model.py 85.7 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import os
import pickle
import numpy as np
import six
import warnings
25 26 27
import time
import socket
import contextlib
28 29
from collections import Iterable

30
import paddle
31
from paddle import fluid
32
from paddle.fluid import core
33 34 35 36 37
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Variable
from paddle.fluid.framework import ParamBase
from paddle.fluid.framework import _current_expected_place
from paddle.fluid.framework import _get_paddle_place
38
from paddle.fluid.framework import _current_expected_place as _get_device
39 40 41 42
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
43 44 45 46
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
from paddle.fluid.dygraph.dygraph_to_static.program_translator import FunctionSpec
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
47
from paddle.fluid.layers.utils import flatten
48
from paddle.fluid.layers import collective
49

50 51 52 53 54
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
from paddle.fluid.executor import scope_guard
from paddle.fluid.executor import Executor
55
from paddle.fluid.dygraph.layers import Layer
56
from paddle.metric import Metric
57
from paddle.static import InputSpec as Input
58
import paddle.distributed as dist
J
Jiaqi Liu 已提交
59 60
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet.base import role_maker
61

L
LiuChiachi 已提交
62
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
63
from .model_summary import summary
64

65
__all__ = []
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
    assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable"
    if isinstance(var, fluid.core.VarBase):
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream)


def wait_server_ready(endpoints):
    assert not isinstance(endpoints, six.string_types)
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
                    socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


def init_communicator(program, rank, nranks, wait_port, current_endpoint,
                      endpoints):
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
144
    block = program.global_block()
145 146
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints
            })

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            })
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
174
            name=fluid.unique_name.generate('hccl_id'),
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints
            })
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks
            })
196 197 198 199 200 201 202


def prepare_distributed_context(place=None):
    if place is None:
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
            else fluid.CUDAPlace(0)

203
    place = _get_paddle_place(place)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
            init_communicator(communicator_prog, strategy.local_rank,
                              strategy.nranks, True, strategy.current_endpoint,
                              strategy.trainer_endpoints)
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

        if fluid.in_dygraph_mode():
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)
        else:
            _init_context()

    else:
        assert ("Only support CUDAPlace for now.")

    _parallel_context_initialized = True
    return strategy
237 238


L
LiuChiachi 已提交
239
def _update_input_info(inputs):
L
LiuChiachi 已提交
240
    "Get input shape list by given inputs in Model initialization."
241
    shapes = None
L
LiuChiachi 已提交
242
    dtypes = None
L
LiuChiachi 已提交
243 244
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
245
        dtypes = [inputs.dtype]
246
    elif isinstance(inputs, (list, tuple)):
247
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
248
        dtypes = [input.dtype for input in inputs]
249 250
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
251 252 253 254
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
255 256


257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
class StaticGraphAdapter(object):
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
288 289 290 291 292
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

293 294 295 296 297 298 299 300
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
301
    def train_batch(self, inputs, labels=None, update=True):
302 303 304
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
        self.mode = 'train'
L
update  
lyuwenyu 已提交
305
        assert update is True, "Does not support `update == False` in static mode by now."
306 307 308 309 310 311
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

312
    def predict_batch(self, inputs):
313 314 315 316
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
317
        return self.model.network.parameters(*args, **kwargs)
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
336
        _save(self.model.network.state_dict(), param_path)
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
            p.name: p
            for p in filter(is_belong_to_optimizer, prog.list_vars())
        }
        if not optim:
            return

        _save(optim, optim_path)

    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
            [param for param, state in param_state_pairs],
            global_scope(), executor)
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
                    np.array(converted_state.pop("global_step")) - 1
                ) if "global_step" in converted_state else converted_state.pop(
                    "@LR_DECAY_COUNTER@", None)
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
                        accum_name = name if opt_name is None else name[len(
                            opt_name) + 1:]
                        for param_name, state_var in self.model._optimizer._accumulators[
                                name].items():
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
                                for state_key in sorted(
                                        state.keys(),
                                        key=lambda x: len(x),
                                        reverse=True):
                                    prefix = param_name + "_" + (
                                        opt_cls_name
                                        if opt_name is None else opt_name) + "_"
                                    if state_key.startswith(prefix):
                                        prefix_offset = state_key[len(
                                            prefix):].find("_") + len(prefix)
                                        opt_unq_name = state_key[len(
                                            param_name + "_"):prefix_offset]
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
                            dy_state_name = (param_name + "_" + opt_unq_name +
                                             "_" + accum_name + "_0")
                            converted_state[
                                state_var.name] = converted_state.pop(
                                    dy_state_name)

            assert var.name in converted_state, \
                "variable [{}] is not in optimizer state file".format(var.name)
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
        assert compiled_prog, \
            "Model is not ready, please call `model.prepare()` first"

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
        assert len(inputs) == len(self._input_vars[self.mode]), \
            "number of inputs" \
            + " does not match number of arguments of `forward` method"

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

        rets = self._executor.run(compiled_prog,
                                  feed=feed,
                                  fetch_list=pruned_fetch_list,
                                  return_numpy=False)

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
508

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
            if self.mode != 'train' and self.model._test_dataloader is not None \
                    and isinstance(self.model._test_dataloader, DataLoader) \
                    and self._nranks > 1:
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
                        s[:int(total_size - current_count), ...] for s in state
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
532 533 534 535 536

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
        if mode == 'train' and self.model._optimizer \
                and self.model._optimizer._learning_rate_map:
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
568 569
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
570 571
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
572
            self._label_vars[mode] = labels
573
            outputs = to_list(self.model.network.forward(*inputs))
574

575 576
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
577 578 579 580 581 582 583 584

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
585
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
586 587 588 589 590 591

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
592 593 594 595 596 597 598
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
                        dist_strategy.amp_configs[
                            'use_pure_fp16'] = self._amp_level == 'O2'
599 600
                    self.model._optimizer = fleet.distributed_optimizer(
                        self.model._optimizer, strategy=dist_strategy)
J
Jiaqi Liu 已提交
601 602 603 604 605 606 607 608 609 610 611
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
                    amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
                        **self.
                        _amp_custom_lists) if self._amp_custom_lists else None

                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
                        **self._amp_configs)
612 613 614 615 616 617 618 619 620 621 622

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
623
            "loss": to_list(losses),
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
            "metric": metrics
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

        assert self.model._place is not None, \
            "device is not set, please call `model.prepare()` first"

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
                if not var_py.name.startswith('nccl_id') and var and \
                        var.get_tensor()._is_initialized():
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

J
Jiaqi Liu 已提交
655 656 657 658
        if self._amp_level == "O2" and mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model._optimizer.amp_init(place)

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

L
LiuChiachi 已提交
680
        self._input_info = None
J
Jiaqi Liu 已提交
681 682 683 684 685
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

686
        if self._nranks > 1:
687
            dist.init_parallel_env()
688 689 690 691 692
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
693 694
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
                self.model.network, stradegy)
695 696 697 698 699 700 701 702 703 704

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
705
    def train_batch(self, inputs, labels=None, update=True):
706 707
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
708
        self.model.network.train()
709 710
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
711
        self._input_info = _update_input_info(inputs)
712 713 714
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

J
Jiaqi Liu 已提交
715 716 717 718 719 720
        if self._amp_level != "O0":
            scaler = paddle.amp.GradScaler(**self._amp_configs)
        with paddle.amp.auto_cast(
                enable=self._amp_level != 'O0', **self._amp_custom_lists):
            if self._nranks > 1:
                outputs = self.ddp_model.forward(
Z
zhangchunle 已提交
721
                    *[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
722 723
            else:
                outputs = self.model.network.forward(
Z
zhangchunle 已提交
724
                    *[to_variable(x) for x in inputs])
725

J
Jiaqi Liu 已提交
726 727 728
            losses = self.model._loss(*(to_list(outputs) + labels))
            losses = to_list(losses)
            final_loss = fluid.layers.sum(losses)
729

J
Jiaqi Liu 已提交
730 731 732
        if self._amp_level != "O0":
            scaled = scaler.scale(final_loss)
            scaled.backward()
L
lyuwenyu 已提交
733 734 735
            if update:
                scaler.minimize(self.model._optimizer, scaled)
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
736 737
        else:
            final_loss.backward()
L
lyuwenyu 已提交
738 739 740
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
741

742 743
        metrics = []
        for metric in self.model._metrics:
744
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
745
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
746 747 748 749 750 751
            metrics.append(m)

        return ([to_numpy(l) for l in losses], metrics) \
            if len(metrics) > 0 else [to_numpy(l) for l in losses]

    def eval_batch(self, inputs, labels=None):
752
        self.model.network.eval()
753 754
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
755
        self._input_info = _update_input_info(inputs)
756 757 758
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

Z
zhangchunle 已提交
759
        outputs = self.model.network.forward(*[to_variable(x) for x in inputs])
760 761
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
762 763
            losses = to_list(losses)

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
            if self.model._test_dataloader is not None and self._nranks > 1 \
                    and isinstance(self.model._test_dataloader, DataLoader):
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
                        o[:int(total_size - current_count)] for o in outputs
                    ]
                    labels = [
                        l[:int(total_size - current_count)] for l in labels
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

789
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
790
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
791 792
            metrics.append(m)

793
        if self.model._loss and len(metrics):
794
            return [to_numpy(l) for l in losses], metrics
795
        elif self.model._loss:
796 797 798
            return [to_numpy(l) for l in losses]
        else:
            return metrics
799

800
    def predict_batch(self, inputs):
801
        self.model.network.eval()
802 803
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
804
        self._input_info = _update_input_info(inputs)
805
        outputs = self.model.network.forward(*inputs)
806 807 808 809 810 811
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
812
        return self.model.network.parameters(*args, **kwargs)
813 814

    def save(self, path):
815
        params = self.model.network.state_dict()
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
        fluid.save_dygraph(params, path)
        if self.model._optimizer is None:
            return
        if self.model._optimizer.state_dict():
            optim = self.model._optimizer.state_dict()
            fluid.save_dygraph(optim, path)

    def load(self, param_state_pairs, optim_state):
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

832 833
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
834 835 836 837 838 839 840 841 842 843 844
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
        opt_name = opt_unq_name[:opt_unq_name.rfind("_")]  # remove suffix idx
845
        param_names = [param.name for param in self.model.network.parameters()]
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
        for var_name, state_var in sorted(
                optim_state.items(), key=lambda x: len(x[0]), reverse=True):
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
                    converted_state["global_step"] = np.array(
                        converted_state.pop("@LR_DECAY_COUNTER@")) + 1
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
                        accum_name = var_name[len(param_name + "_" + opt_name +
                                                  "_"):]
                    elif var_name.startswith(param_name +
                                             "_") and opt_name == opt_cls_name:
                        # when init optimizer without name
                        accum_name = var_name[len(param_name + "_"):]
                    else:
                        continue
                    # remove suffix idx
                    accum_name = accum_name[:accum_name.rfind("_")]
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
                    dy_state_name = (param_name + "_" + opt_unq_name + "_" +
                                     accum_name + "_0")
                    converted_state[dy_state_name] = state_var

877 878
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
879
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
880 881 882 883
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
884 885


886
class Model(object):
887 888 889
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
890
    switched by `paddle.enable_static()`. The usage is as follows.
891
    But note, the switching between dynamic and static should be before
892
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
893
    must be required for static graph.
894

J
Jiaqi Liu 已提交
895 896 897 898 899
    When training on GPU, auto mixed precision (AMP) training is supported, and
    pure float16 training is also supported in static mode while using Adam,
    AdamW and Momentum optimizer. Before using pure float16 training,
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
900 901 902 903
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
904

905
    Args:
906 907
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
908 909
        inputs (InputSpec|list|tuple|dict|None): `inputs`, entry points of network,
            could be a InputSpec instance, or list/tuple of InputSpec instances,
910 911
            or dict ({name: InputSpec}), and it couldn't be None in static
            graph.
912 913
        labels (InputSpec|list|tuple|None): `labels`, entry points of network,
            could be a InputSpec instnace or list/tuple of InputSpec instances,
914
            or None. For static graph, if labels is required in loss,
915 916 917
            labels must be set. Otherwise, it could be None.


918
    Examples:
J
Jiaqi Liu 已提交
919 920
        1. A common example

921 922
        .. code-block:: python

923 924 925 926 927 928
          import paddle
          import paddle.nn as nn
          import paddle.vision.transforms as T
          from paddle.static import InputSpec
  
          device = paddle.set_device('cpu') # or 'gpu'
J
Jiaqi Liu 已提交
929

930 931 932 933 934 935 936 937 938 939 940 941 942
          net = nn.Sequential(
              nn.Flatten(1),
              nn.Linear(784, 200),
              nn.Tanh(),
              nn.Linear(200, 10))
  
          # inputs and labels are not required for dynamic graph.
          input = InputSpec([None, 784], 'float32', 'x')
          label = InputSpec([None, 1], 'int64', 'label')
          
          model = paddle.Model(net, input, label)
          optim = paddle.optimizer.SGD(learning_rate=1e-3,
              parameters=model.parameters())
J
Jiaqi Liu 已提交
943

944 945 946 947 948 949 950 951 952 953
          model.prepare(optim,
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
          
          transform = T.Compose([
              T.Transpose(),
              T.Normalize([127.5], [127.5])
          ])
          data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
          model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986


        2. An example using mixed precision training.

        .. code-block:: python

          import paddle
          import paddle.nn as nn
          import paddle.vision.transforms as T

          def run_example_code():
            device = paddle.set_device('gpu')

            net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                nn.Linear(200, 10))

            model = paddle.Model(net)
            optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())

            amp_configs = {
                "level": "O1",
                "custom_white_list": {'conv2d'},
                "use_dynamic_loss_scaling": True
            }
            model.prepare(optim,
                paddle.nn.CrossEntropyLoss(),
                paddle.metric.Accuracy(),
                amp_configs=amp_configs)

            transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)

987
          # mixed precision training is only supported on GPU now.
J
Jiaqi Liu 已提交
988 989 990
          if paddle.is_compiled_with_cuda():
            run_example_code()

991 992
    """

993
    def __init__(self, network, inputs=None, labels=None):
994
        self.mode = 'train'
995
        self.network = network
996 997
        self._inputs = None
        self._labels = None
998
        self._loss = None
999 1000
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1001
        self._input_info = None
1002
        self._is_shape_inferred = False
1003
        self._test_dataloader = None
L
LiuChiachi 已提交
1004
        self.stop_training = False
1005

1006
        if not in_dygraph_mode():
1007
            if not isinstance(inputs, (list, tuple, dict, Input)):
1008
                raise TypeError(
1009 1010
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1011
        elif inputs:
L
LiuChiachi 已提交
1012
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1013

1014
        self._inputs = self._verify_spec(inputs, is_input=True)
1015
        self._labels = self._verify_spec(labels)
1016

1017 1018 1019 1020 1021 1022
        # init backend
        if fluid.in_dygraph_mode():
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1023
    def train_batch(self, inputs, labels=None, update=True):
1024 1025 1026 1027
        """
        Run one training step on a batch of data.

        Args:
1028 1029 1030 1031 1032 1033 1034
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
            labels (numpy.ndarray|Tensor|list): Batch of labels. It could be 
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
                set None. Default is None.
L
lyuwenyu 已提交
1035 1036
            update (bool): Whether update parameters after loss.backward() computing.
                Using it to accumulate gradients. Default is True.
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
1048
              import paddle
1049 1050
              import paddle.nn as nn
              from paddle.static import InputSpec
1051

1052
              device = paddle.set_device('cpu') # or 'gpu'
1053

1054 1055 1056 1057 1058 1059 1060 1061
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10))

              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
              model = paddle.Model(net, input, label)
1062
              optim = paddle.optimizer.SGD(learning_rate=1e-3,
1063
                  parameters=model.parameters())
1064
              model.prepare(optim, paddle.nn.CrossEntropyLoss())
1065 1066 1067 1068 1069
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.train_batch([data], [label])
              print(loss)
        """
L
lyuwenyu 已提交
1070
        loss = self._adapter.train_batch(inputs, labels, update)
L
LiuChiachi 已提交
1071
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
1072
            self._update_inputs()
1073
        return loss
1074

1075
    @paddle.no_grad()
1076 1077 1078 1079 1080
    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
1081 1082 1083 1084 1085 1086 1087
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
            labels (numpy.ndarray|Tensor|list): Batch of labels. It could be 
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
                set None. Default is None.
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
1099
              import paddle
1100 1101
              import paddle.nn as nn
              from paddle.static import InputSpec
1102

1103
              device = paddle.set_device('cpu') # or 'gpu'
1104

1105 1106 1107 1108 1109 1110 1111 1112
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10))

              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
              model = paddle.Model(net, input, label)
1113
              optim = paddle.optimizer.SGD(learning_rate=1e-3,
1114
                  parameters=model.parameters())
1115
              model.prepare(optim,
1116
                            paddle.nn.CrossEntropyLoss())
1117 1118 1119 1120 1121
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.eval_batch([data], [label])
              print(loss)
        """
1122
        loss = self._adapter.eval_batch(inputs, labels)
L
LiuChiachi 已提交
1123
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
1124
            self._update_inputs()
1125
        return loss
1126

1127
    @paddle.no_grad()
1128
    def predict_batch(self, inputs):
1129
        """
1130
        Run one predicting step on a batch of data.
1131 1132

        Args:
1133 1134 1135
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
            
              import numpy as np
1146
              import paddle
1147
              import paddle.nn as nn
L
LielinJiang 已提交
1148
              from paddle.static import InputSpec
1149

1150
              device = paddle.set_device('cpu') # or 'gpu'
L
LielinJiang 已提交
1151 1152 1153
              
              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
1154

1155 1156 1157 1158 1159 1160
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10),
                  nn.Softmax())

L
LielinJiang 已提交
1161
              model = paddle.Model(net, input, label)
1162
              model.prepare()
1163
              data = np.random.random(size=(4,784)).astype(np.float32)
1164
              out = model.predict_batch([data])
1165 1166
              print(out)
        """
1167
        loss = self._adapter.predict_batch(inputs)
L
LiuChiachi 已提交
1168
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
1169
            self._update_inputs()
1170
        return loss
1171

1172 1173 1174 1175 1176
    def save(self, path, training=True):
        """  
        This function saves parameters, optimizer information or model and 
        paramters only for inference to path. It depends on the parameter
        `training`.
1177

1178 1179
        If `training` is set to True, the parameters saved contain all 
        the trainable Variable, will save to a file with suffix ".pdparams".
1180 1181 1182 1183
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1184
        This function will silently overwrite existing file at the target location.
1185

1186
        If `training` is set to False, only inference model will be saved.
1187 1188

        Args:
1189 1190 1191
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1192 1193
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1194 1195 1196 1197 1198 1199 1200

        Returns:
            None

        Examples:

            .. code-block:: python
1201

1202
                import paddle
1203
                import paddle.nn as nn
1204
                import paddle.vision.transforms as T
1205
                from paddle.static import InputSpec
1206

1207
                class Mnist(nn.Layer):
1208
                    def __init__(self):
1209
                        super(Mnist, self).__init__()
1210
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1211
                            nn.Flatten(1),
1212 1213 1214 1215
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1216

1217
                    def forward(self, x):
1218
                        return self.net(x)
1219

1220
                dynamic = True  # False
1221
                # if use static graph, do not set
1222 1223
                if not dynamic:
                    paddle.enable_static()
1224

1225 1226 1227
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1228
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1229
                    parameters=model.parameters())
1230
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1231 1232 1233 1234 1235 1236 1237
                
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                
1238
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1239 1240
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1241
        """
1242

1243
        if ParallelEnv().local_rank == 0:
1244 1245 1246 1247
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
            skip_mismatch (bool): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
                mismatch shape).
            reset_optimizer (bool): If True, ignore the providing file storing
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
                a optimizer has been set to the model. Default False.

        Returns:
            None

        Examples:

            .. code-block:: python
            
1282
              import paddle
1283
              import paddle.nn as nn
L
LielinJiang 已提交
1284 1285
              from paddle.static import InputSpec

1286
              device = paddle.set_device('cpu')
L
LielinJiang 已提交
1287 1288

              input = InputSpec([None, 784], 'float32', 'x')
1289 1290 1291 1292 1293

              model = paddle.Model(nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10),
L
LielinJiang 已提交
1294 1295
                  nn.Softmax()), input)

1296
              model.save('checkpoint/test')
1297 1298 1299 1300 1301 1302 1303
              model.load('checkpoint/test')
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1304
                return pickle.load(f, encoding='latin1')
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
                    "{} is not found in the providing file.".format(key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
            assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
                    "Unknown postfix {} from weights".format(ext)
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1328
        for key, param in self.network.state_dict().items():
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
                        ("Skip loading for {}. ".format(key) + str(err)))
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

        optim_state = None if reset_optimizer else _load_state_from_path(
            path + ".pdopt")
        return self._adapter.load(matched_param_state, optim_state)

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python

1357
              import paddle
1358
              import paddle.nn as nn
L
LielinJiang 已提交
1359
              from paddle.static import InputSpec
1360

L
LielinJiang 已提交
1361 1362
              input = InputSpec([None, 784], 'float32', 'x')
              
1363 1364 1365
              model = paddle.Model(nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
L
LielinJiang 已提交
1366 1367
                  nn.Linear(200, 10)), input)

1368 1369 1370 1371
              params = model.parameters()
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1372 1373 1374 1375 1376
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
            if self._adapter._amp_level == "O2":
                if in_dygraph_mode():
1377 1378 1379
                    warnings.warn(
                        "Pure float16 training is not supported in dygraph mode now, and it will be supported in future version."
                    )
J
Jiaqi Liu 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
                else:
                    # grad clip is not supported in pure fp16 training now
                    assert self._optimizer._grad_clip is None, \
                        "Grad clip is not supported in pure float16 training now, and it will be supported in future version."

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'.")
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'.")
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1413
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
                    'custom_white_list', 'custom_black_list',
                    'custom_black_varnames'
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
                        param_name]
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1441 1442
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".
                    format(tuple(amp_config_key_set - accepted_param_set)))
J
Jiaqi Liu 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

            if 'use_fp16_guard' in amp_config_key_set:
                if in_dygraph_mode():
                    raise ValueError(
                        "'use_fp16_guard' is supported in static mode only.")
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

    def prepare(self, optimizer=None, loss=None, metrics=None,
                amp_configs=None):
1459 1460 1461 1462 1463 1464 1465
        """
        Configures the model before runing.

        Args:
            optimizer (Optimizer|None): Optimizer must be set in training
                and should be a Optimizer instance. It can be None in eval
                and test mode.
1466 1467
            loss (Loss|callable function|None): Loss function can
                be a `paddle.nn.Layer` instance or any callable function
1468 1469
                taken the predicted values and ground truth values as input.
                It can be None when there is no loss.
1470 1471
            metrics (Metric|list of Metric|None): If metrics is set, all
                metrics will be calculated and output in train/eval mode.
J
Jiaqi Liu 已提交
1472 1473 1474 1475
            amp_configs (str|dict|None): AMP configurations. If AMP or pure
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1476 1477
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1478 1479 1480 1481
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1482 1483 1484 1485 1486 1487
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1488 1489 1490 1491
        Returns:
            None
        """

1492 1493
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1494 1495 1496 1497 1498 1499 1500
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
                if fluid.in_dygraph_mode():
                    main_prog_seed = fluid.default_main_program().random_seed
                    startup_prog_seed = fluid.default_startup_program(
                    ).random_seed
                    fluid.disable_dygraph()
1501
                    paddle.disable_static(self._place)
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
                    fluid.default_startup_program(
                    ).random_seed = startup_prog_seed
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1512 1513
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1514 1515 1516
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1517
        self._loss = loss
1518 1519 1520 1521 1522 1523 1524

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1525
        self._prepare_amp(amp_configs)
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

        if not in_dygraph_mode():
            self._adapter.prepare()

    def fit(
            self,
            train_data=None,
            eval_data=None,
            batch_size=1,
            epochs=1,
            eval_freq=1,
            log_freq=10,
            save_dir=None,
            save_freq=1,
            verbose=2,
            drop_last=False,
            shuffle=True,
            num_workers=0,
L
update  
lyuwenyu 已提交
1544
            callbacks=None,
L
lyuwenyu 已提交
1545
            accumulate=1, ):
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset|DataLoader): An iterable data loader is used for 
                train. An instance of paddle paddle.io.Dataset or 
                paddle.io.Dataloader is recomended. Default: None.
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation at the end of epoch. If None, will not do evaluation. 
                An instance of paddle.io.Dataset or paddle.io.Dataloader 
                is recomended. Default: None.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data. When train_data and eval_data are both the
                instance of Dataloader, this parameter will be ignored.
                Default: 1.
            epochs (int): Integer number. The number of epochs to train
                the model. Default: 1.
            eval_freq (int): The frequency, in number of epochs, an evalutation
                is performed. Default: 1.
            log_freq (int): The frequency, in number of steps, the training logs
                are printed. Default: 10.
            save_dir(str|None): The directory to save checkpoint during training.
                If None, will not save checkpoint. Default: None.
            save_freq (int): The frequency, in number of epochs, to save
                checkpoint. Default: 1.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            drop_last (bool): Whether drop the last incomplete batch of
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
            shuffle (bool): Whther to shuffle train_data. When train_data is
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
            num_workers (int): The number of subprocess to load data, 0 for no
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
L
lyuwenyu 已提交
1588 1589 1590
            accumulate (int): The number of steps to accumulate gradident during 
                training process before optimizer updates. It can mimic large batch
                size. Default: 1.
L
lyuwenyu 已提交
1591
            
1592 1593 1594 1595 1596 1597 1598 1599 1600
        Returns:
            None

        Examples:
            1. An example use Dataset and set btch size, shuffle in fit.
               How to make a batch is done internally.

            .. code-block:: python

1601
              import paddle
1602
              import paddle.vision.transforms as T
1603
              from paddle.vision.datasets import MNIST
1604
              from paddle.static import InputSpec
1605 1606

              dynamic = True
1607 1608 1609
              if not dynamic:
                  paddle.enable_static()

1610 1611 1612 1613
              transform = T.Compose([
                  T.Transpose(),
                  T.Normalize([127.5], [127.5])
              ])
1614 1615
              train_dataset = MNIST(mode='train', transform=transform)
              val_dataset = MNIST(mode='test', transform=transform)
1616
           
1617 1618
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
1619
           
1620
              model = paddle.Model(
L
LielinJiang 已提交
1621
                  paddle.vision.models.LeNet(),
1622
                  input, label)
1623 1624
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
1625 1626
              model.prepare(
                  optim,
1627
                  paddle.nn.CrossEntropyLoss(),
1628
                  paddle.metric.Accuracy(topk=(1, 2)))
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
              model.fit(train_dataset,
                        val_dataset,
                        epochs=2,
                        batch_size=64,
                        save_dir='mnist_checkpoint')

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python

1640
              import paddle
1641
              import paddle.vision.transforms as T
1642
              from paddle.vision.datasets import MNIST
1643
              from paddle.static import InputSpec
1644 1645

              dynamic = True
1646 1647
              if not dynamic:
                  paddle.enable_static()
1648 1649 1650 1651 1652
              
              transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
1653
              train_dataset = MNIST(mode='train', transform=transform)
1654
              train_loader = paddle.io.DataLoader(train_dataset,
1655 1656
                  batch_size=64)
              val_dataset = MNIST(mode='test', transform=transform)
1657
              val_loader = paddle.io.DataLoader(val_dataset,
1658
                  batch_size=64)
1659
           
1660 1661
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
1662
           
1663
              model = paddle.Model(
L
LielinJiang 已提交
1664
                  paddle.vision.models.LeNet(), input, label)
1665 1666
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
1667 1668
              model.prepare(
                  optim,
1669
                  paddle.nn.CrossEntropyLoss(),
1670
                  paddle.metric.Accuracy(topk=(1, 2)))
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
              model.fit(train_loader,
                        val_loader,
                        epochs=2,
                        save_dir='mnist_checkpoint')
        """

        assert train_data is not None, \
                "train_data must be given!"

        if isinstance(train_data, Dataset):
            train_sampler = DistributedBatchSampler(
                train_data,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last)
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1711

L
lyuwenyu 已提交
1712
        self._accumulate = accumulate
L
update  
lyuwenyu 已提交
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
        steps = self._len_data_loader(train_loader)
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(), )

L
LiuChiachi 已提交
1726 1727 1728
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
                cbks.on_begin('eval', {
                    'steps': eval_steps,
                    'metrics': self._metrics_name()
                })

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
L
LiuChiachi 已提交
1746 1747
                if self.stop_training:
                    break
1748 1749 1750

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
    def evaluate(
            self,
            eval_data,
            batch_size=1,
            log_freq=10,
            verbose=2,
            num_workers=0,
            callbacks=None, ):
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation. An instance of paddle.io.Dataset or 
                paddle.io.Dataloader is recomended.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data.  When eval_data is the instance of Dataloader,
                this argument will be ignored. Default: 1.
            log_freq (int): The frequency, in number of steps, the eval logs
                are printed. Default: 10.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            num_workers (int): The number of subprocess to load data,
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1786 1787

          .. code-block:: python
1788

1789
            import paddle
1790
            import paddle.vision.transforms as T
1791
            from paddle.static import InputSpec
1792

1793
            # declarative mode
1794 1795 1796 1797 1798
            transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
            val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1799

1800 1801 1802
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            label = InputSpec([None, 1], 'int64', 'label')
            model = paddle.Model(paddle.vision.models.LeNet(), input, label)
1803
            model.prepare(metrics=paddle.metric.Accuracy())
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
            result = model.evaluate(val_dataset, batch_size=64)
            print(result)
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(), )

        eval_steps = self._len_data_loader(eval_loader)
        cbks.on_begin('eval',
                      {'steps': eval_steps,
                       'metrics': self._metrics_name()})

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

    def predict(self,
                test_data,
                batch_size=1,
                num_workers=0,
                stack_outputs=False,
1851
                verbose=1,
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
            batch_size (int): Integer number. The batch size of train_data and eval_data.
                When train_data and eval_data are both the instance of Dataloader, this
                argument will be ignored. Default: 1.
            num_workers (int): The number of subprocess to load data, 0 for no subprocess 
                used and loading data in main process. When train_data and eval_data are
                both the instance of Dataloader, this argument will be ignored. Default: 0.
1866
            stack_outputs (bool): Whether stack output field like a batch, as for an output
1867 1868 1869 1870 1871
                filed of a sample is in shape [X, Y], test_data contains N samples, predict
                output field will be in shape [N, X, Y] if stack_output is True, and will
                be a length N list in shape [[X, Y], [X, Y], ....[X, Y]] if stack_outputs
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
1872 1873
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per batch. Default: 1.
1874
            callbacks(Callback): A Callback instance, default None.
1875

1876 1877 1878 1879
        Returns:
            list: output of models.

        Examples:
1880 1881

          .. code-block:: python
1882 1883

            import numpy as np
1884
            import paddle
1885
            from paddle.static import InputSpec
1886

1887
            class MnistDataset(paddle.vision.datasets.MNIST):
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
                def __init__(self, mode, return_label=True):
                    super(MnistDataset, self).__init__(mode=mode)
                    self.return_label = return_label

                def __getitem__(self, idx):
                    img = np.reshape(self.images[idx], [1, 28, 28])
                    if self.return_label:
                        return img, np.array(self.labels[idx]).astype('int64')
                    return img,

                def __len__(self):
                    return len(self.images)

            test_dataset = MnistDataset(mode='test', return_label=False)

L
LielinJiang 已提交
1903
            # imperative mode
1904 1905
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            model = paddle.Model(paddle.vision.models.LeNet(), input)
1906
            model.prepare()
1907
            result = model.predict(test_dataset, batch_size=64)
1908
            print(len(result[0]), result[0][0].shape)
1909

L
LielinJiang 已提交
1910
            # declarative mode
1911
            device = paddle.set_device('cpu')
L
LielinJiang 已提交
1912 1913 1914
            paddle.enable_static()
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            model = paddle.Model(paddle.vision.models.LeNet(), input)
1915
            model.prepare()
L
LielinJiang 已提交
1916

1917 1918
            result = model.predict(test_dataset, batch_size=64)
            print(len(result[0]), result[0][0].shape)
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
        """

        if test_data is not None and isinstance(test_data, Dataset):
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size)
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

1935
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
1936 1937 1938 1939

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

1940
        cbks.on_begin('predict', logs)
1941 1942 1943

        outputs = []

1944
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

1955
        cbks.on_end('predict', logs)
1956 1957
        return outputs

1958
    def _save_inference_model(self, path):
1959
        """
1960
        Save inference model can be used in static or dynamic mode.
1961 1962

        Args:
1963 1964
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
1965
        Returns:
1966
            None
1967 1968
        """

1969
        if fluid.in_dygraph_mode():
1970 1971
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
1972
                if self._input_info is None:  # No provided or inferred
1973
                    raise RuntimeError(
L
LiuChiachi 已提交
1974
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
1975 1976 1977 1978
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
L
LiuChiachi 已提交
1979 1980
                        % self._input_info[0])

1981
                paddle.jit.save(layer, path, input_spec=self._inputs)
1982

1983
        else:
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
                    "file_prefix is empty string.")

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2000 2001 2002 2003 2004 2005 2006 2007 2008
            prog = self._adapter._progs.get('test', None)
            assert prog, \
                "Model is not ready, please call `model.prepare()` first"

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2009 2010
            fluid.io.save_inference_model(
                model_path,
2011 2012 2013 2014 2015
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
2016
                params_filename=params_filename)
2017

L
update  
lyuwenyu 已提交
2018 2019 2020 2021 2022 2023
    def _run_one_epoch(
            self,
            data_loader,
            callbacks,
            mode,
            logs={}, ):
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
            # 4. custumed iterator yield seperated inputs and labels:
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2040

2041 2042 2043 2044 2045
            batch_size = data[0].shape()[0] if callable(data[
                0].shape) else data[0].shape[0]

            callbacks.on_batch_begin(mode, step, logs)

2046
            if mode != 'predict':
L
update  
lyuwenyu 已提交
2047

L
lyuwenyu 已提交
2048 2049
                _inputs = [data[:len(self._inputs)], data[len(self._inputs):]]
                if mode == 'train':
L
lyuwenyu 已提交
2050 2051
                    _inputs.append((step + 1) % self._accumulate == 0 or
                                   step + 1 == len(data_loader))
L
update  
lyuwenyu 已提交
2052

L
lyuwenyu 已提交
2053
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2054

2055
                if self._metrics and self._loss:
2056
                    metrics = [[l[0] for l in outs[0]]]
2057
                elif self._loss:
2058 2059 2060
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2071
                if self._inputs is not None:
2072
                    outs = self.predict_batch(data[:len(self._inputs)])
L
LielinJiang 已提交
2073
                else:
2074
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2075

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
                outputs.append(outs)

            logs['step'] = step
            if mode == 'train' or self._adapter._merge_count.get(
                    mode + '_batch', 0) <= 0:
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
        self._reset_metrics()

2088
        if mode == 'predict':
2089 2090 2091
            return logs, outputs
        return logs

L
LielinJiang 已提交
2092
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
        """Prints a string summary of the network.

        Args:
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor. 
                    if not set, input_size will get from ``self._inputs`` if network only have 
                    one input, input_size can be tuple or InputSpec. if model have multiple 
                    input, input_size must be a list which contain every input's shape. 
                    Default: None.
            dtypes (str, optional): if dtypes is None, 'float32' will be used, Default: None.

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python

              import paddle
              from paddle.static import InputSpec
           
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
           
2115
              model = paddle.Model(paddle.vision.models.LeNet(),
L
LielinJiang 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
                  input, label)
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
              model.prepare(
                  optim,
                  paddle.nn.CrossEntropyLoss())

              params_info = model.summary()
              print(params_info)

        """
2127 2128 2129 2130 2131 2132
        assert (input_size is not None or self._inputs is not None
                ), "'input_size' or 'self._input' must be set"
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
L
LielinJiang 已提交
2133
        return summary(self.network, _input_size, dtype)
L
LielinJiang 已提交
2134

L
LiuChiachi 已提交
2135
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2136 2137
        out_specs = []

2138 2139 2140 2141 2142 2143
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2144 2145 2146
                # While Saving inference model in dygraph, and providing inputs only in running.
                if shapes is not None and dtypes is not None and fluid.in_dygraph_mode(
                ):
2147 2148
                    out_specs = [
                        Input(
L
LiuChiachi 已提交
2149
                            name=n, dtype=dtypes[i], shape=shapes[i])
2150 2151 2152 2153 2154 2155 2156
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2157 2158 2159 2160 2161
            assert is_input is False
            out_specs = [
                specs[n] for n in extract_args(self.network.forward)
                if n != 'self'
            ]
2162 2163 2164 2165 2166 2167 2168 2169
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2170 2171
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
2172 2173 2174

        return out_specs

2175 2176 2177 2178 2179
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2180
        metrics_name = ['loss'] if self._loss else []
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2191 2192 2193

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2194 2195 2196 2197 2198
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
            self._inputs = self._verify_spec(None, self._input_info[0],
                                             self._input_info[1], True)
            self._is_shape_inferred = True