parallel_executor.cc 73.5 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

24
#include "paddle/fluid/framework/convert_utils.h"
Q
Qiao Longfei 已提交
25
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/bind_threaded_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
29
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
30
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
31
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33 34
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
35
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
36
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
37
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
38
#include "paddle/fluid/framework/variable_helper.h"
39
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
W
wangchaochaohu 已提交
40
#include "paddle/fluid/platform/event.h"
41
#include "paddle/fluid/platform/profiler.h"
42
#include "paddle/fluid/platform/profiler/event_tracing.h"
Y
Yu Yang 已提交
43

44
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
45 46 47
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif

48 49
DECLARE_double(eager_delete_tensor_gb);

50 51 52 53
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
DECLARE_bool(sync_nccl_allreduce);
#endif

Y
Yu Yang 已提交
54
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
55
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
56
#endif
57
PADDLE_DEFINE_EXPORTED_string(
58 59
    pe_profile_fname,
    "",
60 61
    "Profiler filename for PE, which generated by gperftools."
    "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
Y
Yu Yang 已提交
62

Y
Yang Yang 已提交
63
namespace paddle {
Y
Yu Yang 已提交
64 65
namespace framework {

Y
Yu Yang 已提交
66
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
67
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
68
static bool gProfileStarted = false;
Y
Yu Yang 已提交
69
#endif
70

71
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
72 73 74
std::once_flag p2p_init_flag;
#endif

Y
Yu Yang 已提交
75 76
class ParallelExecutorPrivate {
 public:
77 78 79
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
80
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
81 82
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
83
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
84 85 86
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
87
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
88 89 90 91
#endif
      });
    }
  }
Y
Yu Yang 已提交
92

93 94 95 96 97 98 99 100 101 102 103
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
104

105
  bool IsUseCUDA(DeviceType use_device);
106

107 108 109 110
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

111
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
112 113 114

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

Z
Zeng Jinle 已提交
115 116 117 118 119 120 121
  void ApplyFixOpRunOrderPass(ir::Graph *graph) {
    if (build_strategy_.fix_op_run_order_) {
      auto pass = ir::PassRegistry::Instance().Get("fix_op_run_order_pass");
      pass->Apply(graph);
    }
  }

122
  /**
T
tianshuo78520a 已提交
123 124
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
125 126 127 128 129 130
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
131
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
132 133
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
134
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
135 136 137 138
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
139 140 141 142 143
    if (mem_opt_var_infos_.size() == 0) {
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
144 145 146 147 148 149
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

150
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
167 168
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
169 170 171 172 173 174 175 176 177 178 179 180
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
181
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
182 183
      } else {
        nccl_id = new ncclUniqueId();
184
        PADDLE_ENFORCE_EQ(
185 186
            platform::dynload::ncclGetUniqueId(nccl_id),
            ncclSuccess,
187 188 189
            platform::errors::PreconditionNotMet(
                "PaddlePaddle failed to get NCCL unique ID. It may due to your "
                "system settings or NCCL library error, please debug on NCCL"));
190 191
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
192 193 194 195
      }

      flat_nccl_ids.push_back(nccl_id);

196 197
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
198 199 200 201 202 203
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
204 205
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
206 207 208 209 210 211
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
212 213 214
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
215 216 217 218
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

219 220
    nccl_ctxs_->InitFlatCtxs(
        places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
221 222

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
223 224 225 226
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
227 228 229
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
230 231 232
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
233 234 235 236 237

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
238 239 240
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
241 242 243
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
244

245
      nccl_ctxs_->InitHierarchicalCtxs(
246 247 248 249 250 251
          places_,
          inter_nccl_ids,
          exter_nccl_ids,
          bst.num_trainers_,
          bst.trainer_id_,
          bst.hierarchical_allreduce_inter_nranks_,
252
          bst.hierarchical_allreduce_exter_nranks_);
253 254
    }
  }
255

256
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
257 258 259
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
260 261
      PADDLE_ENFORCE_EQ(var->IsInitialized(),
                        true,
262 263
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
264 265 266 267 268 269
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

270
    if (bst->use_hierarchical_allreduce_) {
271
      PADDLE_ENFORCE_GT(
272 273
          bst->num_trainers_,
          1,
274 275 276 277
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
278 279
          bst->hierarchical_allreduce_inter_nranks_,
          1,
280 281 282 283
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
284 285
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_,
          0,
286
          platform::errors::PreconditionNotMet(
287 288
              "num_trainers:%llu mod inter_nranks:%d != 0",
              bst->num_trainers_,
289
              bst->hierarchical_allreduce_inter_nranks_));
290 291 292 293 294

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

295 296
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
297
    InitNCCLCtxs(scope, *bst);
298
  }
299 300
#endif

301 302 303 304 305 306
#if defined(PADDLE_WITH_XPU_BKCL)
  void InitBKCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "bkcl comm num:" << bst.bkcl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

307 308
    PADDLE_ENFORCE_EQ(bst.use_hierarchical_allreduce_,
                      false,
309 310 311 312 313 314
                      platform::errors::Unimplemented(
                          "xpu doesn't support use_hierarchical_allreduce"));

    std::vector<BKCLUniqueId *> flat_bkcl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create bkclid when nranks==1
315 316
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one bkclid in pg model";

      BKCLUniqueId *bkcl_id = nullptr;

      std::string var_name = platform::GetFlatBKCLVarName(0);
      auto bkcl_id_var = scope->FindVar(var_name);
      std::unique_ptr<BKCLUniqueId> id(new BKCLUniqueId());
      if (bkcl_id_var) {
        bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      } else {
        PADDLE_ENFORCE_EQ(
332 333
            bkcl_get_unique_id(id.get()),
            BKCL_SUCCESS,
334 335 336 337 338 339
            platform::errors::Unavailable("bkcl get unique id failed"));
        bkcl_id = id.get();
      }

      flat_bkcl_ids.push_back(bkcl_id);

340 341
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
342 343 344 345 346 347
      VLOG(1) << "init bst bkcl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
348 349
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
350 351 352 353 354 355 356 357 358 359 360 361 362
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.bkcl_comm_num_); i++) {
      std::string var_name = platform::GetFlatBKCLVarName(i);
      auto bkcl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
          bkcl_id_var,
          platform::errors::NotFound("can't find %s bkcl_id_var", var_name));
      auto bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      flat_bkcl_ids.push_back(bkcl_id);
    }

363 364
    bkcl_ctxs_->InitFlatCtxs(
        places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
365 366 367 368 369 370 371
  }

  void InitOrGetBKCLCommunicator(framework::Scope *scope,
                                 const BuildStrategy &bst) {
    const std::string var_name = "BKCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
372 373
      PADDLE_ENFORCE_EQ(var->IsInitialized(),
                        true,
374 375 376 377 378 379 380 381 382 383 384 385 386 387
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      bkcl_ctxs_ = var->GetMutable<platform::BKCLCommunicator>();
      return;
    }

    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    bkcl_ctxs_ = scope->Var(var_name)->GetMutable<platform::BKCLCommunicator>();
    InitBKCLCtxs(scope, bst);
  }
#endif

388 389 390 391 392
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
393
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
394 395
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
396
  std::vector<Scope *> local_exec_scopes_;
397
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
398
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
399

400 401
  std::unordered_map<std::string, bool> is_persistable_;

402
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
403
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
404 405
#elif defined(PADDLE_WITH_XPU_BKCL)
  platform::BKCLCommunicator *bkcl_ctxs_{nullptr};
Y
Yu Yang 已提交
406
#endif
C
chengduoZH 已提交
407
  bool own_local_scope_;
408
  DeviceType use_device_;
409
  bool use_all_reduce_;
410
  size_t nranks_;
S
sneaxiy 已提交
411

412
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
413
  ir::GarbageCollectorMap gcs_;
414 415

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
416 417
};

418 419
bool ParallelExecutorPrivate::IsUseCUDA(DeviceType use_device) {
  return use_device == p::kCUDA;
420 421
}

422 423 424 425 426 427 428 429 430 431
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

432
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
449
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
450 451 452 453
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

454 455 456 457 458 459 460 461
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

462 463 464 465
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
466
    addto_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
467 468 469 470 471
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

472 473 474 475 476
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
477
    inplace_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
478 479 480
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
481 482
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
483 484
  }

485
  if (build_strategy_.memory_optimize_.get()) {
486 487 488 489 490 491
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
492
    cross_op_memory_reuse_pass->Set(ir::kUseCuda,
493
                                    new bool(use_device_ == p::kCUDA));
494 495 496
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
497 498 499
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
500
  }
501

502
  if (!is_gc_enabled) {
503 504 505 506
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
507 508 509 510 511
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
512
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
513
    if (platform::is_gpu_place(place)) {
514
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
515
      if (IsFastEagerDeletionModeEnabled()) {
516
        gc.reset(new UnsafeFastGPUGarbageCollector(place, max_memory_size));
S
sneaxiy 已提交
517
      } else {
518
        gc.reset(new StreamGarbageCollector(place, max_memory_size));
S
sneaxiy 已提交
519 520
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
521 522 523 524
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDA device since it's not compiled with CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
S
sneaxiy 已提交
525
#endif
526 527
    } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU)
528
      gc.reset(new XPUGarbageCollector(place, max_memory_size));
529 530 531 532 533
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use XPU device since it's not compiled with XPU,"
          "Please recompile or reinstall Paddle with XPU support."));
534 535 536 537 538 539 540 541 542
#endif
    } else if (platform::is_ipu_place(place)) {
#if defined(PADDLE_WITH_IPU)
      gc.reset(new IPUGarbageCollector(place, max_memory_size));
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use IPU device since it's not compiled with IPU,"
          "Please recompile or reinstall Paddle with IPU support."));
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
#endif
    } else if (platform::is_custom_place(place)) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
      if (IsFastEagerDeletionModeEnabled()) {
        gc.reset(
            new CustomDeviceUnsafeFastGarbageCollector(place, max_memory_size));
      } else {
        gc.reset(new CustomStreamGarbageCollector(place, max_memory_size));
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use custom device since it's not compiled with "
          "CustomDevice,"
          "Please recompile or reinstall Paddle with CustomDevice support."));
S
sneaxiy 已提交
558
#endif
559
    } else if (platform::is_cpu_place(place)) {
560
      gc.reset(new CPUGarbageCollector(place, max_memory_size));
561 562 563 564 565
      VLOG(10) << "Created GarbageCollector at " << place;
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Unsupported place for garbage collection"));
    }
S
sneaxiy 已提交
566
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
567 568
  }

S
sneaxiy 已提交
569
  if (!gcs_.empty()) {
S
sneaxiy 已提交
570 571
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
572 573
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
574 575
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
576
                                     &last_live_ops_of_vars);
577
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
578
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
579
    VLOG(10) << "EagerDeletionPass Applied";
580 581 582
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
583 584 585 586
  }
  return graph;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

602 603
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

604 605 606 607
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

622
void InitP2P(const std::vector<platform::Place> &places) {
623
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
624 625 626 627 628 629
  std::call_once(p2p_init_flag, [&]() {
    int count = places.size();
    if (count <= 1) return;

    std::vector<int> devices;
    for (int i = 0; i < count; i++) {
630
      if (!platform::is_gpu_place(places[i])) return;
631

632
      platform::CUDAPlace device = places[i];
633 634 635 636 637 638 639
      devices.push_back(device.GetDeviceId());
    }

    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
640 641 642 643 644
#ifdef PADDLE_WITH_HIP
        hipError_t ret =
            hipDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != hipSuccess || can_acess != 1) {
#else
645 646 647
        cudaError_t ret =
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != cudaSuccess || can_acess != 1) {
648
#endif
649 650 651 652
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
          platform::CUDADeviceGuard guard(devices[i]);
653 654 655
#ifdef PADDLE_WITH_HIP
          hipDeviceEnablePeerAccess(devices[j], 0);
#else
656
          cudaDeviceEnablePeerAccess(devices[j], 0);
657
#endif
658 659 660 661 662 663 664 665
        }
      }
    }
    VLOG(1) << "init p2p";
  });
#endif
}

Y
Yan Xu 已提交
666 667 668 669 670 671 672 673
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
674
    : member_(new ParallelExecutorPrivate(places, scope)) {
675
  PADDLE_ENFORCE_EQ(places.size() > 0 && !platform::is_npu_place(places[0]),
676 677 678
                    true,
                    platform::errors::Unavailable(
                        "NPU is not supported in ParallelExecutor."));
679
  InitP2P(places);
680 681
  ir::InitReaderQueueDeviceCount(
      graph, *(member_->global_scope_), member_->places_.size());
682
  // Initialize necessary info of member_ with strategy.
683 684
  InitExecutorPrivateMemberInfo(
      exec_strategy, build_strategy, places.size(), *graph);
Y
Yancey1989 已提交
685

686 687 688 689
  // Step 1. Create local scopes and Clone graph into multi device
  CreateLocalScopes(scope, local_scopes, /*create_new*/ true);
  std::vector<ir::Graph *> graphs = CloneGraphToMultiDevices(graph);
  PrepareNCCLCommunicator(scope);
690

Y
Yan Xu 已提交
691 692
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
693
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
694 695 696 697 698 699 700 701 702 703
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
  if (need_broadcast()) {
C
chengduo 已提交
704
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
705
  }
706

Q
Qiao Longfei 已提交
707 708
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
709 710
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, loss_var_name);
711
  PrepareForCUDAGraphCapture(graph);
712
  graph = member_->ApplyMemoryOptimizePass(graph);
Q
Qiao Longfei 已提交
713 714
  async_graphs[0] = graph;

715 716
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
717
  std::vector<details::VariableInfo> var_infos;
718 719 720
  CreateVariableInfos(&var_infos, graph);
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new*/ true);
721

722 723 724
  // Step 4. Create SSAGraph executor
  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);
725

726 727 728
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
  if (!member_->build_strategy_.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
729 730 731 732 733 734
        exec_strategy,
        member_->local_scopes_,
        member_->local_exec_scopes_,
        std::move(var_infos),
        member_->places_,
        std::move(member_->executor_)));
735 736
  }

737 738 739
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
  SetReaderOpDeviceInfoOfGraphs(final_graphs);
}
740

741 742
ParallelExecutor::ParallelExecutor(const platform::Place &place,
                                   Scope *scope,
743 744 745 746 747
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
    : member_(new ParallelExecutorPrivate({place}, scope)) {
  // Initialize necessary info of member_ with strategy.
748 749 750 751
  InitExecutorPrivateMemberInfo(exec_strategy,
                                build_strategy,
                                /*device_count=*/1,
                                *graph);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

  CreateLocalScopes(scope, /*local_scope=*/{scope}, /*create_new=*/false);

  // Apply BuildStrategy to compile graph.
  std::vector<ir::Graph *> graphs = {graph};
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, /*loss_var_name=*/"");

  graph = member_->ApplyMemoryOptimizePass(graph);

  // Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  CreateVariableInfos(&var_infos_, graph);

  // Create local execution scopes
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new=*/false);

  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);

  // Set scope_map of op from each graph
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
}

void ParallelExecutor::PrepareVariables(Scope *scope) {
  for (auto &info : var_infos_) {
    auto var = scope->FindVar(info.name_);
    if (var != nullptr) {
      VLOG(2) << info.name_
              << " has been initialized beforehand in global scope, skipped.";
      continue;
    }
    framework::InitializeVariable(scope->Var(info.name_), info.type_);
  }
}

789 790 791 792 793 794
void ParallelExecutor::BCastParamsToDevices(
    const std::vector<std::string> &vars, int trainer_id) const {
  VLOG(3) << "BCastParamsToDevices";
  // the initializing bcast, all vars would be bcast from device(0).
  for (auto &var : vars) {
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
795
    if (main_var == nullptr || !main_var->IsType<phi::DenseTensor>()) {
796 797
      continue;
    }
798

799
    auto &main_tensor = main_var->Get<phi::DenseTensor>();
800 801 802 803 804 805 806 807 808 809
    if (!main_tensor.IsInitialized()) {
      VLOG(3) << "one in var not inited, return!";
      continue;
    }
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
810 811
      auto dtype = framework::TransToProtoVarType(main_tensor.dtype());
      ncclDataType_t data_type = platform::ToNCCLDataType(dtype);
812 813 814
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
815

816
        if (i == 0 && trainer_id == 0) {
817
          buffer = const_cast<void *>(main_tensor.data());
818 819
        } else {
          auto local_scope = member_->local_scopes_[i];
820
          auto *t = local_scope->Var(var)->GetMutable<phi::DenseTensor>();
821
          t->Resize(dims);
822
          buffer = t->mutable_data(place, main_tensor.dtype());
823 824 825
        }
        buffers.push_back(buffer);
      }
826

827 828
      PADDLE_ENFORCE_EQ(member_->places_.size(),
                        buffers.size(),
829 830 831
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
832 833
                            buffers.size(),
                            member_->places_.size()));
834
      if (member_->nccl_ctxs_ != nullptr) {
835
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
836 837
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
838
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
839 840 841 842 843 844
          platform::dynload::ncclBcast(buffers[i],
                                       numel,
                                       data_type,
                                       0,
                                       nccl_ctx.comm_,
                                       nccl_ctx.stream());
845
        }
846
        nccl_ctxs->WaitAll();
847 848
      } else {
        auto src_place = member_->places_[0];
L
Leo Chen 已提交
849
        auto src_dev_ctx = static_cast<phi::GPUContext *>(
850 851 852 853
            platform::DeviceContextPool::Instance().Get(src_place));
        auto sizeof_dtype = framework::SizeOfType(dtype) * numel;
        for (size_t i = 1; i < member_->places_.size(); ++i) {
          auto dst_place = member_->places_[i];
L
Leo Chen 已提交
854
          auto dst_dev_ctx = static_cast<phi::GPUContext *>(
855 856 857
              platform::DeviceContextPool::Instance().Get(dst_place));
          src_dev_ctx->Wait();
          dst_dev_ctx->Wait();
858 859 860 861 862 863
          memory::Copy(dst_place,
                       buffers[i],
                       src_place,
                       buffers[0],
                       sizeof_dtype,
                       src_dev_ctx->stream());
864 865 866
          src_dev_ctx->Wait();
          dst_dev_ctx->Wait();
        }
867
      }
868 869 870 871 872 873
#endif
    } else if (paddle::platform::is_xpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_XPU_BKCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
874 875 876 877 878
      // TODO(liuyuhui): BKCL only support parameters using float type,
      // other parameters need to be strongly converted to float before
      // broadcasting,
      // but broadcast is equivalent to no type of operation, does not affect
      // correctness.
879
      BKCLDataType data_type = BKCL_FLOAT;
880 881
      // BKCLDataType data_type =
      // platform::ToBKCLDataType(framework::TransToProtoVarType(main_tensor.dtype()));
882 883 884 885 886
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;

        if (i == 0 && trainer_id == 0) {
887
          buffer = const_cast<void *>(main_tensor.data());
888 889
        } else {
          auto local_scope = member_->local_scopes_[i];
890
          auto *t = local_scope->Var(var)->GetMutable<phi::DenseTensor>();
891
          t->Resize(dims);
892
          buffer = t->mutable_data(place, main_tensor.dtype());
893 894 895 896
        }
        buffers.push_back(buffer);
      }

897 898
      PADDLE_ENFORCE_EQ(member_->places_.size(),
                        buffers.size(),
899 900 901
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
902 903
                            buffers.size(),
                            member_->places_.size()));
904 905 906 907
      {
        auto *bkcl_ctxs = member_->bkcl_ctxs_->DefaultFlatCtx();

        PADDLE_ENFORCE_EQ(
908 909
            bkcl_group_start(),
            BKCL_SUCCESS,
910 911 912
            platform::errors::Unavailable("bkcl_group_start failed"));
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[i]);
913
          auto broadcast_numel = numel;
914 915
          if (framework::TransToProtoVarType(main_tensor.dtype()) ==
              framework::proto::VarType::INT64) {
916
            broadcast_numel *= 2;
917 918
          }
          PADDLE_ENFORCE_EQ(
919 920 921 922 923 924 925
              bkcl_broadcast(bkcl_ctx.comm(),
                             buffers[i],
                             buffers[i],
                             broadcast_numel,
                             data_type,
                             0,
                             NULL),
926 927 928 929
              BKCL_SUCCESS,
              platform::errors::Unavailable("bkcl_broadcast failed"));
        }
        PADDLE_ENFORCE_EQ(
930 931
            bkcl_group_end(),
            BKCL_SUCCESS,
932 933 934 935 936
            platform::errors::Unavailable("bkcl_group_end failed"));
      }
#else
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with BKCL."));
C
chengduoZH 已提交
937
#endif
938 939
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
940
      for (size_t i = 1; i < member_->places_.size(); ++i) {
941
        auto local_scope = member_->local_scopes_[i];
942
        auto *t = local_scope->Var(var)->GetMutable<phi::DenseTensor>();
C
chengduo 已提交
943

Q
Qiao Longfei 已提交
944
        auto copy_memory = [&] {
945
          t->Resize(dims);
946
          t->mutable_data(cpu, main_tensor.dtype());
947
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
948 949
        };

Q
Qiao Longfei 已提交
950
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
951 952 953 954

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
955 956
        } else if (member_->use_all_reduce_ ||
                   member_->IsUseCUDA(member_->use_device_) ||
Q
can run  
Qiao Longfei 已提交
957 958
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
959
        } else {
Q
can run  
Qiao Longfei 已提交
960
          share_memory();
961
        }
Y
Yu Yang 已提交
962
      }
Y
Stash  
Yu Yang 已提交
963 964
    }
  }
Y
Yu Yang 已提交
965
}
Y
Yu Yang 已提交
966

967 968
FetchUnmergedList ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
969
  LOG_FIRST_N(INFO, 1) << "ParallelExecutor is Running (Run).";
970 971
  PreludeToRun(fetch_tensors);
  platform::RecordBlock b(0);
972

973 974 975 976 977
  ResetHasFeedGuard reset_has_feed_guard(member_);

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                fetch_tensors,
                                member_->HasGarbageCollectors());
Y
Yu Yang 已提交
978

979 980 981
  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
  auto fetch_data =
      member_->executor_->Run(fetch_tensors, /*return_merged=*/false);
R
Ruibiao Chen 已提交
982
  return PADDLE_GET(FetchUnmergedList, fetch_data);
983 984 985 986
}

FetchList ParallelExecutor::RunAndMerge(
    const std::vector<std::string> &fetch_tensors) {
987
  LOG_FIRST_N(INFO, 1) << "ParallelExecutor is Running (RunAndMerge).";
988
  PreludeToRun(fetch_tensors);
X
Xin Pan 已提交
989
  platform::RecordBlock b(0);
990

991 992
  ResetHasFeedGuard reset_has_feed_guard(member_);

993 994
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                fetch_tensors,
995
                                member_->HasGarbageCollectors());
996

997 998 999
  VLOG(3) << "ParallelExecutor begin to run member_->executor_->RunAndMerge";
  auto fetch_data =
      member_->executor_->Run(fetch_tensors, /*return_merged=*/true);
R
Ruibiao Chen 已提交
1000
  return PADDLE_GET(FetchList, fetch_data);
Y
Yu Yang 已提交
1001
}
Y
Yu Yang 已提交
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
void ParallelExecutor::RunWithoutFetch(
    const std::vector<std::string> &skip_eager_vars) {
  VLOG(3) << "enter ParallelExecutor RunWithoutFetch";
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif
  platform::RecordBlock b(0);

  ResetHasFeedGuard reset_has_feed_guard(member_);

1015 1016
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                skip_eager_vars,
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
                                member_->HasGarbageCollectors());

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
  member_->executor_->Run(/*fetch_tensors*/ {}, /*return_merged*/ false);
}

void ParallelExecutor::SkipMemoryReuse(
    size_t scope_idx, const std::vector<std::string> &skip_vars) {
  for (auto &var_name : skip_vars) {
    bool is_persistable = member_->IsPersistable(var_name);
    if (!is_persistable) {
      VLOG(3) << "SkipMemoryReuse for var: " << var_name;
      member_->SetSkipMemoryReuse(scope_idx, var_name);
    }
  }
}

Y
Yu Yang 已提交
1034
void ParallelExecutor::FeedTensorsIntoLocalScopes(
1035 1036
    const std::vector<std::unordered_map<std::string, phi::DenseTensor>>
        &tensors) {
1037 1038 1039
  if (platform::IsCUDAGraphCapturing()) {
    for (auto &tensor : tensors) {
      PADDLE_ENFORCE_EQ(
1040 1041
          tensor.empty(),
          true,
1042 1043 1044 1045 1046 1047
          platform::errors::PermissionDenied(
              "Feeding data is not permitted when capturing CUDA Graph."));
    }
    return;
  }

1048
  if (!member_->AllowPartialFeed()) {
1049 1050
    PADDLE_ENFORCE_EQ(tensors.size(),
                      member_->local_scopes_.size(),
1051 1052 1053 1054 1055 1056 1057
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
1058 1059
                          tensors.size(),
                          member_->local_scopes_.size()));
1060
  } else {
1061 1062
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(),
                      tensors.size(),
1063 1064 1065
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
1066

1067
  size_t feed_num = 0;
Y
Yu Yang 已提交
1068 1069
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
1070 1071 1072 1073 1074 1075
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
1076
    for (auto &pair : map) {
1077
      bool is_persistable = member_->IsPersistable(pair.first);
1078 1079 1080
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
1081 1082 1083 1084
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

1085
      auto *trg = feed_var->GetMutable<phi::DenseTensor>();
Y
Yu Yang 已提交
1086 1087 1088 1089
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
1090 1091

  if (!member_->AllowPartialFeed()) {
1092 1093
    PADDLE_ENFORCE_EQ(feed_num,
                      member_->local_scopes_.size(),
1094 1095 1096 1097 1098 1099 1100
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
1101 1102
                          feed_num,
                          member_->local_scopes_.size()));
1103
  }
Y
Yu Yang 已提交
1104 1105 1106
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
1107
    const std::unordered_map<std::string, phi::DenseTensor> &tensors) {
1108 1109
  if (platform::IsCUDAGraphCapturing()) {
    PADDLE_ENFORCE_EQ(
1110 1111
        tensors.empty(),
        true,
1112 1113 1114 1115 1116
        platform::errors::PermissionDenied(
            "Feeding data is not permitted when capturing CUDA Graph."));
    return;
  }

1117
  size_t num_places = member_->places_.size();
1118 1119 1120 1121 1122
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

1123
  for (auto &pair : tensors) {
1124 1125 1126 1127
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
1128
    auto lod_tensors = SplitLoDTensor(pair.second, member_->places_);
1129
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
1130 1131
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
1132
      auto error_info = string::Sprintf(
1133 1134
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
1135 1136 1137
          lod_tensors.size(),
          pair.first,
          num_places,
C
chengduo 已提交
1138 1139 1140 1141 1142 1143
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
1144
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1145 1146 1147 1148
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
1149
        PADDLE_ENFORCE_EQ(
1150 1151
            tensor.dims(),
            pair.second.dims(),
1152 1153
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
1154 1155
            tensor.place(),
            member_->places_.at(0),
1156
            platform::errors::PreconditionNotMet("The place doesn't match."));
1157 1158 1159 1160 1161 1162
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
1163
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
1164 1165 1166 1167 1168 1169 1170
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
1171 1172 1173 1174 1175 1176 1177
            lod_tensors.size(),
            pair.first,
            num_places,
            (is_cpu_place ? "CPU" : "GPU"),
            pair.first,
            num_places,
            num_places);
1178
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1179
      }
C
chengduo 已提交
1180
    }
1181

1182 1183 1184 1185 1186 1187
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
1188 1189
              persistable_feed_len,
              lod_tensors.size(),
1190 1191 1192 1193 1194 1195 1196 1197 1198
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
1199 1200
              non_persistable_feed_len,
              lod_tensors.size(),
1201 1202 1203 1204 1205 1206 1207 1208
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
1209 1210 1211 1212
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

1213
      auto t = feed_var->GetMutable<phi::DenseTensor>();
1214 1215
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
1216 1217
    }
  }
1218 1219 1220 1221 1222

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
1223 1224
    PADDLE_ENFORCE_GE(persistable_feed_len,
                      non_persistable_feed_len,
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1235 1236
}

X
Xin Pan 已提交
1237 1238 1239 1240 1241 1242 1243
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1244
bool ParallelExecutor::EnableParallelGraphExecution(
1245 1246
    const ir::Graph &graph,
    const ExecutionStrategy &exec_strategy,
1247
    const BuildStrategy &build_strategy) const {
1248
  return false;
1249

Y
Yancey1989 已提交
1250
  bool enable_parallel_graph = true;
1251

X
Xin Pan 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1265 1266 1267
    }
  }

1268
  if (!member_->use_all_reduce_ || !member_->IsUseCUDA(member_->use_device_)) {
Y
Yancey1989 已提交
1269
    if (build_strategy.enable_sequential_execution_ ||
1270
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1271
      enable_parallel_graph = false;
1272 1273 1274 1275 1276 1277 1278 1279 1280
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1281
  return enable_parallel_graph;
1282 1283
}

1284
void ParallelExecutor::InitExecutorPrivateMemberInfo(
1285 1286 1287 1288
    const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy,
    size_t device_count,
    const ir::Graph &graph) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
  member_->use_device_ = exec_strategy.use_device_;
  member_->build_strategy_ = build_strategy;
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
  member_->nranks_ = build_strategy.num_trainers_ * device_count;
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && defined(_WIN32)
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
1304 1305
        device_count,
        1,
1306 1307 1308 1309 1310 1311 1312 1313
        platform::errors::Unavailable("Windows can support Single GPU only."));
  }
#endif

#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && \
    (!defined(PADDLE_WITH_NCCL) && !defined(PADDLE_WITH_RCCL))
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
1314 1315
        device_count,
        1,
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
        platform::errors::PermissionDenied(
            "Your machine has multiple cards, "
            "but the WITH_NCCL option is not turned on during compilation, "
            "and you cannot use multi-card training or prediction. "
            "Please recompile and turn on the WITH_NCCL option."));
  }
#endif

  std::string device_name;
  if (member_->use_device_ == p::kCPU) {
    device_name = "CPU";
  } else if (member_->use_device_ == p::kCUDA) {
    device_name = "CUDA";
1329 1330 1331
  } else if (member_->use_device_ == p::kNPU) {
    device_name = "NPU";
  } else if (member_->use_device_ == p::kXPU) {
1332
    device_name = "XPU";
1333 1334 1335 1336
  } else {
    PADDLE_THROW(
        platform::errors::Unavailable("Only CPU/CUDA/NPU/XPU is supportted. "
                                      "please use CPU/CUDA/NPU/XPU backend."));
1337 1338 1339 1340 1341
  }

  VLOG(1) << string::Sprintf(
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
1342 1343 1344
      device_name,
      device_count,
      device_count);
1345 1346 1347 1348 1349

  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  member_->build_strategy_.enable_parallel_graph_ =
1350 1351
      EnableParallelGraphExecution(
          graph, exec_strategy, member_->build_strategy_);
1352 1353 1354 1355 1356 1357 1358 1359
  if (member_->build_strategy_.enable_parallel_graph_) {
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
}

void ParallelExecutor::CreateLocalScopes(
1360 1361
    Scope *global_scope,
    const std::vector<Scope *> &local_scopes,
1362 1363 1364 1365 1366 1367 1368 1369 1370
    bool create_new) {
  if (local_scopes.empty()) {
    member_->own_local_scope_ = true;
    member_->local_scopes_.emplace_back(global_scope);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      member_->local_scopes_.emplace_back(&global_scope->NewScope());
    }
  } else {
    member_->own_local_scope_ = false;
1371 1372
    PADDLE_ENFORCE_EQ(member_->places_.size(),
                      local_scopes.size(),
1373 1374 1375
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
1376 1377
                          member_->places_.size(),
                          local_scopes.size()));
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      if (create_new) {
        member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
      } else {
        // Use local scopes directly
        member_->local_scopes_.emplace_back(local_scopes[i]);
      }
    }
  }
}

std::unordered_map<Scope *, Scope *> ParallelExecutor::CreateLocalExecScopes(
    const std::vector<Scope *> &local_scopes, bool create_new) {
  std::unordered_map<Scope *, Scope *> scope_map;

  for (auto *scope : local_scopes) {
    Scope *local_exec_scope = scope;
    if (create_new) {
      local_exec_scope = &scope->NewScope();
    }
    member_->local_exec_scopes_.emplace_back(local_exec_scope);
    scope_map.emplace(scope, local_exec_scope);
  }

1402 1403 1404 1405 1406 1407 1408
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size(),
                    platform::errors::PreconditionNotMet(
                        "member_->local_scopes_.size() = %d is not equal to "
                        "member_->local_exec_scopes_.size() = %d",
                        member_->local_scopes_.size(),
                        member_->local_exec_scopes_.size()));
1409 1410 1411 1412 1413 1414 1415 1416

  return scope_map;
}

std::vector<ir::Graph *> ParallelExecutor::CloneGraphToMultiDevices(
    ir::Graph *graph) {
  std::vector<ir::Graph *> graphs;
  if (member_->build_strategy_.async_mode_) {
1417 1418
    PADDLE_ENFORCE_EQ(member_->IsUseCUDA(member_->use_device_),
                      false,
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
    graphs.push_back(graph);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
  }

  return graphs;
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
void ParallelExecutor::PreludeToRun(
    const std::vector<std::string> &fetch_tensors) {
  platform::RecordEvent record_run(
      "ParallelExecutor::Run", platform::TracerEventType::UserDefined, 1);
  VLOG(3) << "enter ParallelExecutor Run";
#ifdef PADDLE_WITH_CUDA
  if (platform::IsCUDAGraphCapturing()) {
    PADDLE_ENFORCE_EQ(fetch_tensors.empty(),
                      true,
                      platform::errors::InvalidArgument(
                          "Cannot fetch data when using CUDA Graph."));
    PADDLE_ENFORCE_EQ(
        member_->build_strategy_.allow_cuda_graph_capture_,
        true,
        platform::errors::InvalidArgument(
            "You must turn on build_strategy.allow_cuda_graph_capture = True "
            "to enable CUDA Graph capturing."));
    PADDLE_ENFORCE_EQ(
        member_->places_[0],
        platform::CUDAGraphCapturingPlace(),
        platform::errors::InvalidArgument("The place to capture CUDAGraph is "
                                          "not the same as the place to run."));
  }
#endif

#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif
}

1464
void ParallelExecutor::PrepareNCCLCommunicator(Scope *global_scope) {
1465 1466 1467 1468 1469
  if (member_->build_strategy_.reduce_ ==
      BuildStrategy::ReduceStrategy::kNoReduce) {
    return;
  }

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
  if (member_->IsUseCUDA(member_->use_device_) && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    member_->InitOrGetNCCLCommunicator(global_scope, &member_->build_strategy_);

    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
    // be rewrite and there will be some problem.
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    auto *nccl_ctxs = member_->nccl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
L
Leo Chen 已提交
1485 1486
      auto *dev_ctx =
          static_cast<phi::GPUContext *>(pool.Get(member_->places_[dev_id]));
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with CUDA."));
#endif
  }
  if (member_->use_device_ == p::kXPU && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_XPU_BKCL)
    member_->InitOrGetBKCLCommunicator(global_scope, member_->build_strategy_);

    auto *bkcl_ctxs = member_->bkcl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::XPUDeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[dev_id]);
W
Wilber 已提交
1506
      dev_ctx->SetBkclContext(bkcl_ctx.comm());
1507 1508 1509 1510 1511 1512 1513 1514 1515
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with XPU."));
#endif
  }
}

std::vector<ir::Graph *> ParallelExecutor::CompileGraphWithBuildStrategy(
1516 1517
    ir::Graph *graph,
    std::vector<ir::Graph *> *device_graphs,
1518 1519 1520 1521 1522 1523 1524
    const std::string &loss_var_name) {
  auto device_count = member_->places_.size();
  std::vector<ir::Graph *> async_graphs(device_count);

  auto &graphs = *device_graphs;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  if (member_->build_strategy_.async_mode_) {
1525 1526
    PADDLE_ENFORCE_EQ(graphs.size(),
                      device_count,
1527 1528
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
1529 1530
                          device_count,
                          graphs.size()));
1531
    VLOG(3) << "use local async mode";
1532 1533 1534 1535 1536 1537 1538
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_,
                                           member_->nccl_ctxs_);
1539
    for (size_t i = 1; i < device_count; ++i) {
1540 1541 1542 1543 1544 1545 1546
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_,
                                                 member_->nccl_ctxs_);
1547 1548 1549
      async_graphs[i] = graphs[i];
    }
  } else {
1550 1551 1552 1553 1554 1555 1556
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_,
                                           member_->nccl_ctxs_);
1557 1558 1559
  }
#elif defined(PADDLE_WITH_XPU_BKCL)
  if (member_->build_strategy_.async_mode_) {
1560 1561
    PADDLE_ENFORCE_EQ(graphs.size(),
                      device_count,
1562 1563
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
1564 1565
                          device_count,
                          graphs.size()));
1566
    VLOG(3) << "use local async mode";
1567 1568 1569 1570 1571 1572 1573
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_,
                                           member_->bkcl_ctxs_);
1574
    for (size_t i = 1; i < device_count; ++i) {
1575 1576 1577 1578 1579 1580 1581
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_,
                                                 member_->bkcl_ctxs_);
1582 1583 1584
      async_graphs[i] = graphs[i];
    }
  } else {
1585 1586 1587 1588 1589 1590 1591
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_,
                                           member_->bkcl_ctxs_);
1592 1593 1594 1595
  }
#else
  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use local async mode";
1596 1597 1598 1599 1600 1601
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_);
1602
    for (size_t i = 1; i < device_count; ++i) {
1603 1604 1605 1606 1607 1608
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_);
1609 1610 1611
      async_graphs[i] = graphs[i];
    }
  } else {
1612 1613 1614 1615 1616 1617
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_);
1618 1619 1620 1621 1622 1623 1624 1625 1626
  }
#endif

  return async_graphs;
}

void ParallelExecutor::CreateVariableInfos(
    std::vector<details::VariableInfo> *var_infos, ir::Graph *graph) {
  PADDLE_ENFORCE_EQ(
1627 1628
      var_infos->size(),
      0,
1629 1630 1631
      platform::errors::PreconditionNotMet(
          "var_infos->size() shoule be 0, but received %d", var_infos->size()));
  PADDLE_ENFORCE_EQ(
1632 1633
      member_->is_persistable_.size(),
      0,
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
      platform::errors::PreconditionNotMet(
          "member_->is_persistable_.size() shoule be 0, but received %d",
          member_->is_persistable_.size()));
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos->emplace_back();
      var_infos->back().name_ = node->Var()->Name();
      var_infos->back().type_ = node->Var()->GetType();
      var_infos->back().persistable_ = node->Var()->Persistable();

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
    }
  }

  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      var_infos->emplace_back();
      var_infos->back() = fused_var.second;

      member_->is_persistable_.emplace(fused_var.first,
                                       fused_var.second.persistable_);
    }
  }
}

std::vector<ir::Graph *> ParallelExecutor::CreateSSAGraphExecutor(
    const ExecutionStrategy &exec_strategy,
1663 1664
    std::vector<ir::Graph *> *async_graphs,
    ir::Graph *graph) {
1665 1666 1667 1668
  std::vector<ir::Graph *> final_graphs;

  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use AsyncSSAGraphExecutor";
1669 1670 1671 1672 1673 1674
    member_->executor_.reset(
        new details::AsyncSSAGraphExecutor(exec_strategy,
                                           member_->local_scopes_,
                                           member_->local_exec_scopes_,
                                           member_->places_,
                                           *async_graphs));
1675 1676 1677 1678 1679 1680 1681 1682 1683
    final_graphs = *async_graphs;
  } else if (member_->build_strategy_.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

1684 1685 1686 1687 1688 1689
    auto *pg_exe =
        new details::ParallelSSAGraphExecutor(exec_strategy,
                                              member_->local_scopes_,
                                              member_->local_exec_scopes_,
                                              member_->places_,
                                              graph);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
#endif
  } else {
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
Z
Zeng Jinle 已提交
1709 1710 1711 1712
      for (auto &g : possible_inference_graphs) {
        member_->ApplyFixOpRunOrderPass(g.get());
      }

1713 1714
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
1715 1716 1717 1718 1719
          exec_strategy,
          member_->local_scopes_,
          member_->local_exec_scopes_,
          member_->places_,
          std::move(possible_inference_graphs));
1720 1721 1722 1723 1724 1725 1726 1727
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
    } else {
Z
Zeng Jinle 已提交
1728 1729 1730
      if (member_->places_.size() == 1) {
        member_->ApplyFixOpRunOrderPass(graph);
      }
1731 1732 1733 1734 1735
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
1736 1737 1738 1739 1740 1741
        member_->executor_.reset(
            new details::ThreadedSSAGraphExecutor(exec_strategy,
                                                  member_->local_scopes_,
                                                  member_->local_exec_scopes_,
                                                  member_->places_,
                                                  graph));
1742
      } else {
1743 1744 1745 1746
        if (member_->use_device_ == p::kXPU) {
#if defined(PADDLE_WITH_XPU)
          VLOG(3) << "use BindThreadedSSAGraphExecutor";
          member_->executor_.reset(new details::BindThreadedSSAGraphExecutor(
1747 1748 1749 1750 1751
              exec_strategy,
              member_->local_scopes_,
              member_->local_exec_scopes_,
              member_->places_,
              graph));
1752 1753 1754 1755 1756 1757 1758 1759
#else
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Paddle can't use XPU device since it's not compiled with XPU,"
              "Please recompile or reinstall Paddle with XPU support."));
#endif
        } else {
          VLOG(3) << "use FastThreadedSSAGraphExecutor";
          member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
1760 1761 1762 1763 1764
              exec_strategy,
              member_->local_scopes_,
              member_->local_exec_scopes_,
              member_->places_,
              graph));
1765
        }
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
      }
      final_graphs.emplace_back(graph);
    }
  }
  return final_graphs;
}

void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::vector<ir::Graph *> &final_graphs,
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  PADDLE_ENFORCE_GE(
1777 1778
      final_graphs.size(),
      1,
1779 1780 1781 1782
      platform::errors::PreconditionNotMet(
          "final_graphs shoule contain at least one graph, but received %d",
          final_graphs.size()));

1783 1784
  PADDLE_ENFORCE_GT(scope_map.size(),
                    0,
1785 1786 1787 1788 1789 1790 1791 1792
                    platform::errors::PreconditionNotMet(
                        "scope_map shoule contain at least one "
                        "element, but received %d",
                        scope_map.size()));
  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
1793
      op->SetIsVariantScope(true);
1794 1795 1796 1797
    }
  }
}

1798 1799 1800 1801 1802 1803 1804
void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  auto inner_graph = const_cast<ir::Graph *>(&Graph());
  std::vector<ir::Graph *> graphs = {inner_graph};
  ResetOpHandleScopeMapOfGraphs(graphs, scope_map);
}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
void ParallelExecutor::SetReaderOpDeviceInfoOfGraphs(
    const std::vector<ir::Graph *> &final_graphs) {
  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
}

1816 1817 1818 1819
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

1820 1821 1822 1823 1824
void ParallelExecutor::PrepareForCUDAGraphCapture(ir::Graph *graph) {
  const auto &build_strategy = member_->build_strategy_;
  if (!build_strategy.allow_cuda_graph_capture_) return;
#ifdef PADDLE_WITH_CUDA
  PADDLE_ENFORCE_EQ(
1825 1826
      build_strategy.async_mode_,
      false,
1827 1828 1829
      platform::errors::InvalidArgument(
          "Async Executor does not support CUDA Graph capturing."));
  PADDLE_ENFORCE_EQ(
1830 1831
      platform::IsCUDAGraphCapturing(),
      false,
1832 1833 1834
      platform::errors::PermissionDenied("CUDA Graph is not allowed to capture "
                                         "when running the first batch."));
  PADDLE_ENFORCE_EQ(
1835 1836
      member_->places_.size(),
      1,
1837 1838
      platform::errors::InvalidArgument(
          "CUDA Graph is only supported when one GPU device is running."));
1839 1840
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(member_->places_[0]),
                    true,
1841 1842
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported on NVIDIA GPU device."));
1843 1844
  PADDLE_ENFORCE_EQ(FLAGS_sync_nccl_allreduce,
                    false,
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
                    platform::errors::InvalidArgument(
                        "FLAGS_sync_nccl_allreduce must be False to support "
                        "CUDA Graph capturing."));

  std::unordered_map<std::string, std::vector<VarDesc *>> all_vars;
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      auto *var_desc = node->Var();
      all_vars[var_desc->Name()].emplace_back(var_desc);
    }
  }

  auto mark_var_as_persistable = [&all_vars](const std::string &name) {
    auto iter = all_vars.find(name);
    if (iter != all_vars.end()) {
      for (auto *var_desc : iter->second) {
        var_desc->SetPersistable(true);
      }
    }
  };

  // Step 1: All fused vars must be persistable.
  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      fused_var.second.persistable_ = true;
      mark_var_as_persistable(fused_var.first);
    }
  }

  // Step 2: All pinned vars must be persistable.
  if (graph->Has(details::kPinnedVars)) {
    auto &pinned_vars = graph->Get<details::PinnedVars>(details::kPinnedVars);
    for (auto &pinned_var : pinned_vars) {
      mark_var_as_persistable(pinned_var);
    }
  }

  // Step 3: Move all main programs to startup programs to make sure that
  // the main programs would only be run once.
  if (graph->Has(details::kProgramDescs)) {
    auto &startup_programs =
        graph->GetOrInit<details::ProgramDescs>(details::kStartupProgramDescs);
    auto &main_programs =
        graph->Get<details::ProgramDescs>(details::kProgramDescs);
    for (auto &main_program : main_programs) {
      startup_programs.emplace_back(main_program);
    }
    graph->Erase(details::kProgramDescs);
  }

  // Step 4: Mark all vars in startup programs to be persistable.
  if (graph->Has(details::kStartupProgramDescs)) {
    auto &startup_programs =
        graph->GetOrInit<details::ProgramDescs>(details::kStartupProgramDescs);
    for (auto &startup_program : startup_programs) {
      for (auto &op_desc : startup_program.Block(0).AllOps()) {
        for (auto &output : op_desc->OutputArgumentNames()) {
          mark_var_as_persistable(output);
        }
      }
    }
  }

  // Step 5: ScaleLossGrad must be run beforehand to avoid H2D copy.
  auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*graph);
  auto *scope = member_->local_scopes_[0];
  for (auto *op : ops) {
    auto *loss_grad_op = dynamic_cast<details::ScaleLossGradOpHandle *>(op);
    if (loss_grad_op == nullptr) continue;
    auto loss_grad_name = loss_grad_op->LossGradName();
    mark_var_as_persistable(loss_grad_name);
    loss_grad_op->RunOnVar(scope->Var(loss_grad_name));
    loss_grad_op->SetSkipRunning(true);
  }
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "CUDA Graph is only supported on NVIDIA GPU device."));
#endif
}

Y
Yu Yang 已提交
1926
}  // namespace framework
Y
Yang Yang 已提交
1927
}  // namespace paddle
S
sneaxiy 已提交
1928

S
sneaxiy 已提交
1929
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1930
USE_PASS(eager_deletion_pass);
1931
USE_PASS(buffer_shared_inplace_pass);
1932
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1933
USE_PASS(inplace_addto_op_pass);
Z
Zeng Jinle 已提交
1934
USE_PASS(fix_op_run_order_pass);