulators[
                                name].items():
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
402 403 404
                                for state_key in sorted(state.keys(),
                                                        key=lambda x: len(x),
                                                        reverse=True):
405 406 407 408 409 410
                                    prefix = param_name + "_" + (
                                        opt_cls_name
                                        if opt_name is None else opt_name) + "_"
                                    if state_key.startswith(prefix):
                                        prefix_offset = state_key[len(
                                            prefix):].find("_") + len(prefix)
411 412
                                        opt_unq_name = state_key[
                                            len(param_name + "_"):prefix_offset]
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
                            dy_state_name = (param_name + "_" + opt_unq_name +
                                             "_" + accum_name + "_0")
                            converted_state[
                                state_var.name] = converted_state.pop(
                                    dy_state_name)

            assert var.name in converted_state, \
                "variable [{}] is not in optimizer state file".format(var.name)
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
        assert compiled_prog, \
            "Model is not ready, please call `model.prepare()` first"

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
        assert len(inputs) == len(self._input_vars[self.mode]), \
            "number of inputs" \
            + " does not match number of arguments of `forward` method"

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
455 456
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

457 458 459 460
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
L
Leo Chen 已提交
461 462 463 464
            if self._amp_level == 'O2' and input_dtypes[
                    idx] == core.VarDesc.VarType.FP16:
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
465
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
466 467
                    feed[n] = feed[n].astype('float16')

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

        rets = self._executor.run(compiled_prog,
                                  feed=feed,
                                  fetch_list=pruned_fetch_list,
                                  return_numpy=False)

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
            if self.mode != 'train' and self.model._test_dataloader is not None \
                    and isinstance(self.model._test_dataloader, DataLoader) \
                    and self._nranks > 1:
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
                        s[:int(total_size - current_count), ...] for s in state
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
528 529 530 531 532

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
        if mode == 'train' and self.model._optimizer \
                and self.model._optimizer._learning_rate_map:
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
564 565
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
566 567
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
568
            self._label_vars[mode] = labels
569
            outputs = to_list(self.model.network.forward(*inputs))
570

571 572
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
573 574 575 576 577 578 579 580

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
581
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
582 583 584 585 586 587

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
588 589 590 591 592 593 594
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
                        dist_strategy.amp_configs[
                            'use_pure_fp16'] = self._amp_level == 'O2'
595 596
                    self.model._optimizer = fleet.distributed_optimizer(
                        self.model._optimizer, strategy=dist_strategy)
J
Jiaqi Liu 已提交
597 598
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
                    amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
599 600
                        **self._amp_custom_lists
                    ) if self._amp_custom_lists else None
J
Jiaqi Liu 已提交
601 602 603 604 605 606
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
                        **self._amp_configs)
607 608 609 610 611 612 613 614 615 616 617

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
618
            "loss": to_list(losses),
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
            "metric": metrics
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

        assert self.model._place is not None, \
            "device is not set, please call `model.prepare()` first"

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
                if not var_py.name.startswith('nccl_id') and var and \
                        var.get_tensor()._is_initialized():
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

J
Jiaqi Liu 已提交
650 651 652 653
        if self._amp_level == "O2" and mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model._optimizer.amp_init(place)

654 655 656 657 658 659 660 661 662
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
663

664 665 666 667 668 669 670 671 672 673 674 675
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

L
LiuChiachi 已提交
676
        self._input_info = None
J
Jiaqi Liu 已提交
677 678 679 680 681
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

682
        if self._nranks > 1:
683
            dist.init_parallel_env()
684 685 686 687 688
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
689 690
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
                self.model.network, stradegy)
691 692 693 694 695 696 697 698 699 700

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
701
    def train_batch(self, inputs, labels=None, update=True):
702 703
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
704
        self.model.network.train()
705 706
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
707
        self._input_info = _update_input_info(inputs)
708 709 710
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
711 712 713 714
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

715 716 717
        with paddle.amp.auto_cast(enable=self._amp_level != 'O0',
                                  **self._amp_custom_lists,
                                  level=self._amp_level):
J
Jiaqi Liu 已提交
718
            if self._nranks > 1:
719
                outputs = self.ddp_model(*[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
720
            else:
721
                outputs = self.model.network(*[to_variable(x) for x in inputs])
722

L
Leo Chen 已提交
723 724 725
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
726

J
Jiaqi Liu 已提交
727
        if self._amp_level != "O0":
L
Leo Chen 已提交
728
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
729
            scaled.backward()
L
lyuwenyu 已提交
730
            if update:
L
Leo Chen 已提交
731
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
732
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
733 734
        else:
            final_loss.backward()
L
lyuwenyu 已提交
735 736 737
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
738

739 740
        metrics = []
        for metric in self.model._metrics:
741
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
742
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
743 744 745 746 747 748
            metrics.append(m)

        return ([to_numpy(l) for l in losses], metrics) \
            if len(metrics) > 0 else [to_numpy(l) for l in losses]

    def eval_batch(self, inputs, labels=None):
749
        self.model.network.eval()
750 751
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
752
        self._input_info = _update_input_info(inputs)
753 754 755
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

756
        outputs = self.model.network(*[to_variable(x) for x in inputs])
757 758 759 760 761 762 763 764 765

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

766 767
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
768 769
            losses = to_list(losses)

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
            if self.model._test_dataloader is not None and self._nranks > 1 \
                    and isinstance(self.model._test_dataloader, DataLoader):
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
                        o[:int(total_size - current_count)] for o in outputs
                    ]
                    labels = [
                        l[:int(total_size - current_count)] for l in labels
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

795
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
796
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
797 798
            metrics.append(m)

799
        if self.model._loss and len(metrics):
800
            return [to_numpy(l) for l in losses], metrics
801
        elif self.model._loss:
802 803 804
            return [to_numpy(l) for l in losses]
        else:
            return metrics
805

806
    def predict_batch(self, inputs):
807
        self.model.network.eval()
808 809
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
810
        self._input_info = _update_input_info(inputs)
811
        outputs = self.model.network(*inputs)
812 813 814 815 816 817
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
818
        return self.model.network.parameters(*args, **kwargs)
819 820

    def save(self, path):
821
        params = self.model.network.state_dict()
822
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
823 824 825 826 827 828 829 830 831 832
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
833 834 835 836
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
837 838 839 840
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

841 842 843 844
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

845 846
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
847 848 849 850 851 852 853 854 855 856 857
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
        opt_name = opt_unq_name[:opt_unq_name.rfind("_")]  # remove suffix idx
858
        param_names = [param.name for param in self.model.network.parameters()]
859 860 861
        for var_name, state_var in sorted(optim_state.items(),
                                          key=lambda x: len(x[0]),
                                          reverse=True):
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
                    converted_state["global_step"] = np.array(
                        converted_state.pop("@LR_DECAY_COUNTER@")) + 1
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
                        accum_name = var_name[len(param_name + "_" + opt_name +
                                                  "_"):]
                    elif var_name.startswith(param_name +
                                             "_") and opt_name == opt_cls_name:
                        # when init optimizer without name
                        accum_name = var_name[len(param_name + "_"):]
                    else:
                        continue
                    # remove suffix idx
                    accum_name = accum_name[:accum_name.rfind("_")]
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
                    dy_state_name = (param_name + "_" + opt_unq_name + "_" +
                                     accum_name + "_0")
                    converted_state[dy_state_name] = state_var

891 892
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
893
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
894 895 896 897
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
898

L
Leo Chen 已提交
899 900 901 902 903 904 905 906 907 908
    def prepare(self):
        if self._amp_level == "O2" and self.model.mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
                level='O2')
        if self._amp_level != "O0":
            self.model._scaler = None

909

910
class Model(object):
911 912 913
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
914
    switched by `paddle.enable_static()`. The usage is as follows.
915
    But note, the switching between dynamic and static should be before
916
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
917
    must be required for static graph.
918

919
    When training on GPU, auto mixed precision (AMP O1) and pure float16
L
Leo Chen 已提交
920
    (AMP O2) training are both supported in static mode and dynamic mode.
921
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
922 923
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
924 925 926 927
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
928

929
    Args:
930 931
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
932
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
933
            could be a InputSpec instance, or list/tuple of InputSpec instances,
934
            or dict ({name: InputSpec}), and it couldn't be None in static
935 936
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
937
            could be a InputSpec instnace or list/tuple of InputSpec instances,
938
            or None. For static graph, if labels is required in loss,
939
            labels must be set. Otherwise, it could be None. Default: None.
940 941


942
    Examples:
J
Jiaqi Liu 已提交
943 944
        1. A common example

945
        .. code-block:: python
946
          :name: code-example1
947

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
964

965 966 967 968 969
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
970 971
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
972 973 974 975 976 977 978

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
979 980 981 982 983


        2. An example using mixed precision training.

        .. code-block:: python
984
          :name: code-example2
J
Jiaqi Liu 已提交
985

986 987 988 989
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
990

991 992
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
993

994 995
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
996

997 998
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
999

1000 1001 1002 1003 1004 1005 1006 1007 1008
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1009

1010 1011 1012 1013 1014 1015 1016
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1017

1018 1019
    """

1020
    def __init__(self, network, inputs=None, labels=None):
1021
        self.mode = 'train'
1022
        self.network = network
1023 1024
        self._inputs = None
        self._labels = None
1025
        self._loss = None
1026 1027
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1028
        self._input_info = None
1029
        self._is_shape_inferred = False
1030
        self._test_dataloader = None
L
LiuChiachi 已提交
1031
        self.stop_training = False
1032

J
Jiabin Yang 已提交
1033
        if not _non_static_mode():
1034
            if not isinstance(inputs, (list, tuple, dict, Input)):
1035
                raise TypeError(
1036 1037
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1038
        elif inputs:
L
LiuChiachi 已提交
1039
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1040

1041
        self._inputs = self._verify_spec(inputs, is_input=True)
1042
        self._labels = self._verify_spec(labels)
1043

1044
        # init backend
J
Jiabin Yang 已提交
1045
        if fluid._non_static_mode():
1046 1047 1048 1049
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1050
    def train_batch(self, inputs, labels=None, update=True):
1051
        """
L
lyuwenyu 已提交
1052 1053
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1054 1055

        Args:
1056 1057
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1058
                tensors (in case the model has multiple inputs).
1059 1060 1061
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1062 1063 1064
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1065 1066 1067 1068 1069 1070 1071 1072 1073

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1097
        """
L
lyuwenyu 已提交
1098
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1099
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1100
            self._update_inputs()
1101
        return loss
1102

Z
zhaoyingli 已提交
1103
    @no_grad()
1104 1105 1106 1107 1108
    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
1109 1110
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1111
                tensors (in case the model has multiple inputs).
1112 1113 1114
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1115
                set None. Default: None.
1116 1117 1118 1119 1120 1121 1122 1123 1124

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1149
        """
1150
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1151
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1152
            self._update_inputs()
1153
        return loss
1154

Z
zhaoyingli 已提交
1155
    @no_grad()
1156
    def predict_batch(self, inputs):
1157
        """
1158
        Run one predicting step on a batch of data.
1159 1160

        Args:
1161 1162
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1163
                tensors (in case the model has multiple inputs).
1164 1165 1166 1167 1168 1169 1170 1171

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1172 1173 1174 1175 1176 1177

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1196
        """
1197
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1198
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1199
            self._update_inputs()
1200
        return loss
1201

1202
    def save(self, path, training=True):
1203 1204
        """
        This function saves parameters, optimizer information or model and
1205 1206
        paramters only for inference to path. It depends on the parameter
        `training`.
1207

1208
        If `training` is set to True, the parameters saved contain all
1209
        the trainable Variable, will save to a file with suffix ".pdparams".
1210 1211 1212 1213
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1214
        This function will silently overwrite existing file at the target location.
1215

1216
        If `training` is set to False, only inference model will be saved.
1217 1218

        Args:
1219 1220 1221
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1222 1223
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1224 1225 1226 1227 1228 1229 1230

        Returns:
            None

        Examples:

            .. code-block:: python
1231

1232
                import paddle
1233
                import paddle.nn as nn
1234
                import paddle.vision.transforms as T
1235
                from paddle.static import InputSpec
1236

1237
                class Mnist(nn.Layer):
1238
                    def __init__(self):
1239
                        super(Mnist, self).__init__()
1240
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1241
                            nn.Flatten(1),
1242 1243 1244 1245
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1246

1247
                    def forward(self, x):
1248
                        return self.net(x)
1249

1250
                dynamic = True  # False
1251
                # if use static graph, do not set
1252 1253
                if not dynamic:
                    paddle.enable_static()
1254

1255 1256 1257
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1258
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1259
                    parameters=model.parameters())
1260
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1261

1262 1263 1264 1265 1266
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
1267

1268
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1269 1270
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1271
        """
1272

1273
        if ParallelEnv().local_rank == 0:
1274 1275 1276 1277
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1296
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1297 1298
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1299 1300
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1301 1302
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1303
                a optimizer has been set to the model. Default: False.
1304 1305 1306 1307 1308 1309 1310

        Returns:
            None

        Examples:

            .. code-block:: python
1311 1312 1313 1314

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1315

1316
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1317

1318
                input = InputSpec([None, 784], 'float32', 'x')
1319

1320 1321 1322 1323 1324
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1325

1326 1327
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1328 1329 1330 1331 1332 1333
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1334
                return pickle.load(f, encoding='latin1')
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
                    "{} is not found in the providing file.".format(key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
            assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
                    "Unknown postfix {} from weights".format(ext)
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1358
        for key, param in self.network.state_dict().items():
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
                        ("Skip loading for {}. ".format(key) + str(err)))
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

        optim_state = None if reset_optimizer else _load_state_from_path(
            path + ".pdopt")
L
Leo Chen 已提交
1373 1374

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1375
        if _non_static_mode():
L
Leo Chen 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

            return self._adapter.load(matched_param_state, optim_state,
                                      scaler_state)
        else:
            return self._adapter.load(matched_param_state, optim_state)
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1397

1398 1399 1400
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1401

1402
                input = InputSpec([None, 784], 'float32', 'x')
1403

1404 1405 1406 1407
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1408

1409
                params = model.parameters()
1410 1411 1412
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1413
    def _prepare_amp(self, amp_configs):
1414

J
Jiaqi Liu 已提交
1415 1416
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1417 1418 1419 1420
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
                assert isinstance(self._optimizer._grad_clip, (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm)), \
                     "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'.")
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'.")
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1450
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
                    'custom_white_list', 'custom_black_list',
                    'custom_black_varnames'
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
                        param_name]
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1478 1479
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized."
                    .format(tuple(amp_config_key_set - accepted_param_set)))
J
Jiaqi Liu 已提交
1480 1481

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1482
                if _non_static_mode():
J
Jiaqi Liu 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
                    raise ValueError(
                        "'use_fp16_guard' is supported in static mode only.")
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1494 1495 1496 1497
    def prepare(self,
                optimizer=None,
                loss=None,
                metrics=None,
J
Jiaqi Liu 已提交
1498
                amp_configs=None):
1499 1500 1501 1502
        """
        Configures the model before runing.

        Args:
1503
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1504
                and should be a Optimizer instance. It can be None in eval
1505 1506
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1507
                be a `paddle.nn.Layer` instance or any callable function
1508
                taken the predicted values and ground truth values as input.
1509 1510 1511 1512
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1513 1514 1515
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1516 1517
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1518 1519 1520 1521
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1522 1523 1524 1525 1526 1527
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1528

1529 1530 1531
        Returns:
            None
        """
1532 1533
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1534 1535
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
J
Jiabin Yang 已提交
1536
                if fluid._non_static_mode():
1537 1538 1539 1540
                    main_prog_seed = fluid.default_main_program().random_seed
                    startup_prog_seed = fluid.default_startup_program(
                    ).random_seed
                    fluid.disable_dygraph()
1541
                    paddle.disable_static(self._place)
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
                    fluid.default_startup_program(
                    ).random_seed = startup_prog_seed
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1552 1553
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1554 1555 1556
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1557
        self._loss = loss
1558 1559 1560 1561 1562 1563 1564

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1565
        self._prepare_amp(amp_configs)
1566

L
Leo Chen 已提交
1567
        self._adapter.prepare()
1568

1569
    def fit(self,
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
            train_data=None,
            eval_data=None,
            batch_size=1,
            epochs=1,
            eval_freq=1,
            log_freq=10,
            save_dir=None,
            save_freq=1,
            verbose=2,
            drop_last=False,
            shuffle=True,
            num_workers=0,
L
update  
lyuwenyu 已提交
1582
            callbacks=None,
1583 1584
            accumulate_grad_batches=1,
            num_iters=None):
1585 1586 1587 1588 1589
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1590 1591
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for
                train. An instance of paddle paddle.io.Dataset or
1592
                paddle.io.Dataloader is recomended. Default: None.
1593
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1594 1595
                evaluation at the end of epoch. If None, will not do evaluation.
                An instance of paddle.io.Dataset or paddle.io.Dataloader
1596
                is recomended. Default: None.
1597
            batch_size (int, optional): The batch size of train_data and eval_data. When
1598 1599 1600 1601
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1602
                is performed. Default: 1.
1603
            log_freq (int, optional): The frequency, in number of steps, the training logs
1604
                are printed. Default: 10.
1605
            save_dir(str|None, optional): The directory to save checkpoint during training.
1606
                If None, will not save checkpoint. Default: None.
1607
            save_freq (int, optional): The frequency, in number of epochs, to save
1608
                checkpoint. Default: 1.
1609
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1610
                1 = progress bar, 2 = one line per epoch. Default: 2.
1611
            drop_last (bool, optional): Whether drop the last incomplete batch of
1612 1613 1614
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1615
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1616 1617
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1618
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1619 1620 1621
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1622 1623 1624
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
1625
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident
L
lyuwenyu 已提交
1626
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1627
                size. Default: 1.
1628 1629 1630 1631
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1632 1633 1634 1635
        Returns:
            None

        Examples:
1636
            1. An example use Dataset and set batch size, shuffle in fit.
1637 1638 1639
               How to make a batch is done internally.

            .. code-block:: python
1640
              :name: code-example1
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1675 1676 1677 1678 1679

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1680
              :name: code-example2
1681 1682 1683 1684 1685

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1686

1687 1688 1689
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
1690

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1717 1718 1719 1720 1721
        """
        assert train_data is not None, \
                "train_data must be given!"

        if isinstance(train_data, Dataset):
1722 1723 1724 1725 1726 1727 1728 1729 1730
            train_sampler = DistributedBatchSampler(train_data,
                                                    batch_size=batch_size,
                                                    shuffle=shuffle,
                                                    drop_last=drop_last)
            train_loader = DataLoader(train_data,
                                      batch_sampler=train_sampler,
                                      places=self._place,
                                      num_workers=num_workers,
                                      return_list=True)
1731 1732 1733 1734
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1735 1736 1737 1738 1739 1740 1741
            eval_sampler = DistributedBatchSampler(eval_data,
                                                   batch_size=batch_size)
            eval_loader = DataLoader(eval_data,
                                     batch_sampler=eval_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1742 1743 1744 1745 1746 1747 1748
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1749

L
lyuwenyu 已提交
1750
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1751

1752
        steps = self._len_data_loader(train_loader)
1753
        self.num_iters = num_iters
1754 1755
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                steps, int):
1756 1757 1758
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1759 1760 1761 1762 1763 1764 1765 1766 1767
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1768 1769
            metrics=self._metrics_name(),
        )
1770

L
LiuChiachi 已提交
1771 1772 1773
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
                cbks.on_begin('eval', {
                    'steps': eval_steps,
                    'metrics': self._metrics_name()
                })

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1791 1792
            if self.stop_training:
                break
1793 1794 1795

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1796

1797 1798 1799 1800 1801 1802 1803 1804
    def evaluate(self,
                 eval_data,
                 batch_size=1,
                 log_freq=10,
                 verbose=2,
                 num_workers=0,
                 callbacks=None,
                 num_iters=None):
1805 1806 1807 1808 1809
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
1810
                evaluation. An instance of paddle.io.Dataset or
1811
                paddle.io.Dataloader is recomended.
1812 1813 1814 1815
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
1816
                are printed. Default: 10.
1817
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1818
                1 = progress bar, 2 = one line per epoch. Default: 2.
1819
            num_workers (int, optional): The number of subprocess to load data,
1820 1821 1822
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
1823
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1824 1825
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1826 1827 1828
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
1829 1830 1831 1832 1833
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1834 1835

          .. code-block:: python
1836

1837 1838 1839
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
1840

1841 1842 1843 1844 1845 1846
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1847

1848 1849 1850 1851 1852 1853 1854
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
1855 1856 1857
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
1858 1859 1860 1861 1862 1863 1864
            eval_sampler = DistributedBatchSampler(eval_data,
                                                   batch_size=batch_size)
            eval_loader = DataLoader(eval_data,
                                     batch_sampler=eval_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
1875 1876
            metrics=self._metrics_name(),
        )
1877 1878

        eval_steps = self._len_data_loader(eval_loader)
1879
        self.num_iters = num_iters
1880 1881
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                eval_steps, int):
1882 1883 1884
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
1885 1886 1887 1888
        cbks.on_begin('eval', {
            'steps': eval_steps,
            'metrics': self._metrics_name()
        })
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

    def predict(self,
                test_data,
                batch_size=1,
                num_workers=0,
                stack_outputs=False,
1907
                verbose=1,
1908 1909 1910 1911 1912 1913 1914 1915
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
1916 1917
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
1918
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess
1919 1920 1921 1922
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
1923
                output field will be in shape [N, X, Y] if stack_output is True, and will
1924
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
1925 1926
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
1927
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1928
                1 = progress bar, 2 = one line per batch. Default: 1.
1929
            callbacks(Callback, optional): A Callback instance, Default: None.
1930

1931 1932 1933 1934
        Returns:
            list: output of models.

        Examples:
1935 1936

          .. code-block:: python
1937

1938 1939 1940
                import numpy as np
                import paddle
                from paddle.static import InputSpec
1941

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
                        super(MnistDataset, self).__init__(mode=mode)
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
1976 1977 1978
        """

        if test_data is not None and isinstance(test_data, Dataset):
1979 1980 1981 1982 1983 1984 1985
            test_sampler = DistributedBatchSampler(test_data,
                                                   batch_size=batch_size)
            test_loader = DataLoader(test_data,
                                     batch_sampler=test_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1986 1987 1988 1989 1990
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

1991
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
1992 1993 1994 1995

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

1996
        cbks.on_begin('predict', logs)
1997 1998 1999

        outputs = []

2000
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2011
        cbks.on_end('predict', logs)
2012 2013
        return outputs

2014
    def _save_inference_model(self, path):
2015
        """
2016
        Save inference model can be used in static or dynamic mode.
2017 2018

        Args:
2019 2020
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2021
        Returns:
2022
            None
2023 2024
        """

J
Jiabin Yang 已提交
2025
        if fluid._non_static_mode():
2026 2027
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2028
                if self._input_info is None:  # No provided or inferred
2029
                    raise RuntimeError(
L
LiuChiachi 已提交
2030
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2031 2032 2033 2034
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
L
LiuChiachi 已提交
2035 2036
                        % self._input_info[0])

2037
                paddle.jit.save(layer, path, input_spec=self._inputs)
2038

2039
        else:
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
                    "file_prefix is empty string.")

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2056 2057 2058 2059 2060 2061 2062 2063 2064
            prog = self._adapter._progs.get('test', None)
            assert prog, \
                "Model is not ready, please call `model.prepare()` first"

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2065 2066 2067 2068 2069 2070 2071
            fluid.io.save_inference_model(model_path,
                                          input_names,
                                          endpoints,
                                          self._adapter._executor,
                                          main_program=infer_prog,
                                          model_filename=model_filename,
                                          params_filename=params_filename)
2072

L
update  
lyuwenyu 已提交
2073
    def _run_one_epoch(
2074 2075 2076 2077 2078 2079
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2090
            # 4. custumed iterator yield separated inputs and labels:
2091 2092 2093 2094 2095
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2096

2097 2098
            batch_size = data[0].shape()[0] if callable(
                data[0].shape) else data[0].shape[0]
2099 2100 2101

            callbacks.on_batch_begin(mode, step, logs)

2102
            if mode != 'predict':
L
lyuwenyu 已提交
2103 2104
                _inputs = [data[:len(self._inputs)], data[len(self._inputs):]]
                if mode == 'train':
2105 2106
                    _inputs.append((step + 1) % self._accumulate == 0
                                   or step + 1 == len(data_loader))
L
update  
lyuwenyu 已提交
2107

L
lyuwenyu 已提交
2108
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2109

2110
                if self._metrics and self._loss:
2111
                    metrics = [[l[0] for l in outs[0]]]
2112
                elif self._loss:
2113 2114 2115
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2126
                if self._inputs is not None:
2127
                    outs = self.predict_batch(data[:len(self._inputs)])
L
LielinJiang 已提交
2128
                else:
2129
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2130

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
                outputs.append(outs)

            logs['step'] = step
            if mode == 'train' or self._adapter._merge_count.get(
                    mode + '_batch', 0) <= 0:
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2141 2142
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2143 2144 2145
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2146
                    break
2147 2148
        self._reset_metrics()

2149
        if mode == 'predict':
2150 2151 2152
            return logs, outputs
        return logs

L
LielinJiang 已提交
2153
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2154 2155 2156
        """Prints a string summary of the network.

        Args:
2157 2158 2159 2160
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
                    if not set, input_size will get from ``self._inputs`` if network only have
                    one input, input_size can be tuple or InputSpec. if model have multiple
                    input, input_size must be a list which contain every input's shape.
L
LielinJiang 已提交
2161
                    Default: None.
2162
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2163 2164 2165 2166 2167 2168

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2169 2170 2171 2172 2173 2174

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2175

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2187 2188

        """
2189 2190
        assert (input_size is not None or self._inputs
                is not None), "'input_size' or 'self._input' must be set"
2191 2192 2193 2194
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2195
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2196

L
LiuChiachi 已提交
2197
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2198 2199
        out_specs = []

2200 2201 2202 2203 2204 2205
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2206
                # While Saving inference model in dygraph, and providing inputs only in running.
J
Jiabin Yang 已提交
2207
                if shapes is not None and dtypes is not None and fluid._non_static_mode(
L
LiuChiachi 已提交
2208
                ):
2209
                    out_specs = [
2210
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2211 2212 2213 2214 2215 2216 2217
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2218 2219 2220 2221 2222
            assert is_input is False
            out_specs = [
                specs[n] for n in extract_args(self.network.forward)
                if n != 'self'
            ]
2223 2224 2225 2226 2227 2228 2229 2230
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2231 2232
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
2233 2234 2235

        return out_specs

2236 2237 2238 2239 2240
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2241
        metrics_name = ['loss'] if self._loss else []
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2252 2253 2254

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2255 2256 2257 2258 2259
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
            self._inputs = self._verify_spec(None, self._input_info[0],
                                             self._input_info[1], True)
            self._is_shape_inferred = True