model.py 91.1 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import os
import pickle
import numpy as np
import six
import warnings
25 26 27
import time
import socket
import contextlib
28

29
import paddle
30
from paddle import fluid
31
from paddle.fluid import core
32
from paddle.fluid.framework import _non_static_mode, in_dygraph_mode
33 34
from paddle.fluid.framework import Variable
from paddle.fluid.framework import _get_paddle_place
35
from paddle.fluid.framework import _current_expected_place as _get_device
36 37 38 39
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
40 41
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
42
from paddle.fluid.layers.utils import flatten
43
from paddle.fluid.layers import collective
44

45 46 47
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
48
from paddle.metric import Metric
49
from paddle.static import InputSpec as Input
50
import paddle.distributed as dist
J
Jiaqi Liu 已提交
51 52
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet.base import role_maker
53

L
LiuChiachi 已提交
54
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
55
from .model_summary import summary
56

57
__all__ = []
58 59 60 61 62 63 64 65 66 67 68 69 70

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
H
hong 已提交
71 72 73
    assert isinstance(var, (Variable, fluid.core.VarBase,
                            fluid.core.eager.Tensor)), "not a variable"
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
107 108 109 110
    return collective._c_allgather(x,
                                   nranks,
                                   ring_id=ring_id,
                                   use_calc_stream=use_calc_stream)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138


def wait_server_ready(endpoints):
    assert not isinstance(endpoints, six.string_types)
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
                    socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


def init_communicator(program, rank, nranks, wait_port, current_endpoint,
                      endpoints):
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
139
    block = program.global_block()
140 141
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
142 143 144 145 146 147
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        block.append_op(type='c_gen_nccl_id',
                        inputs={},
                        outputs={'Out': nccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })

        block.append_op(type='c_comm_init',
                        inputs={'X': nccl_id_var},
                        outputs={},
                        attrs={
                            'nranks': nranks,
                            'rank': rank,
                            'ring_id': 0,
                        })
165 166
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
167
            name=fluid.unique_name.generate('hccl_id'),
168 169
            persistable=True,
            type=core.VarDesc.VarType.RAW)
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        block.append_op(type='c_gen_hccl_id',
                        inputs={},
                        outputs={'Out': hccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })
        block.append_op(type='c_comm_init_hccl',
                        inputs={'X': hccl_id_var},
                        outputs={},
                        attrs={
                            'rank': rank,
                            'ring_id': 0,
                            'device_id': int(os.getenv("FLAGS_selected_npus")),
                            'rank_ids': nranks
                        })
187 188 189 190 191 192 193


def prepare_distributed_context(place=None):
    if place is None:
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
            else fluid.CUDAPlace(0)

194
    place = _get_paddle_place(place)
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
            init_communicator(communicator_prog, strategy.local_rank,
                              strategy.nranks, True, strategy.current_endpoint,
                              strategy.trainer_endpoints)
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
216
        if fluid._non_static_mode():
217 218 219 220 221 222 223 224 225
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
        assert ("Only support CUDAPlace for now.")

    _parallel_context_initialized = True
    return strategy
226 227


L
LiuChiachi 已提交
228
def _update_input_info(inputs):
L
LiuChiachi 已提交
229
    "Get input shape list by given inputs in Model initialization."
230
    shapes = None
L
LiuChiachi 已提交
231
    dtypes = None
L
LiuChiachi 已提交
232 233
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
234
        dtypes = [inputs.dtype]
235
    elif isinstance(inputs, (list, tuple)):
236
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
237
        dtypes = [input.dtype for input in inputs]
238 239
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
240 241 242 243
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
244 245


246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
class StaticGraphAdapter(object):
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
277 278 279
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
280
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
281

282 283 284 285 286 287 288 289
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
290
    def train_batch(self, inputs, labels=None, update=True):
291 292 293
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
        self.mode = 'train'
L
update  
lyuwenyu 已提交
294
        assert update is True, "Does not support `update == False` in static mode by now."
295 296 297 298 299 300
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

301
    def predict_batch(self, inputs):
302 303 304 305
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
306
        return self.model.network.parameters(*args, **kwargs)
307 308

    def save(self, path):
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
326
        _save(self.model.network.state_dict(), param_path)
327 328 329 330 331 332 333 334 335 336 337 338 339 340
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
            p.name: p
            for p in filter(is_belong_to_optimizer, prog.list_vars())
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
341
    # TODO: support save/load scaler state in static graph
342 343 344 345 346 347 348 349
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
350 351
            [param for param, state in param_state_pairs], global_scope(),
            executor)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
                    np.array(converted_state.pop("global_step")) - 1
                ) if "global_step" in converted_state else converted_state.pop(
                    "@LR_DECAY_COUNTER@", None)
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
398 399
                        accum_name = name if opt_name is None else name[
                            len(opt_name) + 1:]
400 401 402 403 404
                        for param_name, state_var in self.model._optimizer._accumulators[
                                name].items():
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
405 406 407
                                for state_key in sorted(state.keys(),
                                                        key=lambda x: len(x),
                                                        reverse=True):
408 409 410 411 412 413
                                    prefix = param_name + "_" + (
                                        opt_cls_name
                                        if opt_name is None else opt_name) + "_"
                                    if state_key.startswith(prefix):
                                        prefix_offset = state_key[len(
                                            prefix):].find("_") + len(prefix)
414 415
                                        opt_unq_name = state_key[
                                            len(param_name + "_"):prefix_offset]
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
                            dy_state_name = (param_name + "_" + opt_unq_name +
                                             "_" + accum_name + "_0")
                            converted_state[
                                state_var.name] = converted_state.pop(
                                    dy_state_name)

            assert var.name in converted_state, \
                "variable [{}] is not in optimizer state file".format(var.name)
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
        assert compiled_prog, \
            "Model is not ready, please call `model.prepare()` first"

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
        assert len(inputs) == len(self._input_vars[self.mode]), \
            "number of inputs" \
            + " does not match number of arguments of `forward` method"

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
458 459
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

460 461 462 463
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
L
Leo Chen 已提交
464 465 466 467
            if self._amp_level == 'O2' and input_dtypes[
                    idx] == core.VarDesc.VarType.FP16:
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
468
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
469 470
                    feed[n] = feed[n].astype('float16')

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

        rets = self._executor.run(compiled_prog,
                                  feed=feed,
                                  fetch_list=pruned_fetch_list,
                                  return_numpy=False)

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
            if self.mode != 'train' and self.model._test_dataloader is not None \
                    and isinstance(self.model._test_dataloader, DataLoader) \
                    and self._nranks > 1:
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
                        s[:int(total_size - current_count), ...] for s in state
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
531 532 533 534 535

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
        if mode == 'train' and self.model._optimizer \
                and self.model._optimizer._learning_rate_map:
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
567 568
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
569 570
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
571
            self._label_vars[mode] = labels
572
            outputs = to_list(self.model.network.forward(*inputs))
573

574 575
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
576 577 578 579 580 581 582 583

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
584
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
585 586 587 588 589 590

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
591 592 593 594 595 596 597
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
                        dist_strategy.amp_configs[
                            'use_pure_fp16'] = self._amp_level == 'O2'
598 599
                    self.model._optimizer = fleet.distributed_optimizer(
                        self.model._optimizer, strategy=dist_strategy)
J
Jiaqi Liu 已提交
600 601
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
                    amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
602 603
                        **self._amp_custom_lists
                    ) if self._amp_custom_lists else None
J
Jiaqi Liu 已提交
604 605 606 607 608 609
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
                        **self._amp_configs)
610 611 612 613 614 615 616 617 618 619 620

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
621
            "loss": to_list(losses),
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
            "metric": metrics
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

        assert self.model._place is not None, \
            "device is not set, please call `model.prepare()` first"

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
                if not var_py.name.startswith('nccl_id') and var and \
                        var.get_tensor()._is_initialized():
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

J
Jiaqi Liu 已提交
653 654 655 656
        if self._amp_level == "O2" and mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model._optimizer.amp_init(place)

657 658 659 660 661 662 663 664 665
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
666

667 668 669 670 671 672 673 674 675 676 677 678
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

L
LiuChiachi 已提交
679
        self._input_info = None
J
Jiaqi Liu 已提交
680 681 682 683 684
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

685
        if self._nranks > 1:
686
            dist.init_parallel_env()
687 688 689 690 691
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
692 693
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
                self.model.network, stradegy)
694 695 696 697 698 699 700 701 702 703

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
704
    def train_batch(self, inputs, labels=None, update=True):
705 706
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
707
        self.model.network.train()
708 709
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
710
        self._input_info = _update_input_info(inputs)
711 712 713
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
714 715 716 717
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

718 719 720
        with paddle.amp.auto_cast(enable=self._amp_level != 'O0',
                                  **self._amp_custom_lists,
                                  level=self._amp_level):
J
Jiaqi Liu 已提交
721 722
            if self._nranks > 1:
                outputs = self.ddp_model.forward(
Z
zhangchunle 已提交
723
                    *[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
724 725
            else:
                outputs = self.model.network.forward(
Z
zhangchunle 已提交
726
                    *[to_variable(x) for x in inputs])
727

L
Leo Chen 已提交
728 729 730
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
731

J
Jiaqi Liu 已提交
732
        if self._amp_level != "O0":
L
Leo Chen 已提交
733
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
734
            scaled.backward()
L
lyuwenyu 已提交
735
            if update:
L
Leo Chen 已提交
736
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
737
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
738 739
        else:
            final_loss.backward()
L
lyuwenyu 已提交
740 741 742
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
743

744 745
        metrics = []
        for metric in self.model._metrics:
746
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
747
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
748 749 750 751 752 753
            metrics.append(m)

        return ([to_numpy(l) for l in losses], metrics) \
            if len(metrics) > 0 else [to_numpy(l) for l in losses]

    def eval_batch(self, inputs, labels=None):
754
        self.model.network.eval()
755 756
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
757
        self._input_info = _update_input_info(inputs)
758 759 760
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

Z
zhangchunle 已提交
761
        outputs = self.model.network.forward(*[to_variable(x) for x in inputs])
762 763 764 765 766 767 768 769 770

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

771 772
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
773 774
            losses = to_list(losses)

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
            if self.model._test_dataloader is not None and self._nranks > 1 \
                    and isinstance(self.model._test_dataloader, DataLoader):
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
                        o[:int(total_size - current_count)] for o in outputs
                    ]
                    labels = [
                        l[:int(total_size - current_count)] for l in labels
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

800
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
801
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
802 803
            metrics.append(m)

804
        if self.model._loss and len(metrics):
805
            return [to_numpy(l) for l in losses], metrics
806
        elif self.model._loss:
807 808 809
            return [to_numpy(l) for l in losses]
        else:
            return metrics
810

811
    def predict_batch(self, inputs):
812
        self.model.network.eval()
813 814
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
815
        self._input_info = _update_input_info(inputs)
816
        outputs = self.model.network.forward(*inputs)
817 818 819 820 821 822
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
823
        return self.model.network.parameters(*args, **kwargs)
824 825

    def save(self, path):
826
        params = self.model.network.state_dict()
827
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
828 829 830 831 832 833 834 835 836 837
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
838 839 840 841
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
842 843 844 845
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

846 847 848 849
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

850 851
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
852 853 854 855 856 857 858 859 860 861 862
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
        opt_name = opt_unq_name[:opt_unq_name.rfind("_")]  # remove suffix idx
863
        param_names = [param.name for param in self.model.network.parameters()]
864 865 866
        for var_name, state_var in sorted(optim_state.items(),
                                          key=lambda x: len(x[0]),
                                          reverse=True):
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
                    converted_state["global_step"] = np.array(
                        converted_state.pop("@LR_DECAY_COUNTER@")) + 1
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
                        accum_name = var_name[len(param_name + "_" + opt_name +
                                                  "_"):]
                    elif var_name.startswith(param_name +
                                             "_") and opt_name == opt_cls_name:
                        # when init optimizer without name
                        accum_name = var_name[len(param_name + "_"):]
                    else:
                        continue
                    # remove suffix idx
                    accum_name = accum_name[:accum_name.rfind("_")]
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
                    dy_state_name = (param_name + "_" + opt_unq_name + "_" +
                                     accum_name + "_0")
                    converted_state[dy_state_name] = state_var

896 897
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
898
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
899 900 901 902
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
903

L
Leo Chen 已提交
904 905 906 907 908 909 910 911 912 913
    def prepare(self):
        if self._amp_level == "O2" and self.model.mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
                level='O2')
        if self._amp_level != "O0":
            self.model._scaler = None

914

915
class Model(object):
916 917 918
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
919
    switched by `paddle.enable_static()`. The usage is as follows.
920
    But note, the switching between dynamic and static should be before
921
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
922
    must be required for static graph.
923

L
Leo Chen 已提交
924 925
    When training on GPU, auto mixed precision (AMP O1) and pure float16 
    (AMP O2) training are both supported in static mode and dynamic mode.
926
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
927 928
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
929 930 931 932
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
933

934
    Args:
935 936
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
937
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
938
            could be a InputSpec instance, or list/tuple of InputSpec instances,
939
            or dict ({name: InputSpec}), and it couldn't be None in static
940 941
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
942
            could be a InputSpec instnace or list/tuple of InputSpec instances,
943
            or None. For static graph, if labels is required in loss,
944
            labels must be set. Otherwise, it could be None. Default: None.
945 946


947
    Examples:
J
Jiaqi Liu 已提交
948 949
        1. A common example

950
        .. code-block:: python
951
          :name: code-example1
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
            
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
975 976
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
977 978 979 980 981 982 983

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
984 985 986 987 988


        2. An example using mixed precision training.

        .. code-block:: python
989
          :name: code-example2
J
Jiaqi Liu 已提交
990

991 992 993 994
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
995

996 997
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
998

999 1000
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1001

1002 1003
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1004

1005 1006 1007 1008 1009 1010 1011 1012 1013
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1014

1015 1016 1017 1018 1019 1020 1021
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1022

1023 1024
    """

1025
    def __init__(self, network, inputs=None, labels=None):
1026
        self.mode = 'train'
1027
        self.network = network
1028 1029
        self._inputs = None
        self._labels = None
1030
        self._loss = None
1031 1032
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1033
        self._input_info = None
1034
        self._is_shape_inferred = False
1035
        self._test_dataloader = None
L
LiuChiachi 已提交
1036
        self.stop_training = False
1037

J
Jiabin Yang 已提交
1038
        if not _non_static_mode():
1039
            if not isinstance(inputs, (list, tuple, dict, Input)):
1040
                raise TypeError(
1041 1042
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1043
        elif inputs:
L
LiuChiachi 已提交
1044
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1045

1046
        self._inputs = self._verify_spec(inputs, is_input=True)
1047
        self._labels = self._verify_spec(labels)
1048

1049
        # init backend
J
Jiabin Yang 已提交
1050
        if fluid._non_static_mode():
1051 1052 1053 1054
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1055
    def train_batch(self, inputs, labels=None, update=True):
1056
        """
L
lyuwenyu 已提交
1057 1058
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1059 1060

        Args:
1061 1062 1063
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1064
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be 
1065 1066
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
1067 1068 1069
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1102
        """
L
lyuwenyu 已提交
1103
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1104
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1105
            self._update_inputs()
1106
        return loss
1107

1108
    @paddle.no_grad()
1109 1110 1111 1112 1113
    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
1114 1115 1116
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1117
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be 
1118 1119
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
1120
                set None. Default: None.
1121 1122 1123 1124 1125 1126 1127 1128 1129

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1154
        """
1155
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1156
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1157
            self._update_inputs()
1158
        return loss
1159

1160
    @paddle.no_grad()
1161
    def predict_batch(self, inputs):
1162
        """
1163
        Run one predicting step on a batch of data.
1164 1165

        Args:
1166 1167 1168
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1169 1170 1171 1172 1173 1174 1175 1176

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
                
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1201
        """
1202
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1203
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1204
            self._update_inputs()
1205
        return loss
1206

1207 1208 1209 1210 1211
    def save(self, path, training=True):
        """  
        This function saves parameters, optimizer information or model and 
        paramters only for inference to path. It depends on the parameter
        `training`.
1212

1213 1214
        If `training` is set to True, the parameters saved contain all 
        the trainable Variable, will save to a file with suffix ".pdparams".
1215 1216 1217 1218
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1219
        This function will silently overwrite existing file at the target location.
1220

1221
        If `training` is set to False, only inference model will be saved.
1222 1223

        Args:
1224 1225 1226
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1227 1228
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1229 1230 1231 1232 1233 1234 1235

        Returns:
            None

        Examples:

            .. code-block:: python
1236

1237
                import paddle
1238
                import paddle.nn as nn
1239
                import paddle.vision.transforms as T
1240
                from paddle.static import InputSpec
1241

1242
                class Mnist(nn.Layer):
1243
                    def __init__(self):
1244
                        super(Mnist, self).__init__()
1245
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1246
                            nn.Flatten(1),
1247 1248 1249 1250
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1251

1252
                    def forward(self, x):
1253
                        return self.net(x)
1254

1255
                dynamic = True  # False
1256
                # if use static graph, do not set
1257 1258
                if not dynamic:
                    paddle.enable_static()
1259

1260 1261 1262
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1263
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1264
                    parameters=model.parameters())
1265
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1266

1267 1268 1269 1270 1271 1272
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                
1273
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1274 1275
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1276
        """
1277

1278
        if ParallelEnv().local_rank == 0:
1279 1280 1281 1282
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1301
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1302 1303
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1304 1305
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1306 1307
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1308
                a optimizer has been set to the model. Default: False.
1309 1310 1311 1312 1313 1314 1315

        Returns:
            None

        Examples:

            .. code-block:: python
1316 1317 1318 1319

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1320

1321
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1322

1323
                input = InputSpec([None, 784], 'float32', 'x')
1324

1325 1326 1327 1328 1329
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1330

1331 1332
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1333 1334 1335 1336 1337 1338
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1339
                return pickle.load(f, encoding='latin1')
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
                    "{} is not found in the providing file.".format(key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
            assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
                    "Unknown postfix {} from weights".format(ext)
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1363
        for key, param in self.network.state_dict().items():
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
                        ("Skip loading for {}. ".format(key) + str(err)))
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

        optim_state = None if reset_optimizer else _load_state_from_path(
            path + ".pdopt")
L
Leo Chen 已提交
1378 1379

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1380
        if _non_static_mode():
L
Leo Chen 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

            return self._adapter.load(matched_param_state, optim_state,
                                      scaler_state)
        else:
            return self._adapter.load(matched_param_state, optim_state)
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1402 1403 1404 1405
            
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1406

1407 1408 1409 1410 1411 1412
                input = InputSpec([None, 784], 'float32', 'x')
                
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1413

1414
                params = model.parameters()
1415 1416 1417
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1418
    def _prepare_amp(self, amp_configs):
1419

J
Jiaqi Liu 已提交
1420 1421
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1422 1423 1424 1425
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
                assert isinstance(self._optimizer._grad_clip, (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm)), \
                     "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'.")
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'.")
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1455
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
                    'custom_white_list', 'custom_black_list',
                    'custom_black_varnames'
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
                        param_name]
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1483 1484
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized."
                    .format(tuple(amp_config_key_set - accepted_param_set)))
J
Jiaqi Liu 已提交
1485 1486

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1487
                if _non_static_mode():
J
Jiaqi Liu 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
                    raise ValueError(
                        "'use_fp16_guard' is supported in static mode only.")
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1499 1500 1501 1502
    def prepare(self,
                optimizer=None,
                loss=None,
                metrics=None,
J
Jiaqi Liu 已提交
1503
                amp_configs=None):
1504 1505 1506 1507
        """
        Configures the model before runing.

        Args:
1508
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1509
                and should be a Optimizer instance. It can be None in eval
1510 1511
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1512
                be a `paddle.nn.Layer` instance or any callable function
1513
                taken the predicted values and ground truth values as input.
1514 1515 1516 1517
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1518 1519 1520
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1521 1522
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1523 1524 1525 1526
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1527 1528 1529 1530 1531 1532
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1533

1534 1535 1536
        Returns:
            None
        """
1537 1538
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1539 1540
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
J
Jiabin Yang 已提交
1541
                if fluid._non_static_mode():
1542 1543 1544 1545
                    main_prog_seed = fluid.default_main_program().random_seed
                    startup_prog_seed = fluid.default_startup_program(
                    ).random_seed
                    fluid.disable_dygraph()
1546
                    paddle.disable_static(self._place)
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
                    fluid.default_startup_program(
                    ).random_seed = startup_prog_seed
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1557 1558
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1559 1560 1561
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1562
        self._loss = loss
1563 1564 1565 1566 1567 1568 1569

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1570
        self._prepare_amp(amp_configs)
1571

L
Leo Chen 已提交
1572
        self._adapter.prepare()
1573

1574
    def fit(self,
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
            train_data=None,
            eval_data=None,
            batch_size=1,
            epochs=1,
            eval_freq=1,
            log_freq=10,
            save_dir=None,
            save_freq=1,
            verbose=2,
            drop_last=False,
            shuffle=True,
            num_workers=0,
L
update  
lyuwenyu 已提交
1587
            callbacks=None,
1588 1589
            accumulate_grad_batches=1,
            num_iters=None):
1590 1591 1592 1593 1594
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1595
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for 
1596 1597
                train. An instance of paddle paddle.io.Dataset or 
                paddle.io.Dataloader is recomended. Default: None.
1598
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1599 1600 1601
                evaluation at the end of epoch. If None, will not do evaluation. 
                An instance of paddle.io.Dataset or paddle.io.Dataloader 
                is recomended. Default: None.
1602 1603 1604 1605 1606
            batch_size (int, optional): The batch size of train_data and eval_data. When 
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1607
                is performed. Default: 1.
1608
            log_freq (int, optional): The frequency, in number of steps, the training logs
1609
                are printed. Default: 10.
1610
            save_dir(str|None, optional): The directory to save checkpoint during training.
1611
                If None, will not save checkpoint. Default: None.
1612
            save_freq (int, optional): The frequency, in number of epochs, to save
1613
                checkpoint. Default: 1.
1614
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1615
                1 = progress bar, 2 = one line per epoch. Default: 2.
1616
            drop_last (bool, optional): Whether drop the last incomplete batch of
1617 1618 1619
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1620
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1621 1622
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1623
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1624 1625 1626
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1627 1628 1629 1630
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident 
L
lyuwenyu 已提交
1631
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1632
                size. Default: 1.
1633 1634 1635 1636
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1637 1638 1639 1640
        Returns:
            None

        Examples:
1641
            1. An example use Dataset and set batch size, shuffle in fit.
1642 1643 1644
               How to make a batch is done internally.

            .. code-block:: python
1645
              :name: code-example1
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1680 1681 1682 1683 1684

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1685
              :name: code-example2
1686 1687 1688 1689 1690

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
                
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1709

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1722 1723 1724 1725 1726
        """
        assert train_data is not None, \
                "train_data must be given!"

        if isinstance(train_data, Dataset):
1727 1728 1729 1730 1731 1732 1733 1734 1735
            train_sampler = DistributedBatchSampler(train_data,
                                                    batch_size=batch_size,
                                                    shuffle=shuffle,
                                                    drop_last=drop_last)
            train_loader = DataLoader(train_data,
                                      batch_sampler=train_sampler,
                                      places=self._place,
                                      num_workers=num_workers,
                                      return_list=True)
1736 1737 1738 1739
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1740 1741 1742 1743 1744 1745 1746
            eval_sampler = DistributedBatchSampler(eval_data,
                                                   batch_size=batch_size)
            eval_loader = DataLoader(eval_data,
                                     batch_sampler=eval_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1747 1748 1749 1750 1751 1752 1753
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1754

L
lyuwenyu 已提交
1755
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1756

1757
        steps = self._len_data_loader(train_loader)
1758
        self.num_iters = num_iters
1759 1760
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                steps, int):
1761 1762 1763
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1764 1765 1766 1767 1768 1769 1770 1771 1772
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1773 1774
            metrics=self._metrics_name(),
        )
1775

L
LiuChiachi 已提交
1776 1777 1778
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
                cbks.on_begin('eval', {
                    'steps': eval_steps,
                    'metrics': self._metrics_name()
                })

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1796 1797
            if self.stop_training:
                break
1798 1799 1800

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1801

1802 1803 1804 1805 1806 1807 1808 1809
    def evaluate(self,
                 eval_data,
                 batch_size=1,
                 log_freq=10,
                 verbose=2,
                 num_workers=0,
                 callbacks=None,
                 num_iters=None):
1810 1811 1812 1813 1814 1815 1816
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation. An instance of paddle.io.Dataset or 
                paddle.io.Dataloader is recomended.
1817 1818 1819 1820
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
1821
                are printed. Default: 10.
1822
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1823
                1 = progress bar, 2 = one line per epoch. Default: 2.
1824
            num_workers (int, optional): The number of subprocess to load data,
1825 1826 1827
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
1828
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1829 1830
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1831 1832 1833
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
1834 1835 1836 1837 1838
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1839 1840

          .. code-block:: python
1841

1842 1843 1844
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
1845

1846 1847 1848 1849 1850 1851
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1852

1853 1854 1855 1856 1857 1858 1859
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
1860 1861 1862
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
1863 1864 1865 1866 1867 1868 1869
            eval_sampler = DistributedBatchSampler(eval_data,
                                                   batch_size=batch_size)
            eval_loader = DataLoader(eval_data,
                                     batch_sampler=eval_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
1880 1881
            metrics=self._metrics_name(),
        )
1882 1883

        eval_steps = self._len_data_loader(eval_loader)
1884
        self.num_iters = num_iters
1885 1886
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                eval_steps, int):
1887 1888 1889
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
1890 1891 1892 1893
        cbks.on_begin('eval', {
            'steps': eval_steps,
            'metrics': self._metrics_name()
        })
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

    def predict(self,
                test_data,
                batch_size=1,
                num_workers=0,
                stack_outputs=False,
1912
                verbose=1,
1913 1914 1915 1916 1917 1918 1919 1920
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
1921 1922 1923 1924 1925 1926 1927
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess 
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
1928
                output field will be in shape [N, X, Y] if stack_output is True, and will
1929
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
1930 1931
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
1932
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1933
                1 = progress bar, 2 = one line per batch. Default: 1.
1934
            callbacks(Callback, optional): A Callback instance, Default: None.
1935

1936 1937 1938 1939
        Returns:
            list: output of models.

        Examples:
1940 1941

          .. code-block:: python
1942

1943 1944 1945
                import numpy as np
                import paddle
                from paddle.static import InputSpec
1946

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
                        super(MnistDataset, self).__init__(mode=mode)
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
1981 1982 1983
        """

        if test_data is not None and isinstance(test_data, Dataset):
1984 1985 1986 1987 1988 1989 1990
            test_sampler = DistributedBatchSampler(test_data,
                                                   batch_size=batch_size)
            test_loader = DataLoader(test_data,
                                     batch_sampler=test_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1991 1992 1993 1994 1995
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

1996
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
1997 1998 1999 2000

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2001
        cbks.on_begin('predict', logs)
2002 2003 2004

        outputs = []

2005
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2016
        cbks.on_end('predict', logs)
2017 2018
        return outputs

2019
    def _save_inference_model(self, path):
2020
        """
2021
        Save inference model can be used in static or dynamic mode.
2022 2023

        Args:
2024 2025
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2026
        Returns:
2027
            None
2028 2029
        """

J
Jiabin Yang 已提交
2030
        if fluid._non_static_mode():
2031 2032
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2033
                if self._input_info is None:  # No provided or inferred
2034
                    raise RuntimeError(
L
LiuChiachi 已提交
2035
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2036 2037 2038 2039
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
L
LiuChiachi 已提交
2040 2041
                        % self._input_info[0])

2042
                paddle.jit.save(layer, path, input_spec=self._inputs)
2043

2044
        else:
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
                    "file_prefix is empty string.")

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2061 2062 2063 2064 2065 2066 2067 2068 2069
            prog = self._adapter._progs.get('test', None)
            assert prog, \
                "Model is not ready, please call `model.prepare()` first"

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2070 2071 2072 2073 2074 2075 2076
            fluid.io.save_inference_model(model_path,
                                          input_names,
                                          endpoints,
                                          self._adapter._executor,
                                          main_program=infer_prog,
                                          model_filename=model_filename,
                                          params_filename=params_filename)
2077

L
update  
lyuwenyu 已提交
2078
    def _run_one_epoch(
2079 2080 2081 2082 2083 2084
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2095
            # 4. custumed iterator yield separated inputs and labels:
2096 2097 2098 2099 2100
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2101

2102 2103
            batch_size = data[0].shape()[0] if callable(
                data[0].shape) else data[0].shape[0]
2104 2105 2106

            callbacks.on_batch_begin(mode, step, logs)

2107
            if mode != 'predict':
L
lyuwenyu 已提交
2108 2109
                _inputs = [data[:len(self._inputs)], data[len(self._inputs):]]
                if mode == 'train':
2110 2111
                    _inputs.append((step + 1) % self._accumulate == 0
                                   or step + 1 == len(data_loader))
L
update  
lyuwenyu 已提交
2112

L
lyuwenyu 已提交
2113
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2114

2115
                if self._metrics and self._loss:
2116
                    metrics = [[l[0] for l in outs[0]]]
2117
                elif self._loss:
2118 2119 2120
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2131
                if self._inputs is not None:
2132
                    outs = self.predict_batch(data[:len(self._inputs)])
L
LielinJiang 已提交
2133
                else:
2134
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
                outputs.append(outs)

            logs['step'] = step
            if mode == 'train' or self._adapter._merge_count.get(
                    mode + '_batch', 0) <= 0:
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2146 2147
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2148 2149 2150
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2151
                    break
2152 2153
        self._reset_metrics()

2154
        if mode == 'predict':
2155 2156 2157
            return logs, outputs
        return logs

L
LielinJiang 已提交
2158
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2159 2160 2161 2162 2163 2164 2165 2166
        """Prints a string summary of the network.

        Args:
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor. 
                    if not set, input_size will get from ``self._inputs`` if network only have 
                    one input, input_size can be tuple or InputSpec. if model have multiple 
                    input, input_size must be a list which contain every input's shape. 
                    Default: None.
2167
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2168 2169 2170 2171 2172 2173

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2174 2175 2176 2177 2178 2179

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2192 2193

        """
2194 2195
        assert (input_size is not None or self._inputs
                is not None), "'input_size' or 'self._input' must be set"
2196 2197 2198 2199
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2200
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2201

L
LiuChiachi 已提交
2202
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2203 2204
        out_specs = []

2205 2206 2207 2208 2209 2210
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2211
                # While Saving inference model in dygraph, and providing inputs only in running.
J
Jiabin Yang 已提交
2212
                if shapes is not None and dtypes is not None and fluid._non_static_mode(
L
LiuChiachi 已提交
2213
                ):
2214
                    out_specs = [
2215
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2216 2217 2218 2219 2220 2221 2222
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2223 2224 2225 2226 2227
            assert is_input is False
            out_specs = [
                specs[n] for n in extract_args(self.network.forward)
                if n != 'self'
            ]
2228 2229 2230 2231 2232 2233 2234 2235
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2236 2237
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
2238 2239 2240

        return out_specs

2241 2242 2243 2244 2245
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2246
        metrics_name = ['loss'] if self._loss else []
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2257 2258 2259

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2260 2261 2262 2263 2264
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
            self._inputs = self._verify_spec(None, self._input_info[0],
                                             self._input_info[1], True)
            self._is_shape_inferred = True