distribute_transpiler.py 60.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
19
4. append send_op to send splited variables to server and
20 21
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
22 23 24 25 26 27 28 29

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
30

T
typhoonzero 已提交
31
import math
S
seiriosPlus 已提交
32
import random
33
import numpy as np
34

35
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
36
from .. import core, framework
T
typhoonzero 已提交
37
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
38
                        default_startup_program, Block, \
W
Wu Yi 已提交
39
                        Parameter, grad_var_name
40 41
from .details import *
from functools import reduce
42 43 44

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
45
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
46 47 48
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
49 50


T
typhoonzero 已提交
51 52 53 54 55 56
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
57

T
typhoonzero 已提交
58 59
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
60 61


62 63 64 65
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
66
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
67
    """
68 69 70 71 72 73
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
74
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
75 76 77

    Args:
        var_list (list): List of variables.
78 79
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
80 81
        min_block_size (int): Minimum splitted block size.
    Returns:
82
        blocks (list[(varname, block_id, current_block_size)]): A list
83
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
84 85 86
    """
    blocks = []
    for var in var_list:
87
        split_count = slice_count
T
typhoonzero 已提交
88 89 90 91
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
92
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
93 94 95 96 97 98 99 100 101
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
102
        # update split_count after aligning
T
typhoonzero 已提交
103
        split_count = int(math.ceil(var_numel / float(block_size)))
104
        for block_id in range(split_count):
T
typhoonzero 已提交
105 106 107 108 109 110 111
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
112 113 114 115 116 117 118
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
119
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
120 121 122 123 124 125 126 127
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
128
class DistributeTranspiler(object):
Y
yi.wu 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
163

G
gongweibao 已提交
164 165 166 167 168 169 170 171 172 173 174 175
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

176 177 178 179 180 181 182
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
183 184 185 186 187 188 189 190 191 192 193
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
194 195 196 197 198 199 200 201 202 203 204
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
205
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
206 207 208
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
209
        self._init_splited_vars()
210

Y
Yancey1989 已提交
211 212
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
213
        send_vars = []
214 215 216 217 218 219

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
220
        grad_var_mapping_items = list(self.grad_var_mapping.items())
G
gongweibao 已提交
221
        if not self.config.slice_var_up:
S
seiriosPlus 已提交
222 223
            random.seed(self.trainer_num)
            random.shuffle(grad_var_mapping_items)
224 225

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
226
            eplist = ps_dispatcher.dispatch(splited_vars)
227

G
gongweibao 已提交
228
            if not self.config.slice_var_up:
229 230
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
231 232 233 234 235 236 237 238 239
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
240
                index += 1
Y
Yancey1989 已提交
241 242 243 244
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

W
Wu Yi 已提交
245
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
246
                index=index + 1,
247
                type="send",
Y
update  
Yancey1989 已提交
248
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
249 250 251 252 253
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
254 255
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
256 257 258 259 260

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
261
                outputs={},
Y
Yancey1989 已提交
262 263
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
264 265
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
266
                })
Y
Yancey1989 已提交
267 268 269

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
270
        for _, var in enumerate(send_vars):
271
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
272
        ps_dispatcher.reset()
Y
Yancey1989 已提交
273 274
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
275
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
276 277
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
278

Y
Yancey1989 已提交
279
        # step4: Concat the parameters splits together after recv.
280
        for varname, splited_var in list(self.param_var_mapping.items()):
Y
Yancey1989 已提交
281 282 283 284 285 286 287 288
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
289 290 291 292 293
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
294

T
typhoonzero 已提交
295
        program.global_block().append_op(
Y
Yancey1989 已提交
296 297
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
298
            outputs={},
Q
qiaolongfei 已提交
299 300
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
301
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
302
            })
Y
Yancey1989 已提交
303

304
        for varname, splited_var in list(self.param_var_mapping.items()):
T
typhoonzero 已提交
305 306
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
307
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
308
            program.global_block().append_op(
T
typhoonzero 已提交
309
                type="concat",
T
typhoonzero 已提交
310
                inputs={"X": splited_var},
T
typhoonzero 已提交
311
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
312
                attrs={"axis": 0})
T
typhoonzero 已提交
313

314
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
315 316
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
317
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
318

T
typhoonzero 已提交
319
    def get_trainer_program(self):
Y
yi.wu 已提交
320 321 322 323 324 325
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
326
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
327
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
328
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
329 330
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
331 332 333

    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
334
        Get parameter server side program.
335

Y
yi.wu 已提交
336 337
        Args:
            endpoint (str): current parameter server endpoint.
338

Y
yi.wu 已提交
339 340
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
341
        """
Y
yi.wu 已提交
342 343 344 345 346
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
347 348
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
349
        pserver_program.random_seed = self.origin_program.random_seed
350
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
351 352 353 354 355 356 357 358
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
359 360 361 362 363
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
364 365 366 367 368 369 370 371 372
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
373
            if self.sync_mode and self.trainer_num > 1:
374
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
375 376 377 378 379 380 381 382 383
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
384

Q
qiaolongfei 已提交
385
        # step 3
386
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
387 388 389
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
390
        # step 3.2
T
typhoonzero 已提交
391 392 393 394
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
395 396
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
397
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
398
        # step 3.3
T
typhoonzero 已提交
399
        # Iterate through the ops, and if an op and the optimize ops
400
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
401
        # append it into the sub program.
T
typhoonzero 已提交
402 403 404

        global_ops = []

Y
wip  
yi.wu 已提交
405 406
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
407
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
408
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
409
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
410
            elif op not in lr_ops:
Q
Qiyang Min 已提交
411
                self._append_pserver_non_opt_ops(block, op)
412 413 414 415 416 417

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
418

Y
Yancey1989 已提交
419
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
420 421 422 423 424 425 426 427
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
428
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
429 430 431

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
432
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
433 434

            # clone ops
Y
Yancey1989 已提交
435 436
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
437
                # clone sub_block of op
Y
Yancey1989 已提交
438
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
439 440 441 442

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

443
        # append lr decay ops to the child block if exists
444
        lr_ops = self._get_lr_ops()
445 446
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
447
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
448 449
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
450
            optimize_blocks.append(lr_decay_block)
451
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
452
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
453
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
454 455
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
456

T
typhoonzero 已提交
457
        # append op to the current block
Q
qiaolongfei 已提交
458
        grad_to_block_id = []
Q
qiaolongfei 已提交
459
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
460
        for idx, opt_op in enumerate(opt_op_on_pserver):
461
            per_opt_block = pserver_program.create_block(pre_block_idx)
462
            optimize_blocks.append(per_opt_block)
463
            # append grad merging ops before clip and weight decay
464
            # cases may like:
T
typhoonzero 已提交
465
            # L2Decay op -> clip op -> optimize
466 467 468 469 470 471 472
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
473
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
474 475
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
476
                if ufind.is_connected(op, opt_op) and op not in global_ops:
477
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
478
                                           merged_var, lr_ops)
T
typhoonzero 已提交
479

W
Wu Yi 已提交
480 481
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
482
        # append global ops
483
        if global_ops:
Q
qiaolongfei 已提交
484 485
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
486
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
487
            for glb_op in global_ops:
X
Xi Chen 已提交
488
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
489
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
490

491
        # process distributed lookup_table
Q
qiaolongfei 已提交
492
        prefetch_var_name_to_block_id = []
493 494
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
495
            table_opt_block = self._create_table_optimize_block(
496
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
497
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
498
            prefetch_var_name_to_block_id = self._create_prefetch_block(
499
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
500 501
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
502 503 504 505

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
506
            assert len(prefetch_var_name_to_block_id) > 0
507
        else:
Q
qiaolongfei 已提交
508
            assert len(prefetch_var_name_to_block_id) == 0
509

510
        attrs = {
511
            "optimize_blocks": optimize_blocks,
512 513 514
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
515
            "grad_to_block_id": grad_to_block_id,
516 517 518 519
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
520
            attrs['checkpint_block_id'] = checkpoint_block_id
521

T
typhoonzero 已提交
522 523 524 525 526
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
527
            attrs=attrs)
528

W
Wu Yi 已提交
529
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
530 531 532 533 534 535 536
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
537 538 539 540 541

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
542

Y
yi.wu 已提交
543 544
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
545 546
        """
        s_prog = Program()
T
typhoonzero 已提交
547
        orig_s_prog = default_startup_program()
X
Xin Pan 已提交
548
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
549 550 551 552 553 554 555 556 557 558 559 560
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
561
        for _, var in list(pserver_vars.items()):
W
Wu Yi 已提交
562
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            if op_on_pserver:
580 581 582
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
583 584 585 586 587 588 589 590 591 592 593
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

594 595
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
657
    def _init_splited_vars(self):
Y
yi.wu 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
681
        if self.config.slice_var_up:
Y
yi.wu 已提交
682 683
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
684 685 686
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
687
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
688 689
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
690 691 692
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
693 694 695 696
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
        assert (len(grad_blocks) == len(param_blocks))

        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
        self.grad_param_mapping = dict()
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]

        # create mapping of endpoint -> split var to create pserver side program
        self.param_grad_ep_mapping = dict()
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

724
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
725 726
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
727
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
728 729 730 731 732 733 734 735 736
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
737 738 739 740 741 742 743 744 745

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

746
                    lookup_table_op_index = list(all_ops).index(op)
747 748 749
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762
                    ids_var = program.global_block().vars[ids_name[0]]
                    prefetch_input_vars = self.create_splited_vars(
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
                    prefetch_output_vars = self.create_splited_vars(
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
763 764

                    # insert split_ids_op
W
Wu Yi 已提交
765
                    program.global_block()._insert_op(
766
                        index=lookup_table_op_index,
767 768 769 770 771 772 773
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
774
                        outputs={"Out": prefetch_input_vars})
775 776

                    # insert prefetch_op
W
Wu Yi 已提交
777
                    program.global_block()._insert_op(
778
                        index=lookup_table_op_index + 1,
779
                        type="prefetch",
Q
qiaolongfei 已提交
780 781
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
782
                        attrs={
783
                            "epmap": pserver_endpoints,
784 785 786
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
787
                        })
788 789

                    # insert concat_op
W
Wu Yi 已提交
790
                    program.global_block()._insert_op(
791 792 793 794 795 796 797
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
798
                            'X': prefetch_output_vars
799
                        },
800 801 802 803 804
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
805
                        })
806 807

                    # delete lookup_table_op
808
                    delete_ops(program.global_block(), [op])
809 810 811
                    # break for loop
                    break

Y
Yancey1989 已提交
812
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
813
        # 2. add split_ids_op and send_op to send gradient to pservers
814 815
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
816
        table_grad_name = grad_var_name(self.table_name)
817 818 819 820
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
821
                program.global_block()._insert_op(
822 823 824 825 826
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
827
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
828
                program.global_block()._insert_op(
829
                    index=op_index + 2,
830
                    type="send",
831
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
832 833
                    outputs={},
                    attrs={
834
                        "sync_mode": True,
Y
Yancey1989 已提交
835 836 837
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
838 839 840 841 842 843
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
872 873

    def _create_table_optimize_block(self, pserver_index, pserver_program,
874
                                     pre_block_idx, grad_to_block_id):
875 876
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
877 878 879 880 881 882 883 884
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
885 886
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
887
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
888
            self.origin_program.global_block().vars[grad_var_name(
889
                self.table_name)])
890 891 892 893

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
894 895
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
896
        ][0]
Q
qiaolongfei 已提交
897
        table_opt_block = pserver_program.create_block(pre_block_idx)
898 899 900
        # only support sgd now
        assert table_opt_op.type == "sgd"

901 902 903
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
904
            pserver_side_table_grad_list = [
905 906 907 908 909 910 911 912 913
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

914
            # append sum op for pserver_side_table_grad_list
915 916
            table_opt_block.append_op(
                type="sum",
917
                inputs={"X": pserver_side_table_grad_list},
918 919
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
920 921
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
922
            origin_grad_name = grad_var.name
923 924
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
925 926
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
927
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
928
            grad_var = pserver_program.global_block()._rename_var(
929
                origin_grad_name, splited_grad_name)
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

945 946 947
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

948 949
        return table_opt_block

T
tangwei12 已提交
950 951 952 953 954 955
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
956
        pserver_program.global_block().create_var(
T
tangwei12 已提交
957
            name="kLookupTablePath",
T
tangwei12 已提交
958 959
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
960

T
tangwei12 已提交
961
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
962
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
963 964 965 966
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
967
            attrs={'file_path': "none"})
T
tangwei12 已提交
968 969 970

        return checkpoint_save_block.idx

T
typhoonzero 已提交
971 972 973 974 975
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
976
        Create vars for each split.
T
typhoonzero 已提交
977 978
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
979 980 981 982
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
983 984
        Returns:
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping
985
                from original var name to each var split.
T
typhoonzero 已提交
986
        """
987 988

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
989
        block_map = dict()
990

T
typhoonzero 已提交
991
        var_mapping = dict()
T
typhoonzero 已提交
992 993
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
994
            if varname not in block_map:
T
typhoonzero 已提交
995
                block_map[varname] = []
996
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
997

998
        for varname, splited in list(block_map.items()):
T
typhoonzero 已提交
999
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1000
            if len(splited) == 1:
1001
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1002 1003
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1004
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1005 1006 1007 1008 1009
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1010
                continue
T
typhoonzero 已提交
1011 1012

            var_mapping[varname] = []
T
typhoonzero 已提交
1013 1014 1015 1016
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1017

T
typhoonzero 已提交
1018
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1019
                size = block[1]
T
typhoonzero 已提交
1020 1021 1022 1023
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1024
                new_var_name = ""
1025
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1026 1027 1028 1029 1030
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1031
                var = program.global_block().create_var(
T
typhoonzero 已提交
1032 1033
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1034
                    dtype=orig_var.dtype,
1035
                    type=orig_var.type,
T
typhoonzero 已提交
1036
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1037
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1038
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1039
        return var_mapping
T
done  
typhoonzero 已提交
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1052 1053 1054 1055 1056 1057
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1058
            persistable=persistable)
T
done  
typhoonzero 已提交
1059

Y
Yancey1989 已提交
1060
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1061 1062 1063 1064
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1065
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1075
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1085

T
typhoonzero 已提交
1086 1087 1088 1089
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1090
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1113 1114
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1115
        orig_var_name = ""
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1126
        else:
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1154
        else:
1155 1156 1157 1158 1159 1160
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1161
            for i in range(self.trainer_num):
1162 1163 1164 1165 1166 1167 1168
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1169 1170
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1171 1172 1173 1174 1175 1176 1177 1178
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1179

1180
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1181
                            grad_to_block_id, origin_program, merged_var):
1182
        program = optimize_block.program
T
typhoonzero 已提交
1183
        pserver_block = program.global_block()
T
typhoonzero 已提交
1184
        new_inputs = dict()
T
typhoonzero 已提交
1185 1186
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1187
        for key in opt_op.input_names:
T
typhoonzero 已提交
1188 1189 1190 1191 1192 1193
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1194
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1195 1196 1197 1198
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1199
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1200
                    name=param_block.name,
T
typhoonzero 已提交
1201
                    persistable=True,
T
typhoonzero 已提交
1202 1203 1204
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1205
            elif key == "LearningRate":
1206
                # learning rate variable has already be created by non-optimize op,
1207
                # don't create it once again.
1208
                lr_varname = opt_op.input(key)[0]
1209
                if lr_varname in pserver_block.vars:
1210 1211 1212 1213 1214 1215 1216 1217 1218
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1219

T
typhoonzero 已提交
1220
        for key in opt_op.input_names:
1221 1222
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1223
                continue
1224
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1225 1226 1227 1228
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1229
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1230 1231 1232 1233 1234
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1235

1236
        # change output's ParamOut variable
1237 1238
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1239
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1240

1241
        optimize_block.append_op(
T
typhoonzero 已提交
1242 1243
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1244
            outputs=outputs,
T
typhoonzero 已提交
1245 1246
            attrs=opt_op.attrs)

1247 1248
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
1249 1250
        # TODO(minqiyang): replace these items() with six.iteritems() to
        # improve memory
1251
        for _, g in list(var_dict.items()):
1252 1253 1254 1255 1256 1257
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1258 1259 1260
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
1261
        for key, varlist in list(inputs.items()):
Q
Qiyang Min 已提交
1262 1263 1264 1265
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1266
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1267 1268 1269

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
1270
        for key, varlist in list(outputs.items()):
Q
Qiyang Min 已提交
1271 1272 1273 1274
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1275
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1276

Y
Yancey1989 已提交
1277
        return block.append_op(
Q
Qiyang Min 已提交
1278 1279 1280
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.attrs)

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1281
        program = optimize_block.program
1282
        # Append the ops for parameters that do not need to be optimized/updated
1283 1284
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1285
        for key, varlist in list(inputs.items()):
1286 1287
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1288
            for var in varlist:
1289 1290 1291 1292 1293 1294
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1295
                elif var.name not in program.global_block().vars:
1296
                    program.global_block().create_var(
T
typhoonzero 已提交
1297 1298 1299 1300 1301
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1302 1303
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1304
        for key, varlist in list(outputs.items()):
1305 1306 1307
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1308 1309 1310 1311
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1312
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1313
                    program.global_block()._clone_variable(var)
1314

Y
Yancey1989 已提交
1315
        return optimize_block.append_op(
T
typhoonzero 已提交
1316
            type=opt_op.type,
T
typhoonzero 已提交
1317 1318
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1319 1320
            attrs=opt_op.attrs)

1321 1322 1323 1324
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1325 1326
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1327 1328 1329 1330 1331 1332
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1333 1334
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1335 1336 1337 1338 1339 1340
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1341
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1342 1343
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1344 1345 1346 1347 1348 1349 1350
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1351
        if op.input("Param")[0] in param_names:
1352 1353 1354
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1355
                param = op.input("Param")[0]
T
typhoonzero 已提交
1356
                if same_or_split_var(n, param) and n != param:
1357 1358 1359
                    return True
            return False

T
typhoonzero 已提交
1360
    def _get_input_map_from_op(self, varmap, op):
1361
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1374
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1385 1386 1387 1388 1389 1390

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1391
            if self._is_optimizer_op(op):
1392 1393 1394 1395
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1396
        block = self.origin_program.global_block()
1397 1398 1399 1400 1401
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1402

1403 1404 1405 1406 1407
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1408
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1409 1410 1411 1412 1413 1414
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1415 1416
                    # we only need to append op for once
                    break
1417
        return lr_ops
Y
Yancey1989 已提交
1418

W
Wu Yi 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attrs and \
            int(op.attrs[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

Y
Yancey1989 已提交
1429
    def _get_optimize_pass(self):
1430
        """
1431
        Get optimizer operators, parameters and gradients from origin_program
1432 1433 1434 1435
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1436 1437 1438
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1439
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1440
        for op in block.ops:
W
Wu Yi 已提交
1441
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1442
                opt_ops.append(op)
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
                        op.attrs[RPC_OP_ROLE_ATTR_NAME]:
                        param_name = op.attrs[OP_ROLE_VAR_ATTR_NAME][0]
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1454 1455 1456
            else:
                pass
        return opt_ops, params_grads