distribute_transpiler.py 48.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18 19

import distributed_splitter as splitter
Y
Yancey1989 已提交
20 21
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
from .. import core, framework
22
from ..framework import Program, default_main_program, Variable, Parameter
23 24 25 26

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
27 28


T
typhoonzero 已提交
29 30 31 32 33 34
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
35

T
typhoonzero 已提交
36 37
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
38 39


40
class UnionFind(object):
41
    """ Union-find data structure.
42

43
    Union-find is a data structure that keeps track of a set of elements partitioned
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


91 92 93 94
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
95 96 97 98 99
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
100
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
101 102
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
103

T
typhoonzero 已提交
104 105
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
106 107
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
108 109
        :return: A list of VarBlocks. Each VarBlock specifies a shard of
           the var.
T
typhoonzero 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
128
        # update split_count after aligning
T
typhoonzero 已提交
129 130 131 132 133 134 135 136 137
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


138 139 140 141 142 143 144 145 146 147
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


Y
Yancey1989 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161
def find_op_by_input_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.input_arg_names:
            return index
    return -1


def find_op_by_output_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.output_arg_names:
            return index
    return -1


T
done  
typhoonzero 已提交
162 163
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
164
                  trainer_id,
T
done  
typhoonzero 已提交
165 166 167
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Y
Yancey1989 已提交
168
                  split_method=RoundRobin,
Q
tmp  
qiaolongfei 已提交
169
                  sync_mode=True):
T
done  
typhoonzero 已提交
170
        """
171 172
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
173
            to do parameter optimization. And the optimization graph will be put
174
            into a parameter server program.
T
done  
typhoonzero 已提交
175

176
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
177 178
            parameter servers.

T
typhoonzero 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            Steps to transpile trainer:
            1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
            2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
            3. modify trainer program add split_op to each grad variable.
            4. append send_op to send splited variables to server and fetch
               params(splited blocks or origin param) from server.
            5. append concat_op to merge splited blocks to update local weights.

            Steps to transpile pserver:
            1. create new program for parameter server.
            2. create params and grad variables that assigned to current server instance.
            3. create a sub-block in the server side program
            4. append ops that should run on current server instance.
            5. add listen_and_serv op

T
typhoonzero 已提交
194 195
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
T
typhoonzero 已提交
196
            :param program: program to transpile, default is default_main_program
T
typhoonzero 已提交
197
            :type program: Program
T
done  
typhoonzero 已提交
198 199
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
200 201
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
Y
Yancey1989 已提交
202 203 204
            :param split_method: A instance to determin how to dispatch variable
                blocks to different servers equally.
            :type split_method: A instance based on PSDispatcher class.  
Q
qiaolongfei 已提交
205 206 207
            :type sync_mode: boolean default True
            :param sync_mode: if sync_mode is set True, it means that dist transpiler
            will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
208
        """
Y
Yancey1989 已提交
209
        assert (split_method.__bases__[0] == PSDispatcher)
T
done  
typhoonzero 已提交
210 211
        if program is None:
            program = default_main_program()
212 213
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
214
        self.sync_mode = sync_mode
T
typhoonzero 已提交
215 216 217 218
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
219
        pserver_endpoints = pservers.split(",")
220
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
221
        self.optimize_ops, params_grads = self._get_optimize_pass()
Y
Yancey1989 已提交
222
        ps_dispatcher = split_method(pserver_endpoints)
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
245

246 247
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
248 249 250 251 252 253 254 255
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != framework.grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
280 281
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
282 283
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
284
        grad_var_mapping = self._append_split_op(program, grad_blocks)
285 286
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
287
        rpc_client_var = program.global_block().create_var(
288
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
289
            persistable=True,
T
typhoonzero 已提交
290
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
291

Y
Yancey1989 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        # step 3: transpile trainer side program, insert recv op and send op.

        # create mapping of endpoint -> split var to create pserver side program
        self.param_grad_ep_mapping = dict()
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
        for varname, send_vars in grad_var_mapping.items():
            index = find_op_by_output_arg(program.global_block(), varname)
            eplist = ps_dispatcher.dispatch(send_vars)
            program.global_block().insert_op(
                index=index,
                type="send_vars",
                inputs={"X": send_vars},
                outputs={"RPCClient": rpc_client_var},
                attrs={"epmap": eplist})

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
                outputs={"RPCClient": rpc_client_var},
                attrs={"endpoints": pserver_endpoints})

        # step 3.2: insert recv op to receive parameters from parameter server
        ps_dispatcher.reset()
        recv_vars = []
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            recv_vars.append(param_var_mapping[varname][int(block_id)])
        for b in grad_blocks:
            varname, block_id, _ = b.split(":")
            send_vars.append(grad_var_mapping[varname][int(block_id)])

        eplist = ps_dispatcher.dispatch(recv_vars)

        for i, ep in enumerate(eplist):
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])

T
typhoonzero 已提交
340
        program.global_block().append_op(
Y
Yancey1989 已提交
341 342 343
            type="recv",
            inputs={},
            outputs={"Out": recv_vars,
T
typhoonzero 已提交
344
                     "RPCClient": rpc_client_var},
Y
Yancey1989 已提交
345
            attrs={"epmap": eplist})
T
typhoonzero 已提交
346

Y
Yancey1989 已提交
347
        # TODO(Yancey1989): check dist lookup table
348 349 350 351 352 353
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
354 355
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
356
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
357
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
358 359
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
360 361 362 363

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
364
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
365 366 367 368 369 370
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
371
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
372 373 374 375 376 377 378 379
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
380 381 382 383 384 385

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
386 387 388 389 390 391 392 393 394
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
395
            if self.sync_mode and self.trainer_num > 1:
396
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
397 398 399 400 401 402 403 404 405
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
406

Q
qiaolongfei 已提交
407
        # step 3
408
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
409 410 411
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
412
        # step 3.2
T
typhoonzero 已提交
413 414 415 416 417 418
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
419
        # step 3.3
T
typhoonzero 已提交
420
        # Iterate through the ops, and if an op and the optimize ops
421
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
422
        # append it into the sub program.
T
typhoonzero 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
439 440
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
441

Q
qiaolongfei 已提交
442
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
443
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
444
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
T
typhoonzero 已提交
445 446 447 448
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

449
        # append lr decay ops to the child block if exists
450 451
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
452 453
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
454
            for _, op in enumerate(lr_ops):
455
                self._append_pserver_non_opt_ops(lr_decay_block, op)
456

T
typhoonzero 已提交
457
        # append op to the current block
Q
qiaolongfei 已提交
458
        grad_to_block_id = []
Q
qiaolongfei 已提交
459
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
460
        for idx, opt_op in enumerate(opt_op_on_pserver):
461
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
462 463
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
464
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
465
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
466 467

        # append global ops
468
        if global_ops:
Q
qiaolongfei 已提交
469 470 471
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
472 473
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
474 475 476 477 478 479 480 481 482

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

483 484 485 486
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
487
            table_opt_block = self._create_table_optimize_block(
Q
qiaolongfei 已提交
488
                pserver_index, pserver_program, pre_block_idx)
489
            prefetch_block = self._create_prefetch_block(
490
                pserver_index, pserver_program, table_opt_block)
491 492 493 494 495 496 497 498 499

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
500 501 502 503 504 505
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
506
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
507
                "endpoint": endpoint,
508
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
509 510
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
511
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
512
            })
513

T
typhoonzero 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
538
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
640
                    delete_ops(program.global_block(), [op])
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
        table_grad_name = framework.grad_var_name(self.table_name)
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
688
            type="lookup_sparse_table",
689 690 691 692 693 694 695 696 697 698 699
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
Q
qiaolongfei 已提交
700
                                     pre_block_idx):
701 702 703 704 705 706 707 708 709 710 711
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
712 713 714 715 716 717 718 719
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
720 721 722 723 724 725 726 727 728 729 730
        grad_var = _clone_var(
            pserver_program.global_block(),
            self.origin_program.global_block().vars[framework.grad_var_name(
                self.table_name)],
            persistable=False)

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
731
        table_opt_block = pserver_program.create_block(pre_block_idx)
732 733 734
        # only support sgd now
        assert table_opt_op.type == "sgd"

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
            table_grad_list = [
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

            # append sum op for table_grad_list
            table_opt_block.append_op(
                type="sum",
                inputs={"X": table_grad_list},
                outputs={"Out": [grad_var]})
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

768 769
        return table_opt_block

T
typhoonzero 已提交
770 771 772 773 774 775
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
776
        Create vars for each split.
T
typhoonzero 已提交
777 778
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
779
        :return: A dict mapping from original var name to each var split.
T
typhoonzero 已提交
780
        """
T
typhoonzero 已提交
781
        block_map = dict()
T
typhoonzero 已提交
782
        var_mapping = dict()
T
typhoonzero 已提交
783 784 785 786 787 788
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
789
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
790
            if len(splited) == 1:
791
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
792 793 794 795 796 797 798 799
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
800
                continue
T
typhoonzero 已提交
801 802

            var_mapping[varname] = []
T
typhoonzero 已提交
803 804 805 806
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
807

T
typhoonzero 已提交
808
            for i, block in enumerate(splited):
T
typhoonzero 已提交
809
                size = block[1]
T
typhoonzero 已提交
810 811 812 813
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
814
                new_var_name = ""
815
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
816 817 818 819 820
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
821
                var = program.global_block().create_var(
T
typhoonzero 已提交
822 823
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
824
                    dtype=orig_var.dtype,
825
                    type=orig_var.type,
T
typhoonzero 已提交
826
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
827
                var_mapping[varname].append(var)
T
typhoonzero 已提交
828
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
829
        return var_mapping
T
done  
typhoonzero 已提交
830

831 832 833 834 835 836 837 838 839 840 841
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
842 843 844 845 846 847 848
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
849
            persistable=persistable)
T
done  
typhoonzero 已提交
850

T
typhoonzero 已提交
851
    def _append_split_op(self, program, gradblocks):
852
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
853
        add_suffix = False
854
        if self.trainer_num > 1:
T
typhoonzero 已提交
855
            add_suffix = True
T
typhoonzero 已提交
856
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
857
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
858
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
859 860
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
861
                continue
T
typhoonzero 已提交
862
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
863
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
864 865 866 867 868 869 870 871
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
872
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
873 874 875 876
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
T
typhoonzero 已提交
877
                    type="split_byref",
878 879 880 881 882 883 884
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
885
        return var_mapping
T
done  
typhoonzero 已提交
886

T
typhoonzero 已提交
887 888 889 890
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
891
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
914 915 916 917 918
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
919 920
        else:
            orig_var_name = varname
T
typhoonzero 已提交
921 922
        return orig_var_name

923
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
924
                            grad_to_block_id, origin_program):
925
        program = optimize_block.program
T
typhoonzero 已提交
926
        pserver_block = program.global_block()
T
typhoonzero 已提交
927
        new_inputs = dict()
T
typhoonzero 已提交
928 929
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
930
        for key in opt_op.input_names:
T
typhoonzero 已提交
931 932 933
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
934
                    if same_or_split_var(
T
typhoonzero 已提交
935 936
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
937 938 939 940 941 942
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
943 944
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
945 946
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
947
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
948
                    vars2merge = []
949
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
950 951 952 953
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

954
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
955 956 957
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
958
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
959 960 961 962 963
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
964
                            attrs={"scale": 1.0 / float(self.trainer_num)})
965

T
typhoonzero 已提交
966 967 968 969 970
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
971
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
972 973 974 975
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
976
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
977
                    name=param_block.name,
T
typhoonzero 已提交
978
                    persistable=True,
T
typhoonzero 已提交
979 980 981
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
982
            elif key == "LearningRate":
983
                # learning rate variable has already be created by non-optimize op,
984
                # don't create it once again.
985 986 987 988 989 990 991 992 993 994 995
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
996

T
typhoonzero 已提交
997
        for key in opt_op.input_names:
998 999
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1000
                continue
1001
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1002 1003 1004 1005
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1006
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1007 1008 1009 1010 1011
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1012

1013
        # change output's ParamOut variable
1014 1015
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1016
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1017

1018
        optimize_block.append_op(
T
typhoonzero 已提交
1019 1020
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1021
            outputs=outputs,
T
typhoonzero 已提交
1022 1023
            attrs=opt_op.attrs)

1024 1025
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1026
        # Append the ops for parameters that do not need to be optimized/updated
1027 1028
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1029 1030 1031 1032
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1033
            for var in varlist:
1034 1035
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1036 1037 1038 1039 1040
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1041 1042
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1043

1044 1045 1046 1047 1048
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1049
                program.global_block().clone_variable(var)
1050

1051
        optimize_block.append_op(
T
typhoonzero 已提交
1052
            type=opt_op.type,
T
typhoonzero 已提交
1053 1054
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1055 1056
            attrs=opt_op.attrs)

1057 1058 1059 1060
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1074 1075
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1076
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1077
        op2_output_names = op2.desc.output_arg_names()
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1097
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1098 1099
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1100 1101 1102 1103 1104 1105 1106
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1107
        if op.input("Param")[0] in param_names:
1108 1109 1110
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1111
                param = op.input("Param")[0]
T
typhoonzero 已提交
1112
                if same_or_split_var(n, param) and n != param:
1113 1114 1115
                    return True
            return False

T
typhoonzero 已提交
1116
    def _get_input_map_from_op(self, varmap, op):
1117
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1130
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1152
        block = self.origin_program.global_block()
1153 1154 1155 1156 1157
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1171 1172
                    # we only need to append op for once
                    break
1173
        return lr_ops
Y
Yancey1989 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

    def _get_optimize_pass(self):
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1186 1187
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1188 1189 1190
            else:
                pass
        return opt_ops, params_grads
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False