model.py 92.3 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import os
import pickle
import numpy as np
import warnings
20 21 22
import time
import socket
import contextlib
23

24
import paddle
25
from paddle import fluid
26
from paddle.fluid import core
27
from paddle.fluid.framework import _non_static_mode
28 29
from paddle.fluid.framework import Variable
from paddle.fluid.framework import _get_paddle_place
30
from paddle.fluid.framework import _current_expected_place as _get_device
31 32 33 34
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
35 36
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
37
from paddle.fluid.layers.utils import flatten
38
from paddle.fluid.layers import collective
39

40 41 42
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
43
from paddle.metric import Metric
44
from paddle.static import InputSpec as Input
45
import paddle.distributed as dist
J
Jiaqi Liu 已提交
46 47
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet.base import role_maker
Z
zhaoyingli 已提交
48
from paddle.autograd import no_grad
49

L
LiuChiachi 已提交
50
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
51
from .model_summary import summary
52

53
__all__ = []
54 55 56 57 58 59 60 61 62 63 64 65 66

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
67 68 69
    assert isinstance(
        var, (Variable, fluid.core.VarBase, fluid.core.eager.Tensor)
    ), "not a variable"
H
hong 已提交
70
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
104 105 106
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream
    )
107 108 109


def wait_server_ready(endpoints):
110
    assert not isinstance(endpoints, str)
111 112 113 114 115 116
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
117 118
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as sock:
119 120 121 122 123 124 125 126 127 128 129
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


130 131 132
def init_communicator(
    program, rank, nranks, wait_port, current_endpoint, endpoints
):
133 134 135 136
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
137
    block = program.global_block()
138 139
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
140 141 142 143
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
168 169
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
170
            name=fluid.unique_name.generate('hccl_id'),
171
            persistable=True,
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
            type=core.VarDesc.VarType.RAW,
        )
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks,
            },
        )
195 196 197 198


def prepare_distributed_context(place=None):
    if place is None:
199 200 201
        place = (
            fluid.CUDAPlace(ParallelEnv().dev_id)
            if ParallelEnv().nranks > 1
202
            else fluid.CUDAPlace(0)
203
        )
204

205
    place = _get_paddle_place(place)
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
221 222 223 224 225 226 227 228
            init_communicator(
                communicator_prog,
                strategy.local_rank,
                strategy.nranks,
                True,
                strategy.current_endpoint,
                strategy.trainer_endpoints,
            )
229 230 231
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
232
        if fluid._non_static_mode():
233 234 235 236 237
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
238
        assert "Only support CUDAPlace for now."
239 240 241

    _parallel_context_initialized = True
    return strategy
242 243


L
LiuChiachi 已提交
244
def _update_input_info(inputs):
L
LiuChiachi 已提交
245
    "Get input shape list by given inputs in Model initialization."
246
    shapes = None
L
LiuChiachi 已提交
247
    dtypes = None
L
LiuChiachi 已提交
248 249
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
250
        dtypes = [inputs.dtype]
251
    elif isinstance(inputs, (list, tuple)):
252
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
253
        dtypes = [input.dtype for input in inputs]
254 255
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
256 257 258 259
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
260 261


262
class StaticGraphAdapter:
263 264 265 266 267
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
268
        super().__init__()
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
287
            'test_batch': 0,
288 289 290 291 292
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
293 294 295
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
296
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
297

298 299 300 301 302 303 304 305
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
306
    def train_batch(self, inputs, labels=None, update=True):
307 308 309
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
310
        self.mode = 'train'
311 312 313
        assert (
            update is True
        ), "Does not support `update == False` in static mode by now."
314 315 316 317 318 319
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

320
    def predict_batch(self, inputs):
321 322 323 324
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
325
        return self.model.network.parameters(*args, **kwargs)
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
344
        _save(self.model.network.state_dict(), param_path)
345 346 347 348 349 350
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
351
            p.name: p for p in filter(is_belong_to_optimizer, prog.list_vars())
352 353 354 355 356 357
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
358
    # TODO: support save/load scaler state in static graph
359 360 361 362 363 364 365 366
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
367 368 369 370
            [param for param, state in param_state_pairs],
            global_scope(),
            executor,
        )
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
398 399 400 401
                    (np.array(converted_state.pop("global_step")) - 1)
                    if "global_step" in converted_state
                    else converted_state.pop("@LR_DECAY_COUNTER@", None)
                )
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
418 419 420 421 422 423 424 425 426
                        accum_name = (
                            name
                            if opt_name is None
                            else name[len(opt_name) + 1 :]
                        )
                        for (
                            param_name,
                            state_var,
                        ) in self.model._optimizer._accumulators[name].items():
427 428 429
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
                                for state_key in sorted(
                                    state.keys(),
                                    key=lambda x: len(x),
                                    reverse=True,
                                ):
                                    prefix = (
                                        param_name
                                        + "_"
                                        + (
                                            opt_cls_name
                                            if opt_name is None
                                            else opt_name
                                        )
                                        + "_"
                                    )
445
                                    if state_key.startswith(prefix):
446 447 448
                                        prefix_offset = state_key[
                                            len(prefix) :
                                        ].find("_") + len(prefix)
449
                                        opt_unq_name = state_key[
450 451 452 453
                                            len(
                                                param_name + "_"
                                            ) : prefix_offset
                                        ]
454 455 456 457
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
458 459 460 461 462 463 464 465
                            dy_state_name = (
                                param_name
                                + "_"
                                + opt_unq_name
                                + "_"
                                + accum_name
                                + "_0"
                            )
466
                            converted_state[
467 468
                                state_var.name
                            ] = converted_state.pop(dy_state_name)
469

470 471 472
            assert (
                var.name in converted_state
            ), "variable [{}] is not in optimizer state file".format(var.name)
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
491 492 493
        assert (
            compiled_prog
        ), "Model is not ready, please call `model.prepare()` first"
494 495 496 497

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
498 499
        assert len(inputs) == len(self._input_vars[self.mode]), (
            "number of inputs"
500
            + " does not match number of arguments of `forward` method"
501
        )
502 503 504

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
505 506
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

507 508 509 510
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
511 512 513 514
            if (
                self._amp_level == 'O2'
                and input_dtypes[idx] == core.VarDesc.VarType.FP16
            ):
L
Leo Chen 已提交
515 516
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
517
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
518 519
                    feed[n] = feed[n].astype('float16')

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

542 543 544 545 546 547
        rets = self._executor.run(
            compiled_prog,
            feed=feed,
            fetch_list=pruned_fetch_list,
            return_numpy=False,
        )
548 549 550 551 552 553 554 555 556 557

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
558

559 560 561 562
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
563 564 565 566 567 568
            if (
                self.mode != 'train'
                and self.model._test_dataloader is not None
                and isinstance(self.model._test_dataloader, DataLoader)
                and self._nranks > 1
            ):
569 570 571 572 573 574
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
575
                        s[: int(total_size - current_count), ...] for s in state
576 577
                    ]
                    self._merge_count[self.mode + '_total'] = 0
578 579 580
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
581 582 583 584 585
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
586 587 588 589 590

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
612 613 614 615 616
        if (
            mode == 'train'
            and self.model._optimizer
            and self.model._optimizer._learning_rate_map
        ):
617 618 619 620 621 622 623 624
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
625 626
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
627 628
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
629
            self._label_vars[mode] = labels
630
            outputs = to_list(self.model.network.forward(*inputs))
631

632 633
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
634 635 636 637 638 639 640 641

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
642
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
643 644 645 646 647 648

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
649 650 651 652 653
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
654 655 656
                        dist_strategy.amp_configs['use_pure_fp16'] = (
                            self._amp_level == 'O2'
                        )
657
                    self.model._optimizer = fleet.distributed_optimizer(
658 659
                        self.model._optimizer, strategy=dist_strategy
                    )
J
Jiaqi Liu 已提交
660
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
661 662 663 664 665 666 667
                    amp_lists = (
                        paddle.static.amp.AutoMixedPrecisionLists(
                            **self._amp_custom_lists
                        )
                        if self._amp_custom_lists
                        else None
                    )
J
Jiaqi Liu 已提交
668 669 670 671 672
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
673 674
                        **self._amp_configs
                    )
675 676 677 678 679 680 681 682 683 684 685

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
686
            "loss": to_list(losses),
687
            "metric": metrics,
688 689 690 691 692 693 694
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

695 696 697
        assert (
            self.model._place is not None
        ), "device is not set, please call `model.prepare()` first"
698 699 700 701 702 703 704 705 706 707 708 709

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
710 711 712 713 714
                if (
                    not var_py.name.startswith('nccl_id')
                    and var
                    and var.get_tensor()._is_initialized()
                ):
715 716 717 718 719 720 721
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

722 723 724 725
        if (
            self._amp_level == "O2"
            and mode == 'train'
            and core.is_compiled_with_cuda()
J
Jiaqi Liu 已提交
726 727 728
        ):
            self.model._optimizer.amp_init(place)

729 730 731 732 733 734 735 736
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


737
class DynamicGraphAdapter:
738
    def __init__(self, model):
739
        super().__init__()
740 741 742 743 744 745 746
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
747
            'test_batch': 0,
748 749
        }

L
LiuChiachi 已提交
750
        self._input_info = None
J
Jiaqi Liu 已提交
751 752 753 754 755
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

756
        if self._nranks > 1:
757
            dist.init_parallel_env()
758 759 760 761 762
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
763
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
764 765
                self.model.network, stradegy
            )
766 767 768 769 770 771 772 773 774 775

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
776
    def train_batch(self, inputs, labels=None, update=True):
777 778 779
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
780
        self.model.network.train()
781 782
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
783
        self._input_info = _update_input_info(inputs)
784 785 786
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
787 788 789 790
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

791 792 793 794 795
        with paddle.amp.auto_cast(
            enable=self._amp_level != 'O0',
            **self._amp_custom_lists,
            level=self._amp_level
        ):
J
Jiaqi Liu 已提交
796
            if self._nranks > 1:
797
                outputs = self.ddp_model(*[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
798
            else:
799
                outputs = self.model.network(*[to_variable(x) for x in inputs])
800

L
Leo Chen 已提交
801 802 803
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
804

J
Jiaqi Liu 已提交
805
        if self._amp_level != "O0":
L
Leo Chen 已提交
806
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
807
            scaled.backward()
L
lyuwenyu 已提交
808
            if update:
L
Leo Chen 已提交
809
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
810
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
811 812
        else:
            final_loss.backward()
L
lyuwenyu 已提交
813 814 815
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
816

817 818
        metrics = []
        for metric in self.model._metrics:
819
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
820
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
821 822
            metrics.append(m)

823 824 825 826 827
        return (
            ([to_numpy(l) for l in losses], metrics)
            if len(metrics) > 0
            else [to_numpy(l) for l in losses]
        )
828 829

    def eval_batch(self, inputs, labels=None):
830
        self.model.network.eval()
831 832
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
833
        self._input_info = _update_input_info(inputs)
834 835 836
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

837
        outputs = self.model.network(*[to_variable(x) for x in inputs])
838 839 840 841 842 843 844 845 846

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

847 848
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
849 850
            losses = to_list(losses)

851 852 853 854 855 856
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
857 858 859 860 861
            if (
                self.model._test_dataloader is not None
                and self._nranks > 1
                and isinstance(self.model._test_dataloader, DataLoader)
            ):
862 863 864 865 866
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
867
                        o[: int(total_size - current_count)] for o in outputs
868 869
                    ]
                    labels = [
870
                        l[: int(total_size - current_count)] for l in labels
871 872
                    ]
                    self._merge_count[self.mode + '_total'] = 0
873 874 875
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
876 877 878 879
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

880
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
881
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
882 883
            metrics.append(m)

884
        if self.model._loss and len(metrics):
885
            return [to_numpy(l) for l in losses], metrics
886
        elif self.model._loss:
887 888 889
            return [to_numpy(l) for l in losses]
        else:
            return metrics
890

891
    def predict_batch(self, inputs):
892
        self.model.network.eval()
893 894
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
895
        self._input_info = _update_input_info(inputs)
896
        outputs = self.model.network(*inputs)
897 898 899 900 901 902
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
903
        return self.model.network.parameters(*args, **kwargs)
904 905

    def save(self, path):
906
        params = self.model.network.state_dict()
907
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
908 909 910 911 912 913 914 915 916 917
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
918 919 920 921
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
922 923 924 925
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

926 927 928 929
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

930 931
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
932 933 934 935 936 937 938 939 940 941
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
942
        opt_name = opt_unq_name[: opt_unq_name.rfind("_")]  # remove suffix idx
943
        param_names = [param.name for param in self.model.network.parameters()]
944 945 946
        for var_name, state_var in sorted(
            optim_state.items(), key=lambda x: len(x[0]), reverse=True
        ):
947 948 949 950 951
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
952 953 954
                    converted_state["global_step"] = (
                        np.array(converted_state.pop("@LR_DECAY_COUNTER@")) + 1
                    )
955 956 957 958 959 960
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
961 962 963 964 965 966 967
                        accum_name = var_name[
                            len(param_name + "_" + opt_name + "_") :
                        ]
                    elif (
                        var_name.startswith(param_name + "_")
                        and opt_name == opt_cls_name
                    ):
968
                        # when init optimizer without name
969
                        accum_name = var_name[len(param_name + "_") :]
970 971 972
                    else:
                        continue
                    # remove suffix idx
973
                    accum_name = accum_name[: accum_name.rfind("_")]
974 975
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
976 977 978 979 980 981 982 983
                    dy_state_name = (
                        param_name
                        + "_"
                        + opt_unq_name
                        + "_"
                        + accum_name
                        + "_0"
                    )
984 985
                    converted_state[dy_state_name] = state_var

986 987
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
988
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
989 990 991 992
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
993

L
Leo Chen 已提交
994
    def prepare(self):
995 996 997 998
        if (
            self._amp_level == "O2"
            and self.model.mode == 'train'
            and core.is_compiled_with_cuda()
L
Leo Chen 已提交
999 1000 1001 1002
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
1003 1004
                level='O2',
            )
L
Leo Chen 已提交
1005 1006 1007
        if self._amp_level != "O0":
            self.model._scaler = None

1008

1009
class Model:
1010 1011 1012
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
1013
    switched by `paddle.enable_static()`. The usage is as follows.
1014
    But note, the switching between dynamic and static should be before
1015
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
1016
    must be required for static graph.
1017

1018
    When training on GPU, auto mixed precision (AMP O1) and pure float16
L
Leo Chen 已提交
1019
    (AMP O2) training are both supported in static mode and dynamic mode.
1020
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
1021 1022
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
1023 1024 1025 1026
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
1027

1028
    Args:
1029 1030
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
1031
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
1032
            could be a InputSpec instance, or list/tuple of InputSpec instances,
1033
            or dict ({name: InputSpec}), and it couldn't be None in static
1034 1035
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
1036
            could be a InputSpec instnace or list/tuple of InputSpec instances,
1037
            or None. For static graph, if labels is required in loss,
1038
            labels must be set. Otherwise, it could be None. Default: None.
1039 1040


1041
    Examples:
J
Jiaqi Liu 已提交
1042 1043
        1. A common example

1044
        .. code-block:: python
1045
          :name: code-example1
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
1063

1064 1065 1066 1067 1068
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
1069 1070
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
1071 1072 1073 1074 1075 1076 1077

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
1078 1079 1080 1081 1082


        2. An example using mixed precision training.

        .. code-block:: python
1083
          :name: code-example2
J
Jiaqi Liu 已提交
1084

1085 1086 1087 1088
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
1089

1090 1091
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
1092

1093 1094
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1095

1096 1097
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1108

1109 1110 1111 1112 1113 1114 1115
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1116

1117 1118
    """

1119
    def __init__(self, network, inputs=None, labels=None):
1120
        self.mode = 'train'
1121
        self.network = network
1122 1123
        self._inputs = None
        self._labels = None
1124
        self._loss = None
1125 1126
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1127
        self._input_info = None
1128
        self._is_shape_inferred = False
1129
        self._test_dataloader = None
L
LiuChiachi 已提交
1130
        self.stop_training = False
1131

J
Jiabin Yang 已提交
1132
        if not _non_static_mode():
1133
            if not isinstance(inputs, (list, tuple, dict, Input)):
1134
                raise TypeError(
1135 1136
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1137
        elif inputs:
L
LiuChiachi 已提交
1138
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1139

1140
        self._inputs = self._verify_spec(inputs, is_input=True)
1141
        self._labels = self._verify_spec(labels)
1142

1143
        # init backend
J
Jiabin Yang 已提交
1144
        if fluid._non_static_mode():
1145 1146 1147 1148
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1149
    def train_batch(self, inputs, labels=None, update=True):
1150
        """
L
lyuwenyu 已提交
1151 1152
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1153 1154

        Args:
1155 1156
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1157
                tensors (in case the model has multiple inputs).
1158 1159 1160
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1161 1162 1163
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1164 1165 1166 1167 1168 1169 1170 1171 1172

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1173

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1196
        """
L
lyuwenyu 已提交
1197
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1198
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1199
            self._update_inputs()
1200
        return loss
1201

Z
zhaoyingli 已提交
1202
    @no_grad()
1203 1204 1205 1206 1207
    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
1208 1209
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1210
                tensors (in case the model has multiple inputs).
1211 1212 1213
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1214
                set None. Default: None.
1215 1216 1217 1218 1219 1220 1221 1222 1223

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1248
        """
1249
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1250
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1251
            self._update_inputs()
1252
        return loss
1253

Z
zhaoyingli 已提交
1254
    @no_grad()
1255
    def predict_batch(self, inputs):
1256
        """
1257
        Run one predicting step on a batch of data.
1258 1259

        Args:
1260 1261
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1262
                tensors (in case the model has multiple inputs).
1263 1264 1265 1266 1267 1268 1269 1270

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1271 1272 1273 1274 1275 1276

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1295
        """
1296
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1297
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1298
            self._update_inputs()
1299
        return loss
1300

1301
    def save(self, path, training=True):
1302 1303
        """
        This function saves parameters, optimizer information or model and
1304 1305
        paramters only for inference to path. It depends on the parameter
        `training`.
1306

1307
        If `training` is set to True, the parameters saved contain all
1308
        the trainable Variable, will save to a file with suffix ".pdparams".
1309 1310 1311 1312
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1313
        This function will silently overwrite existing file at the target location.
1314

1315
        If `training` is set to False, only inference model will be saved.
1316 1317

        Args:
1318 1319 1320
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1321 1322
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1323 1324 1325 1326 1327 1328 1329

        Returns:
            None

        Examples:

            .. code-block:: python
1330

1331
                import paddle
1332
                import paddle.nn as nn
1333
                import paddle.vision.transforms as T
1334
                from paddle.static import InputSpec
1335

1336
                class Mnist(nn.Layer):
1337
                    def __init__(self):
1338
                        super().__init__()
1339
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1340
                            nn.Flatten(1),
1341 1342 1343 1344
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1345

1346
                    def forward(self, x):
1347
                        return self.net(x)
1348

1349
                dynamic = True  # False
1350
                # if use static graph, do not set
1351 1352
                if not dynamic:
                    paddle.enable_static()
1353

1354 1355 1356
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1357
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1358
                    parameters=model.parameters())
1359
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1360

1361 1362 1363 1364 1365
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
1366

1367
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1368 1369
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1370
        """
1371

1372
        if ParallelEnv().local_rank == 0:
1373 1374 1375 1376
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1395
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1396 1397
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1398 1399
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1400 1401
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1402
                a optimizer has been set to the model. Default: False.
1403 1404 1405 1406 1407 1408 1409

        Returns:
            None

        Examples:

            .. code-block:: python
1410 1411 1412 1413

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1414

1415
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1416

1417
                input = InputSpec([None, 784], 'float32', 'x')
1418

1419 1420 1421 1422 1423
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1424

1425 1426
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1427 1428 1429 1430 1431 1432
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1433
                return pickle.load(f, encoding='latin1')
1434 1435 1436 1437 1438

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
1439 1440
                    "{} is not found in the providing file.".format(key)
                )
1441 1442
            if list(state.shape) != list(param.shape):
                raise ValueError(
1443 1444 1445 1446
                    "{} receives a shape {}, but the expected shape is {}.".format(
                        key, list(state.shape), list(param.shape)
                    )
                )
1447 1448 1449 1450
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
1451 1452 1453 1454 1455 1456
            assert ext in [
                '',
                '.pdparams',
                '.pdopt',
                '.pdmodel',
            ], "Unknown postfix {} from weights".format(ext)
1457 1458 1459 1460 1461 1462 1463
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1464
        for key, param in self.network.state_dict().items():
1465 1466 1467 1468 1469
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
1470 1471
                        ("Skip loading for {}. ".format(key) + str(err))
                    )
1472 1473 1474 1475 1476 1477
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

1478 1479 1480
        optim_state = (
            None if reset_optimizer else _load_state_from_path(path + ".pdopt")
        )
L
Leo Chen 已提交
1481 1482

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1483
        if _non_static_mode():
L
Leo Chen 已提交
1484 1485 1486 1487 1488
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

1489 1490 1491
            return self._adapter.load(
                matched_param_state, optim_state, scaler_state
            )
L
Leo Chen 已提交
1492 1493
        else:
            return self._adapter.load(matched_param_state, optim_state)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1506

1507 1508 1509
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1510

1511
                input = InputSpec([None, 784], 'float32', 'x')
1512

1513 1514 1515 1516
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1517

1518
                params = model.parameters()
1519 1520 1521
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1522 1523 1524
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1525 1526
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
1527 1528 1529 1530
                assert isinstance(
                    self._optimizer._grad_clip,
                    (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm),
                ), "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
1542 1543
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1544 1545 1546 1547 1548 1549 1550 1551
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
1552 1553
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1554 1555 1556 1557 1558 1559 1560 1561
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1562
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1563 1564 1565 1566 1567 1568 1569
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
1570 1571 1572
                'custom_white_list',
                'custom_black_list',
                'custom_black_varnames',
J
Jiaqi Liu 已提交
1573 1574 1575
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
1576 1577
                        param_name
                    ]
J
Jiaqi Liu 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1592 1593 1594 1595
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".format(
                        tuple(amp_config_key_set - accepted_param_set)
                    )
                )
J
Jiaqi Liu 已提交
1596 1597

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1598
                if _non_static_mode():
J
Jiaqi Liu 已提交
1599
                    raise ValueError(
1600 1601
                        "'use_fp16_guard' is supported in static mode only."
                    )
J
Jiaqi Liu 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1611 1612 1613
    def prepare(
        self, optimizer=None, loss=None, metrics=None, amp_configs=None
    ):
1614 1615 1616 1617
        """
        Configures the model before runing.

        Args:
1618
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1619
                and should be a Optimizer instance. It can be None in eval
1620 1621
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1622
                be a `paddle.nn.Layer` instance or any callable function
1623
                taken the predicted values and ground truth values as input.
1624 1625 1626 1627
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1628 1629 1630
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1631 1632
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1633 1634 1635 1636
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1637 1638 1639 1640 1641 1642
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1643

1644 1645 1646
        Returns:
            None
        """
1647 1648
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1649 1650
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
J
Jiabin Yang 已提交
1651
                if fluid._non_static_mode():
1652
                    main_prog_seed = fluid.default_main_program().random_seed
1653 1654 1655
                    startup_prog_seed = (
                        fluid.default_startup_program().random_seed
                    )
1656
                    fluid.disable_dygraph()
1657
                    paddle.disable_static(self._place)
1658 1659 1660
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
1661 1662 1663
                    fluid.default_startup_program().random_seed = (
                        startup_prog_seed
                    )
1664 1665 1666 1667 1668
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1669 1670
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1671 1672 1673
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1674
        self._loss = loss
1675 1676 1677

        metrics = metrics or []
        for metric in to_list(metrics):
1678 1679 1680
            assert isinstance(
                metric, Metric
            ), "{} is not sub class of Metric".format(metric.__class__.__name__)
1681
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1682
        self._prepare_amp(amp_configs)
1683

L
Leo Chen 已提交
1684
        self._adapter.prepare()
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
    def fit(
        self,
        train_data=None,
        eval_data=None,
        batch_size=1,
        epochs=1,
        eval_freq=1,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        verbose=2,
        drop_last=False,
        shuffle=True,
        num_workers=0,
        callbacks=None,
        accumulate_grad_batches=1,
        num_iters=None,
    ):
1704 1705 1706 1707 1708
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1709 1710
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for
                train. An instance of paddle paddle.io.Dataset or
1711
                paddle.io.Dataloader is recomended. Default: None.
1712
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1713 1714
                evaluation at the end of epoch. If None, will not do evaluation.
                An instance of paddle.io.Dataset or paddle.io.Dataloader
1715
                is recomended. Default: None.
1716
            batch_size (int|list, optional): The batch size of train_data and eval_data. When
1717 1718 1719 1720
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1721
                is performed. Default: 1.
1722
            log_freq (int, optional): The frequency, in number of steps, the training logs
1723
                are printed. Default: 10.
1724
            save_dir(str|None, optional): The directory to save checkpoint during training.
1725
                If None, will not save checkpoint. Default: None.
1726
            save_freq (int, optional): The frequency, in number of epochs, to save
1727
                checkpoint. Default: 1.
1728
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1729
                1 = progress bar, 2 = one line per epoch. Default: 2.
1730
            drop_last (bool, optional): Whether drop the last incomplete batch of
1731 1732 1733
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1734
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1735 1736
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1737
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1738 1739 1740
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1741 1742 1743
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
1744
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident
L
lyuwenyu 已提交
1745
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1746
                size. Default: 1.
1747 1748 1749 1750
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1751 1752 1753 1754
        Returns:
            None

        Examples:
1755
            1. An example use Dataset and set batch size, shuffle in fit.
1756 1757 1758
               How to make a batch is done internally.

            .. code-block:: python
1759
              :name: code-example1
1760

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1794 1795 1796 1797 1798

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1799
              :name: code-example2
1800 1801 1802 1803 1804

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1805

1806 1807 1808
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1836
        """
1837
        assert train_data is not None, "train_data must be given!"
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
        if isinstance(batch_size, (tuple, list)) and all(
            [isinstance(x, int) for x in batch_size]
        ):
            assert (
                len(batch_size) == 2
            ), "batch_size length error, expected train_batch_size and eval_batch_size."
            train_batch_size, eval_batch_size = batch_size
        elif isinstance(batch_size, int):
            train_batch_size, eval_batch_size = batch_size, batch_size

1849
        if isinstance(train_data, Dataset):
1850 1851
            train_sampler = DistributedBatchSampler(
                train_data,
1852
                batch_size=train_batch_size,
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
                shuffle=shuffle,
                drop_last=drop_last,
            )
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1863 1864 1865 1866
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1867
            eval_sampler = DistributedBatchSampler(
1868
                eval_data, batch_size=eval_batch_size
1869 1870 1871 1872 1873 1874 1875 1876
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1877 1878 1879 1880 1881 1882 1883
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1884

L
lyuwenyu 已提交
1885
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1886

1887
        steps = self._len_data_loader(train_loader)
1888
        self.num_iters = num_iters
1889 1890 1891 1892 1893
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(steps, int)
        ):
1894 1895 1896
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1897 1898 1899 1900 1901 1902 1903 1904 1905
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1906 1907
            metrics=self._metrics_name(),
        )
1908

L
LiuChiachi 已提交
1909 1910 1911
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1912 1913 1914 1915 1916 1917 1918 1919 1920
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
1921 1922 1923 1924
                cbks.on_begin(
                    'eval',
                    {'steps': eval_steps, 'metrics': self._metrics_name()},
                )
1925 1926 1927 1928

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1929 1930
            if self.stop_training:
                break
1931 1932 1933

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1934

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
    def evaluate(
        self,
        eval_data,
        batch_size=1,
        log_freq=10,
        verbose=2,
        num_workers=0,
        callbacks=None,
        num_iters=None,
    ):
1945 1946 1947 1948 1949
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
1950
                evaluation. An instance of paddle.io.Dataset or
1951
                paddle.io.Dataloader is recomended.
1952 1953 1954 1955
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
1956
                are printed. Default: 10.
1957
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1958
                1 = progress bar, 2 = one line per epoch. Default: 2.
1959
            num_workers (int, optional): The number of subprocess to load data,
1960 1961 1962
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
1963
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1964 1965
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1966 1967 1968
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
1969 1970 1971 1972 1973
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1974 1975

          .. code-block:: python
1976

1977 1978 1979
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
1980

1981 1982 1983 1984 1985 1986
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1987

1988 1989 1990 1991 1992 1993 1994
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
1995 1996 1997
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
2018 2019
            metrics=self._metrics_name(),
        )
2020 2021

        eval_steps = self._len_data_loader(eval_loader)
2022
        self.num_iters = num_iters
2023 2024 2025 2026 2027
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(eval_steps, int)
        ):
2028 2029 2030
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
2031 2032 2033
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

2047 2048 2049 2050 2051 2052 2053 2054 2055
    def predict(
        self,
        test_data,
        batch_size=1,
        num_workers=0,
        stack_outputs=False,
        verbose=1,
        callbacks=None,
    ):
2056 2057 2058 2059 2060 2061 2062
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
2063 2064
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
2065
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess
2066 2067 2068 2069
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
2070
                output field will be in shape [N, X, Y] if stack_output is True, and will
2071
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
2072 2073
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
2074
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2075
                1 = progress bar, 2 = one line per batch. Default: 1.
2076
            callbacks(Callback, optional): A Callback instance, Default: None.
2077

2078 2079 2080 2081
        Returns:
            list: output of models.

        Examples:
2082 2083

          .. code-block:: python
2084

2085 2086 2087
                import numpy as np
                import paddle
                from paddle.static import InputSpec
2088

2089 2090
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
2091
                        super().__init__(mode=mode)
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
2123 2124 2125
        """

        if test_data is not None and isinstance(test_data, Dataset):
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size
            )
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2136 2137 2138 2139 2140
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

2141
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
2142 2143 2144 2145

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2146
        cbks.on_begin('predict', logs)
2147 2148 2149

        outputs = []

2150
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2161
        cbks.on_end('predict', logs)
2162 2163
        return outputs

2164
    def _save_inference_model(self, path):
2165
        """
2166
        Save inference model can be used in static or dynamic mode.
2167 2168

        Args:
2169 2170
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2171
        Returns:
2172
            None
2173 2174
        """

J
Jiabin Yang 已提交
2175
        if fluid._non_static_mode():
2176 2177
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2178
                if self._input_info is None:  # No provided or inferred
2179
                    raise RuntimeError(
L
LiuChiachi 已提交
2180
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2181 2182 2183 2184
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
2185 2186
                        % self._input_info[0]
                    )
L
LiuChiachi 已提交
2187

2188
                paddle.jit.save(layer, path, input_spec=self._inputs)
2189

2190
        else:
2191 2192 2193 2194 2195 2196
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
2197 2198
                    "file_prefix is empty string."
                )
2199 2200 2201 2202 2203 2204 2205 2206 2207

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2208
            prog = self._adapter._progs.get('test', None)
2209 2210 2211
            assert (
                prog
            ), "Model is not ready, please call `model.prepare()` first"
2212 2213 2214 2215 2216 2217

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2218 2219 2220 2221 2222 2223 2224 2225 2226
            fluid.io.save_inference_model(
                model_path,
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
                params_filename=params_filename,
            )
2227

L
update  
lyuwenyu 已提交
2228
    def _run_one_epoch(
2229 2230 2231 2232 2233 2234
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2245
            # 4. custumed iterator yield separated inputs and labels:
2246 2247 2248 2249 2250
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2251

2252 2253 2254 2255 2256
            batch_size = (
                data[0].shape()[0]
                if callable(data[0].shape)
                else data[0].shape[0]
            )
2257 2258 2259

            callbacks.on_batch_begin(mode, step, logs)

2260
            if mode != 'predict':
2261
                _inputs = [data[: len(self._inputs)], data[len(self._inputs) :]]
L
lyuwenyu 已提交
2262
                if mode == 'train':
2263 2264 2265 2266
                    _inputs.append(
                        (step + 1) % self._accumulate == 0
                        or step + 1 == len(data_loader)
                    )
L
update  
lyuwenyu 已提交
2267

L
lyuwenyu 已提交
2268
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2269

2270
                if self._metrics and self._loss:
2271
                    metrics = [[l[0] for l in outs[0]]]
2272
                elif self._loss:
2273 2274 2275
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2286
                if self._inputs is not None:
2287
                    outs = self.predict_batch(data[: len(self._inputs)])
L
LielinJiang 已提交
2288
                else:
2289
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2290

2291 2292 2293
                outputs.append(outs)

            logs['step'] = step
2294 2295 2296 2297
            if (
                mode == 'train'
                or self._adapter._merge_count.get(mode + '_batch', 0) <= 0
            ):
2298 2299 2300 2301 2302
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2303 2304
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2305 2306 2307
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2308
                    break
2309 2310
        self._reset_metrics()

2311
        if mode == 'predict':
2312 2313 2314
            return logs, outputs
        return logs

L
LielinJiang 已提交
2315
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2316 2317 2318
        """Prints a string summary of the network.

        Args:
2319 2320 2321 2322
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
                    if not set, input_size will get from ``self._inputs`` if network only have
                    one input, input_size can be tuple or InputSpec. if model have multiple
                    input, input_size must be a list which contain every input's shape.
L
LielinJiang 已提交
2323
                    Default: None.
2324
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2325 2326 2327 2328 2329 2330

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2331 2332 2333 2334 2335 2336

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2337

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2349 2350

        """
2351 2352 2353
        assert (
            input_size is not None or self._inputs is not None
        ), "'input_size' or 'self._input' must be set"
2354 2355 2356 2357
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2358
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2359

L
LiuChiachi 已提交
2360
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2361 2362
        out_specs = []

2363 2364 2365 2366 2367 2368
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2369
                # While Saving inference model in dygraph, and providing inputs only in running.
2370 2371 2372 2373
                if (
                    shapes is not None
                    and dtypes is not None
                    and fluid._non_static_mode()
L
LiuChiachi 已提交
2374
                ):
2375
                    out_specs = [
2376
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2377 2378 2379 2380 2381 2382 2383
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2384 2385
            assert is_input is False
            out_specs = [
2386 2387
                specs[n]
                for n in extract_args(self.network.forward)
2388 2389
                if n != 'self'
            ]
2390 2391 2392 2393 2394 2395 2396 2397
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2398 2399 2400 2401
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
2402 2403 2404

        return out_specs

2405 2406 2407 2408 2409
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2410
        metrics_name = ['loss'] if self._loss else []
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2421 2422 2423

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2424 2425
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
2426 2427 2428
            self._inputs = self._verify_spec(
                None, self._input_info[0], self._input_info[1], True
            )
L
LiuChiachi 已提交
2429
            self._is_shape_inferred = True