distribute_transpiler.py 69.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37

38
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
39
from .. import core, framework
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
41
                        default_startup_program, Block, \
W
Wu Yi 已提交
42
                        Parameter, grad_var_name
43 44
from .details import *
from functools import reduce
45 46 47

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
48
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
49 50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
52 53


T
typhoonzero 已提交
54 55 56 57 58 59
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
60

T
typhoonzero 已提交
61 62
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
63 64


65 66 67 68
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
69
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
70
    """
71 72 73 74 75 76
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
77
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
78 79 80

    Args:
        var_list (list): List of variables.
81 82
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
83 84
        min_block_size (int): Minimum splitted block size.
    Returns:
85
        blocks (list[(varname, block_id, current_block_size)]): A list
86
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
87 88 89
    """
    blocks = []
    for var in var_list:
90
        split_count = slice_count
T
typhoonzero 已提交
91 92 93 94
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
95
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
96 97 98 99 100 101 102 103 104
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
105
        # update split_count after aligning
T
typhoonzero 已提交
106
        split_count = int(math.ceil(var_numel / float(block_size)))
107
        for block_id in range(split_count):
T
typhoonzero 已提交
108 109 110 111 112 113 114
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
115 116 117 118 119 120 121
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
122
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
123 124 125 126 127 128 129 130
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
131
class DistributeTranspiler(object):
Y
yi.wu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
166

G
gongweibao 已提交
167 168 169 170 171 172 173 174 175 176 177 178
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

179 180 181 182 183
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
184 185
                  sync_mode=True,
                  startup_program=None):
186
        """
Y
yi.wu 已提交
187 188 189 190 191 192 193 194 195 196 197
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
198 199
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
200 201 202
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
203 204
        if startup_program is None:
            startup_program = default_startup_program()
205
        self.origin_program = program
W
Wu Yi 已提交
206 207
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
208

209 210 211 212 213 214 215
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
216
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
217
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
218
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
219
        self.grad_name_to_param_name = dict()
220 221
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
222
            self.grad_name_to_param_name[grad_var.name] = param_var.name
223

G
gongweibao 已提交
224
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
225
        self._init_splited_vars()
226

G
gongweibao 已提交
227
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
228
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
229
        send_vars = []
230 231 232 233 234 235

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
236
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
237

G
gongweibao 已提交
238
        if not self.config.slice_var_up:
239
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
240
            random.shuffle(grad_var_mapping_items)
241

242 243
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
244
            eplist = ps_dispatcher.dispatch(splited_vars)
245

G
gongweibao 已提交
246
            if not self.config.slice_var_up:
247 248
                assert (len(splited_vars) == 1)

249
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
250
            if len(splited_vars) == 1:
251
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
252
                index = find_op_by_output_arg(program.global_block(),
253
                                              splited_grad_varname)
Y
Yancey1989 已提交
254
            elif len(splited_vars) > 1:
255
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
256
                index = find_op_by_output_arg(program.global_block(),
257
                                              splited_grad_varname)
Y
Yancey1989 已提交
258
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
259
                index += 1
Y
Yancey1989 已提交
260 261
            else:
                AssertionError("Can not insert the send op by original "
262
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
263

W
Wu Yi 已提交
264 265
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
266
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
267

W
Wu Yi 已提交
268 269 270 271
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
272
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
273
                index=index + 1,
274
                type="send",
Y
update  
Yancey1989 已提交
275
                inputs={"X": splited_vars},
276
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
277 278
                attrs={
                    "epmap": eplist,
279
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
280 281 282 283
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
284
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
285
                })
Y
update  
Yancey1989 已提交
286 287
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
288 289

        if self.sync_mode:
W
Wu Yi 已提交
290 291 292
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
            input_deps = grad_name_to_send_dummy_out.values()
Y
Yancey1989 已提交
293 294
            program.global_block().append_op(
                type="send_barrier",
W
Wu Yi 已提交
295 296
                inputs={"X": input_deps},
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
297 298
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
299
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
300
                })
Y
Yancey1989 已提交
301

G
gongweibao 已提交
302
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
303
        recv_vars = []
Y
update  
Yancey1989 已提交
304
        for _, var in enumerate(send_vars):
305
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
306
        ps_dispatcher.reset()
Y
Yancey1989 已提交
307 308
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
309
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
310 311
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
312

Y
Yancey1989 已提交
313
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
314
        all_recv_outputs = []
315
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
316 317 318 319
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
320 321 322 323 324 325 326
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
                recv_dep_in = grad_name_to_send_dummy_out[
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
327 328 329 330 331 332 333 334 335
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
336 337
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
338
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
339 340 341
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
342
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
343 344
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
345
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
346
                })
T
typhoonzero 已提交
347

Q
qiaolongfei 已提交
348
        if self.sync_mode:
W
Wu Yi 已提交
349
            # form a WAW dependency
Q
qiaolongfei 已提交
350 351 352
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
353
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
354 355 356 357
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
358

359
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
360 361
            if len(splited_var) <= 1:
                continue
362
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
363
            program.global_block().append_op(
T
typhoonzero 已提交
364
                type="concat",
T
typhoonzero 已提交
365
                inputs={"X": splited_var},
T
typhoonzero 已提交
366
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
367
                attrs={"axis": 0})
T
typhoonzero 已提交
368

G
gongweibao 已提交
369 370
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

371
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
372 373
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
374
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
375

T
typhoonzero 已提交
376
    def get_trainer_program(self):
Y
yi.wu 已提交
377 378 379 380 381 382
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
383
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
384
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
385
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
386
        self.origin_program.__str__()
G
gongweibao 已提交
387

388
        return self.origin_program
T
typhoonzero 已提交
389

W
Wu Yi 已提交
390
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
391 392 393 394
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
395 396
            recv_vars (list): Variable list to recv for current trainer_id
            eplist (list): A list of strings indicating 
G
gongweibao 已提交
397 398 399 400

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
401
        startup_program = self.startup_program
G
gongweibao 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

        for varname, splited_var in self.param_var_mapping.iteritems():
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
427
                inputs={"X": []},
G
gongweibao 已提交
428 429 430 431 432 433
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
434 435
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
436 437 438
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
439
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
440 441 442 443 444 445 446 447 448
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        for varname, splited_var in self.param_var_mapping.iteritems():
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
449 450 451 452 453 454 455 456 457 458 459 460
            # NOTE: if enable memory optimization, origin vars maybe removed.
            if startup_program.global_block().vars.has_key(varname):
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
461 462 463 464 465 466 467 468
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
469 470
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
471
        Get parameter server side program.
472

Y
yi.wu 已提交
473 474
        Args:
            endpoint (str): current parameter server endpoint.
475

Y
yi.wu 已提交
476 477
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
478
        """
Y
yi.wu 已提交
479 480 481 482
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
W
Wu Yi 已提交
483 484 485
        sys.stderr.write("get_pserver_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
T
typhoonzero 已提交
486 487
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
488
        pserver_program.random_seed = self.origin_program.random_seed
489
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
490 491 492 493 494 495 496 497
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
498 499 500 501 502
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
503 504 505 506 507 508 509 510 511
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
512
            if self.sync_mode and self.trainer_num > 1:
513
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
514 515 516 517 518 519 520 521 522
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
523

Q
qiaolongfei 已提交
524
        # step 3
525
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
526 527 528
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
529
        # step 3.2
T
typhoonzero 已提交
530 531 532 533
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
534 535
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
536
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
537
        # step 3.3
T
typhoonzero 已提交
538
        # Iterate through the ops, and if an op and the optimize ops
539
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
540
        # append it into the sub program.
T
typhoonzero 已提交
541 542 543

        global_ops = []

Y
wip  
yi.wu 已提交
544 545
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
546
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
547
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
548
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
549
            elif op not in lr_ops:
Q
Qiyang Min 已提交
550
                self._append_pserver_non_opt_ops(block, op)
551 552 553 554 555 556

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
557

Y
Yancey1989 已提交
558
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
559 560 561 562 563 564 565 566
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
567
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
568 569 570

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
571
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
572 573

            # clone ops
Y
Yancey1989 已提交
574 575
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
576
                # clone sub_block of op
Y
Yancey1989 已提交
577
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
578 579 580 581

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

582
        # append lr decay ops to the child block if exists
583
        lr_ops = self._get_lr_ops()
584 585
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
586
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
587 588
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
589
            optimize_blocks.append(lr_decay_block)
590
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
591
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
592
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
593 594
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
595

T
typhoonzero 已提交
596
        # append op to the current block
Q
qiaolongfei 已提交
597
        grad_to_block_id = []
Q
qiaolongfei 已提交
598
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
599
        for idx, opt_op in enumerate(opt_op_on_pserver):
600
            per_opt_block = pserver_program.create_block(pre_block_idx)
601
            optimize_blocks.append(per_opt_block)
602
            # append grad merging ops before clip and weight decay
603
            # cases may like:
T
typhoonzero 已提交
604
            # L2Decay op -> clip op -> optimize
605 606 607 608 609 610 611
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
612
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
613 614
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
615
                if ufind.is_connected(op, opt_op) and op not in global_ops:
616
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
617
                                           merged_var, lr_ops)
T
typhoonzero 已提交
618

W
Wu Yi 已提交
619 620
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
621
        # append global ops
622
        if global_ops:
Q
qiaolongfei 已提交
623 624
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
625
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
626
            for glb_op in global_ops:
X
Xi Chen 已提交
627
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
628
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
629

630
        # process distributed lookup_table
Q
qiaolongfei 已提交
631
        prefetch_var_name_to_block_id = []
632 633
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
634
            table_opt_block = self._create_table_optimize_block(
635
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
636
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
637
            prefetch_var_name_to_block_id = self._create_prefetch_block(
638
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
639 640
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
641 642 643 644

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
645
            assert len(prefetch_var_name_to_block_id) > 0
646
        else:
Q
qiaolongfei 已提交
647
            assert len(prefetch_var_name_to_block_id) == 0
648

649
        attrs = {
650
            "optimize_blocks": optimize_blocks,
651 652 653
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
654
            "grad_to_block_id": grad_to_block_id,
655 656 657 658
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
659
            attrs['checkpint_block_id'] = checkpoint_block_id
660

T
typhoonzero 已提交
661 662 663 664 665
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
666
            attrs=attrs)
667

W
Wu Yi 已提交
668
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
669 670
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
671 672
        return pserver_program

W
Wu Yi 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
        
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
        pserver_startup = self.get_startup_program(endpoint)
        return pserver_prog, pserver_startup

687 688
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
689
                            pserver_program=None,
690
                            startup_program=None):
T
typhoonzero 已提交
691
        """
W
Wu Yi 已提交
692 693
        **Deprecated**

T
typhoonzero 已提交
694 695 696
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
697 698 699

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
700 701 702
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
                when initalizing 
703

Y
yi.wu 已提交
704 705
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
706
        """
W
Wu Yi 已提交
707 708 709 710 711 712 713 714 715 716 717 718
        sys.stderr.write("get_startup_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
        if pserver_program != None:
            sys.stderr.write("passing pserver_program to get_startup_program()\
                is deprecated, you can use new API get_pserver_programs() to\
                get both pserver main program and startup program.")
        if startup_program != None:
            sys.stderr.write("passing startup_program to get_startup_program()\
                is deprecated, use fluid.program_guard() or pass this argument\
                to transpile() call.")

T
typhoonzero 已提交
719
        s_prog = Program()
W
Wu Yi 已提交
720
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
721
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
722 723 724 725 726 727 728 729 730 731 732
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
733
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
734
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
735
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
736 737 738 739
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
740
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
741 742
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
743 744 745 746 747 748 749 750 751 752
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
753 754

            if op_on_pserver:
755 756 757
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
758 759 760
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
761
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
762 763 764 765
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
766
                    attrs=op.all_attrs())
T
typhoonzero 已提交
767 768
        return s_prog

769 770
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
771 772 773 774 775 776 777 778 779
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
780
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
832
    def _init_splited_vars(self):
Y
yi.wu 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
856
        if self.config.slice_var_up:
Y
yi.wu 已提交
857 858
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
859 860 861
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
862
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
863 864
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
865 866 867
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
868 869 870 871
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
872 873
        assert (len(grad_blocks) == len(param_blocks))

874
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
875 876
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
877
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
878 879 880 881
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
882
        # dict(grad_splited_var -> param_splited_var)
883
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
884 885 886 887
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
888
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
889 890

        # create mapping of endpoint -> split var to create pserver side program
891
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
892 893 894 895 896 897 898 899 900
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

901
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
902 903
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
904
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
905 906 907 908 909 910 911 912 913
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
914 915 916 917 918 919 920 921 922

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

923
                    lookup_table_op_index = list(all_ops).index(op)
924 925 926
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
927
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
928
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
929 930 931 932 933 934
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
935
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
936 937 938 939
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
940 941

                    # insert split_ids_op
W
Wu Yi 已提交
942
                    program.global_block()._insert_op(
943
                        index=lookup_table_op_index,
944 945 946 947 948 949 950
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
951
                        outputs={"Out": prefetch_input_vars})
952 953

                    # insert prefetch_op
W
Wu Yi 已提交
954
                    program.global_block()._insert_op(
955
                        index=lookup_table_op_index + 1,
956
                        type="prefetch",
Q
qiaolongfei 已提交
957 958
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
959
                        attrs={
960
                            "epmap": pserver_endpoints,
961 962 963
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
964
                        })
965 966

                    # insert concat_op
W
Wu Yi 已提交
967
                    program.global_block()._insert_op(
968 969 970 971 972 973 974
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
975
                            'X': prefetch_output_vars
976
                        },
977 978 979 980 981
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
982
                        })
983 984

                    # delete lookup_table_op
985
                    delete_ops(program.global_block(), [op])
986 987 988
                    # break for loop
                    break

Y
Yancey1989 已提交
989
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
990
        # 2. add split_ids_op and send_op to send gradient to pservers
991 992
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
993
        table_grad_name = grad_var_name(self.table_name)
994 995 996 997
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
998
                program.global_block()._insert_op(
999 1000 1001 1002 1003
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
1004
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
1005
                program.global_block()._insert_op(
1006
                    index=op_index + 2,
1007
                    type="send",
1008
                    inputs={'X': self.trainer_side_table_grad_list},
1009
                    outputs={'Out': []},
Y
Yancey1989 已提交
1010
                    attrs={
1011
                        "sync_mode": True,
Y
Yancey1989 已提交
1012
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1013 1014 1015 1016 1017
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1018
                    })
1019 1020 1021 1022 1023 1024
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1053 1054

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1055
                                     pre_block_idx, grad_to_block_id):
1056 1057
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1058 1059
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1060

T
tangwei12 已提交
1061
        zero_dim = int(
T
tangwei12 已提交
1062 1063 1064 1065
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1066 1067
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1068
            shape=table_shape,
Y
Yancey1989 已提交
1069 1070 1071
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1072 1073
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1074
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1075
            self.origin_program.global_block().vars[grad_var_name(
1076
                self.table_name)])
1077 1078 1079 1080

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1081 1082
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1083
        ][0]
Q
qiaolongfei 已提交
1084
        table_opt_block = pserver_program.create_block(pre_block_idx)
1085

1086 1087 1088
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1089
            pserver_side_table_grad_list = [
1090 1091 1092 1093 1094 1095 1096 1097 1098
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1099
            # append sum op for pserver_side_table_grad_list
1100 1101
            table_opt_block.append_op(
                type="sum",
1102
                inputs={"X": pserver_side_table_grad_list},
1103 1104
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1105 1106
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1107
            origin_grad_name = grad_var.name
1108 1109
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1110 1111
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1112
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1113
            grad_var = pserver_program.global_block()._rename_var(
1114
                origin_grad_name, splited_grad_name)
1115 1116 1117 1118 1119 1120 1121 1122 1123

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1124
        # only support sgd now
1125 1126 1127 1128
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1129
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1130

1131 1132 1133
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1134 1135
        return table_opt_block

T
tangwei12 已提交
1136 1137 1138 1139 1140 1141
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1142
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1143
            name="kLookupTablePath",
T
tangwei12 已提交
1144 1145
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1146

T
tangwei12 已提交
1147
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1148
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1149 1150 1151 1152
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1153
            attrs={'file_path': "none"})
T
tangwei12 已提交
1154 1155 1156

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1157 1158 1159 1160 1161
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1162
        Create vars for each split.
T
typhoonzero 已提交
1163 1164
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1165 1166 1167 1168
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1169
        Returns:
1170
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1171
                from original var name to each var split.
T
typhoonzero 已提交
1172
        """
1173 1174

        # varname->[(block_id, current_block_size)]
1175
        block_map = collections.OrderedDict()
1176

1177
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1178 1179
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1180
            if varname not in block_map:
T
typhoonzero 已提交
1181
                block_map[varname] = []
1182
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1183

M
minqiyang 已提交
1184
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1185
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1186
            if len(splited) == 1:
1187
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1188 1189
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1190
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1191 1192 1193 1194 1195
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1196
                continue
T
typhoonzero 已提交
1197
            var_mapping[varname] = []
T
typhoonzero 已提交
1198 1199 1200 1201
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1202

T
typhoonzero 已提交
1203
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1204
                size = block[1]
M
minqiyang 已提交
1205
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1206 1207 1208
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1209
                new_var_name = ""
1210
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1211 1212 1213 1214 1215
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1216
                var = program.global_block().create_var(
T
typhoonzero 已提交
1217 1218
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1219
                    dtype=orig_var.dtype,
1220
                    type=orig_var.type,
T
typhoonzero 已提交
1221
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1222
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1223
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1224
        return var_mapping
T
done  
typhoonzero 已提交
1225

W
Wu Yi 已提交
1226
    def _create_splited_vars(self, source_var, block, tag):
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1237 1238 1239 1240 1241 1242
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1243
            persistable=persistable)
T
done  
typhoonzero 已提交
1244

Y
Yancey1989 已提交
1245
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1246 1247 1248 1249
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1250
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1260
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1270

T
typhoonzero 已提交
1271 1272 1273 1274
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1275
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1298 1299
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1300
        orig_var_name = ""
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1311
        else:
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1339
        else:
1340 1341 1342 1343 1344 1345
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1346
            for i in range(self.trainer_num):
1347 1348 1349 1350 1351 1352 1353
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1354 1355
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1356 1357 1358 1359 1360 1361 1362 1363
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1364

1365
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1366
                            grad_to_block_id, origin_program, merged_var):
1367
        program = optimize_block.program
T
typhoonzero 已提交
1368
        pserver_block = program.global_block()
1369
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1370

T
typhoonzero 已提交
1371 1372
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
W
Wu Yi 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381
        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1382
        for key in opt_op.input_names:
T
typhoonzero 已提交
1383 1384
            if key == "Grad":
                new_inputs[key] = merged_var
W
Wu Yi 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
            # For RMSProp optimizer
            elif key == "Moment" or key == "MeanSquare":
                param_block = _get_param_block(opt_op)
                if not param_block:
                    return
                moment_var = origin_program.global_block().vars[opt_op.input(
                    key)[0]]
                tmpvar = pserver_block.create_var(
                    name=moment_var.name,
                    persistable=moment_var.persistable,
                    dtype=moment_var.dtype,
                    # change to use same shape as param
                    # TODO(typhoonzero): didn't append .block in the var name,
                    # may affect checkpoint saving? Need to verify.
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
1401
            elif key == "Param":
W
Wu Yi 已提交
1402
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1403 1404
                if not param_block:
                    return
T
typhoonzero 已提交
1405
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1406
                    name=param_block.name,
T
typhoonzero 已提交
1407
                    persistable=True,
T
typhoonzero 已提交
1408 1409 1410
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1411
            elif key == "LearningRate":
1412
                # learning rate variable has already be created by non-optimize op,
1413
                # don't create it once again.
1414
                lr_varname = opt_op.input(key)[0]
1415
                if lr_varname in pserver_block.vars:
1416 1417 1418 1419 1420 1421 1422 1423 1424
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1425

T
typhoonzero 已提交
1426
        for key in opt_op.input_names:
1427
            new_shape = None
W
Wu Yi 已提交
1428
            if key in ["Param", "Grad", "LearningRate", "Moment", "MeanSquare"]:
T
typhoonzero 已提交
1429
                continue
1430
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1431 1432 1433 1434
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1435
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1436 1437 1438 1439 1440
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1441

1442
        # change output's ParamOut variable
1443 1444
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1445
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1446

1447
        optimize_block.append_op(
T
typhoonzero 已提交
1448 1449
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1450
            outputs=outputs,
G
gongweibao 已提交
1451
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1452

1453 1454
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1455
        for _, g in six.iteritems(var_dict):
1456 1457 1458 1459 1460 1461
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1462 1463 1464
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1465
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1466 1467 1468 1469
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1470
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1471 1472 1473

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1474
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1475 1476 1477 1478
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1479
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1480

Y
Yancey1989 已提交
1481
        return block.append_op(
G
gongweibao 已提交
1482
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1483 1484

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1485
        program = optimize_block.program
1486
        # Append the ops for parameters that do not need to be optimized/updated
1487 1488
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1489
        for key, varlist in six.iteritems(inputs):
1490 1491
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1492
            for var in varlist:
1493 1494 1495 1496 1497 1498
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1499
                elif var.name not in program.global_block().vars:
1500
                    program.global_block().create_var(
T
typhoonzero 已提交
1501 1502 1503 1504 1505
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1506 1507
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1508
        for key, varlist in six.iteritems(outputs):
1509 1510 1511
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1512 1513 1514 1515
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1516
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1517
                    program.global_block()._clone_variable(var)
1518

Y
Yancey1989 已提交
1519
        return optimize_block.append_op(
T
typhoonzero 已提交
1520
            type=opt_op.type,
T
typhoonzero 已提交
1521 1522
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1523
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1524

1525 1526 1527 1528
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1529 1530
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1531 1532 1533 1534 1535 1536
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1537 1538
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1539 1540 1541 1542 1543 1544
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1545
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1546 1547
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1548 1549 1550 1551 1552 1553 1554
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1555
        if op.input("Param")[0] in param_names:
1556 1557 1558
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1559
                param = op.input("Param")[0]
T
typhoonzero 已提交
1560
                if same_or_split_var(n, param) and n != param:
1561 1562 1563
                    return True
            return False

T
typhoonzero 已提交
1564
    def _get_input_map_from_op(self, varmap, op):
1565
        """Returns a dict from op input name to the vars in varmap."""
1566
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1578
        """Returns a dict from op output name to the vars in varmap."""
1579
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1589 1590 1591 1592 1593 1594

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1595
            if self._is_optimizer_op(op):
1596 1597 1598 1599
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1600
        block = self.origin_program.global_block()
1601 1602 1603 1604 1605
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1606

1607 1608 1609 1610 1611
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1612
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1613 1614 1615 1616 1617 1618
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1619 1620
                    # we only need to append op for once
                    break
1621
        return lr_ops
Y
Yancey1989 已提交
1622

W
Wu Yi 已提交
1623 1624 1625 1626 1627
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1628 1629
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1630 1631 1632
            return True
        return False

Y
Yancey1989 已提交
1633
    def _get_optimize_pass(self):
1634
        """
1635
        Get optimizer operators, parameters and gradients from origin_program
1636 1637 1638 1639
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1640 1641 1642
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1643
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1644
        for op in block.ops:
W
Wu Yi 已提交
1645
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1646
                opt_ops.append(op)
1647 1648 1649 1650 1651
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1652 1653
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1654 1655 1656 1657
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1658 1659 1660
            else:
                pass
        return opt_ops, params_grads