Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d0684930
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d0684930
编写于
8月 15, 2018
作者:
G
gongweibao
提交者:
GitHub
8月 15, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
parameter dispather. (#12666)
上级
efc5392d
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
162 addition
and
31 deletion
+162
-31
paddle/fluid/framework/threadpool.cc
paddle/fluid/framework/threadpool.cc
+7
-0
paddle/fluid/operators/distributed/variable_response.cc
paddle/fluid/operators/distributed/variable_response.cc
+6
-1
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+4
-1
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+1
-1
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+0
-1
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-2
python/paddle/fluid/tests/unittests/test_dist_train.py
python/paddle/fluid/tests/unittests/test_dist_train.py
+17
-0
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+37
-13
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+88
-12
未找到文件。
paddle/fluid/framework/threadpool.cc
浏览文件 @
d0684930
...
...
@@ -20,6 +20,9 @@
DEFINE_int32
(
io_threadpool_size
,
100
,
"number of threads used for doing IO, default 100"
);
DEFINE_int32
(
dist_threadpool_size
,
0
,
"number of threads used for distributed executed."
);
namespace
paddle
{
namespace
framework
{
...
...
@@ -35,6 +38,10 @@ void ThreadPool::Init() {
if
(
threadpool_
.
get
()
==
nullptr
)
{
// TODO(Yancey1989): specify the max threads number
int
num_threads
=
std
::
thread
::
hardware_concurrency
();
if
(
FLAGS_dist_threadpool_size
>
0
)
{
num_threads
=
FLAGS_dist_threadpool_size
;
VLOG
(
1
)
<<
"set dist_threadpool_size to "
<<
num_threads
;
}
PADDLE_ENFORCE_GT
(
num_threads
,
0
);
threadpool_
.
reset
(
new
ThreadPool
(
num_threads
));
}
...
...
paddle/fluid/operators/distributed/variable_response.cc
浏览文件 @
d0684930
...
...
@@ -190,12 +190,15 @@ bool VariableResponse::ProcSerializedField(
#endif
}
VLOG
(
7
)
<<
"ProcSerializedField:"
<<
meta_
.
varname
()
<<
", type:"
<<
meta_
.
type
()
<<
std
::
endl
;
framework
::
DDim
dims
=
GetDims
(
meta_
.
dims
());
if
(
meta_
.
type
()
==
sendrecv
::
LOD_TENSOR
)
{
PADDLE_ENFORCE
(
meta_
.
lod_size
()
>=
0
,
"lod info should be got first!"
);
if
(
!
CopyLodTensorData
(
input
,
*
dev_ctx_
,
dims
,
num_bytes
))
{
return
false
;
}
return
true
;
}
...
...
@@ -206,7 +209,9 @@ bool VariableResponse::ProcSerializedField(
return
true
;
}
return
true
;
PADDLE_ENFORCE
(
"not supported var types:"
,
meta_
.
varname
(),
meta_
.
type
());
return
false
;
}
};
// namespace distributed
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
d0684930
...
...
@@ -123,8 +123,11 @@ void ListenAndServOp::RunSyncLoop(
optimize_prepared
.
begin
(),
std
::
shared_ptr
<
framework
::
ExecutorPrepareContext
>
(
nullptr
));
// Trainers will get all parameters from pserver in the
// startup program, so we will wait RequestGet first
rpc_service_
->
SetCond
(
distributed
::
kRequestGet
);
rpc_service_
->
WaitBarrier
(
distributed
::
kRequestGet
);
rpc_service_
->
ResetBarrierCounter
();
while
(
true
)
{
rpc_service_
->
Profiler
().
OneStep
();
// Get from multiple trainers, we don't care about the order in which
...
...
python/paddle/fluid/__init__.py
浏览文件 @
d0684930
...
...
@@ -122,7 +122,7 @@ def __bootstrap__():
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
'cpu_deterministic'
"dist_threadpool_size"
,
'cpu_deterministic'
]
if
core
.
is_compiled_with_dist
():
read_env_flags
.
append
(
'rpc_deadline'
)
...
...
python/paddle/fluid/initializer.py
浏览文件 @
d0684930
...
...
@@ -15,7 +15,6 @@
from
.
import
framework
import
numpy
as
np
import
contextlib
from
.framework
import
convert_np_dtype_to_dtype_
from
.core
import
VarDesc
__all__
=
[
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
d0684930
...
...
@@ -59,8 +59,8 @@ py_test_modules(test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=$
if
(
WITH_DISTRIBUTE
)
py_test_modules
(
test_dist_train MODULES test_dist_train SERIAL
)
set_tests_properties
(
test_listen_and_serv_op PROPERTIES TIMEOUT 20
)
set_tests_properties
(
test_dist_mnist PROPERTIES TIMEOUT
18
0
)
set_tests_properties
(
test_dist_word2vec PROPERTIES TIMEOUT
18
0
)
set_tests_properties
(
test_dist_mnist PROPERTIES TIMEOUT
20
0
)
set_tests_properties
(
test_dist_word2vec PROPERTIES TIMEOUT
20
0
)
endif
()
py_test_modules
(
test_parallel_executor_crf MODULES test_parallel_executor_crf SERIAL
)
py_test_modules
(
test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL
)
...
...
python/paddle/fluid/tests/unittests/test_dist_train.py
浏览文件 @
d0684930
...
...
@@ -26,6 +26,12 @@ from paddle.fluid.layers.io import ListenAndServ
from
paddle.fluid.layers.io
import
Recv
from
paddle.fluid.layers.io
import
Send
from
paddle.fluid
import
core
RPC_OP_ROLE_ATTR_NAME
=
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
(
)
RPC_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
RPC
class
TestSendOp
(
unittest
.
TestCase
):
def
test_send
(
self
):
...
...
@@ -89,18 +95,29 @@ class TestSendOp(unittest.TestCase):
def
init_client
(
self
,
place
,
port
):
main
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
):
main
.
global_block
().
append_op
(
type
=
"fetch_barrier"
,
inputs
=
{},
outputs
=
{},
attrs
=
{
"endpoints"
:
[
"127.0.0.1:{0}"
.
format
(
port
)],
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
x
=
layers
.
data
(
shape
=
[
32
,
32
],
dtype
=
'float32'
,
name
=
'X'
,
append_batch_size
=
False
)
fluid
.
initializer
.
Constant
(
value
=
2.3
)(
x
,
main
.
global_block
())
get_var
=
main
.
global_block
().
create_var
(
name
=
"scale_0.tmp_0"
,
# server side var
dtype
=
"float32"
,
persistable
=
False
,
shape
=
[
32
,
32
])
fluid
.
initializer
.
Constant
(
value
=
2.3
)(
get_var
,
main
.
global_block
())
Send
(
"127.0.0.1:%d"
%
port
,
[
x
])
o
=
Recv
(
"127.0.0.1:%d"
%
port
,
[
get_var
])
...
...
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
d0684930
...
...
@@ -18,6 +18,7 @@ import unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.transpiler.distribute_transpiler
import
delete_ops
import
traceback
import
collections
class
TranspilerTest
(
unittest
.
TestCase
):
...
...
@@ -53,9 +54,18 @@ class TranspilerTest(unittest.TestCase):
self
.
origin_prog
=
main
.
clone
()
return
main
def
get_trainer
(
self
,
config
=
None
,
sync_mode
=
True
):
t
=
self
.
_transpiler_instance
(
config
,
sync_mode
)
return
t
.
get_trainer_program
()
def
get_trainer
(
self
,
config
=
None
):
src
=
fluid
.
default_startup_program
().
clone
()
t
=
self
.
_transpiler_instance
(
config
)
trainer_main
=
t
.
get_trainer_program
()
trainer_startup
=
fluid
.
default_startup_program
()
assert
(
src
.
num_blocks
==
1
)
assert
(
trainer_startup
.
num_blocks
==
src
.
num_blocks
)
return
trainer_main
,
trainer_startup
def
get_pserver
(
self
,
ep
,
config
=
None
,
sync_mode
=
True
):
t
=
self
.
_transpiler_instance
(
config
,
sync_mode
)
...
...
@@ -91,7 +101,21 @@ class TestBasicModel(TranspilerTest):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
pserver2
,
startup2
=
self
.
get_pserver
(
self
.
pserver2_ep
)
trainer
=
self
.
get_trainer
()
trainer
,
trainer_startup
=
self
.
get_trainer
()
# splited var blocks should be in startup program
self
.
assertTrue
(
"fc_w.block0"
in
trainer_startup
.
global_block
().
vars
)
self
.
assertTrue
(
"fc_w.block1"
in
trainer_startup
.
global_block
().
vars
)
self
.
assertTrue
(
"fc_w"
in
trainer_startup
.
global_block
().
vars
)
self
.
assertTrue
(
"fc_b"
in
trainer_startup
.
global_block
().
vars
)
self
.
assertTrue
(
"fc_w@GRAD"
not
in
trainer_startup
.
global_block
().
vars
)
self
.
assertTrue
(
"fc_b@GRAD"
not
in
trainer_startup
.
global_block
().
vars
)
src
=
[
op
.
type
for
op
in
trainer_startup
.
global_block
().
ops
]
dst
=
[
'fill_constant'
,
'fill_constant'
,
'uniform_random'
,
'recv'
,
'recv'
,
\
'fetch_barrier'
,
'concat'
]
self
.
assertEqual
(
src
,
dst
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
global_block
().
ops
],
[
'mul'
,
'elementwise_add'
,
'elementwise_sub'
,
'square'
,
'mean'
,
...
...
@@ -142,7 +166,7 @@ class TestBasicModelWithLargeBlockSize(TranspilerTest):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
)
pserver2
,
startup2
=
self
.
get_pserver
(
self
.
pserver2_ep
,
config
)
trainer
=
self
.
get_trainer
(
config
)
trainer
,
_
=
self
.
get_trainer
(
config
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
global_block
().
ops
],
[
'mul'
,
'elementwise_add'
,
'elementwise_sub'
,
'square'
,
'mean'
,
...
...
@@ -226,7 +250,7 @@ class TestLRDecay(TranspilerTest):
def
transpiler_test_impl
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
trainer
=
self
.
get_trainer
()
trainer
,
_
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
pserver
.
blocks
),
4
)
lr_decay_ops
=
[
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
]
...
...
@@ -256,7 +280,7 @@ class TestLRDecayConditional(TranspilerTest):
def
transpiler_test_impl
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
trainer
=
self
.
get_trainer
()
trainer
,
_
=
self
.
get_trainer
()
serv_op
=
pserver
.
blocks
[
0
].
ops
[
0
]
sub_blocks
=
[]
...
...
@@ -305,7 +329,7 @@ class TestL2Decay(TranspilerTest):
def
transpiler_test_impl
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
trainer
=
self
.
get_trainer
()
trainer
,
_
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
pserver
.
blocks
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
],
...
...
@@ -340,7 +364,7 @@ class TestL2DecayWithPiecewise(TranspilerTest):
def
transpiler_test_impl
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
trainer
=
self
.
get_trainer
()
trainer
,
_
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
pserver
.
blocks
),
9
)
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
],
[
...
...
@@ -415,7 +439,7 @@ class TestLocalLookupTable(TestDistLookupTableBase):
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"sum"
,
"adam"
,
"scale"
,
"scale"
])
trainer
=
self
.
get_trainer
()
trainer
,
_
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
...
...
@@ -453,7 +477,7 @@ class TestDistLookupTable(TestDistLookupTableBase):
# 5 save table
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
5
].
ops
],
[
"save"
])
trainer
=
self
.
get_trainer
()
trainer
,
_
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'split_ids'
,
...
...
@@ -486,7 +510,7 @@ class TestAsyncLocalLookupTable(TestDistLookupTableBase):
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"adam"
,
"scale"
,
"scale"
])
trainer
=
self
.
get_trainer
(
config
)
trainer
,
_
=
self
.
get_trainer
(
config
)
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
...
...
@@ -525,7 +549,7 @@ class TestAsyncDistLookupTable(TestDistLookupTableBase):
# 5 save table
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
5
].
ops
],
[
"save"
])
trainer
=
self
.
get_trainer
(
config
)
trainer
,
_
=
self
.
get_trainer
(
config
)
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'split_ids'
,
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
d0684930
...
...
@@ -195,6 +195,9 @@ class DistributeTranspiler(object):
if
program
is
None
:
program
=
default_main_program
()
self
.
origin_program
=
program
self
.
origin_startup_program
=
default_startup_program
().
clone
()
self
.
startup_program
=
default_startup_program
()
self
.
trainer_num
=
trainers
self
.
sync_mode
=
sync_mode
self
.
trainer_id
=
trainer_id
...
...
@@ -205,10 +208,10 @@ class DistributeTranspiler(object):
ps_dispatcher
=
self
.
config
.
split_method
(
self
.
pserver_endpoints
)
self
.
has_distributed_lookup_table
=
self
.
_has_distributed_lookup_table
()
# split and create vars, then put splited vars in dicts for later use.
# s
tep 1: s
plit and create vars, then put splited vars in dicts for later use.
self
.
_init_splited_vars
()
# step
3.1
: insert send op to send gradient vars to parameter servers
# step
2
: insert send op to send gradient vars to parameter servers
ps_dispatcher
.
reset
()
send_vars
=
[]
...
...
@@ -265,7 +268,7 @@ class DistributeTranspiler(object):
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
# step 3
.2
: insert recv op to receive parameters from parameter server
# step 3: insert recv op to receive parameters from parameter server
recv_vars
=
[]
for
_
,
var
in
enumerate
(
send_vars
):
recv_vars
.
append
(
self
.
grad_param_mapping
[
var
])
...
...
@@ -312,6 +315,8 @@ class DistributeTranspiler(object):
outputs
=
{
"Out"
:
[
orig_param
]},
attrs
=
{
"axis"
:
0
})
self
.
_get_trainer_startup_program
(
recv_vars
=
recv_vars
,
eplist
=
eplist
)
if
self
.
has_distributed_lookup_table
:
self
.
_replace_lookup_table_op_with_prefetch
(
program
,
pserver_endpoints
)
...
...
@@ -328,8 +333,78 @@ class DistributeTranspiler(object):
# FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
delete_ops
(
self
.
origin_program
.
global_block
(),
self
.
optimize_ops
)
self
.
origin_program
.
__str__
()
return
self
.
origin_program
def
_get_trainer_startup_program
(
self
,
recv_vars
,
eplist
,
startup_program
=
None
):
"""
Get transpiled trainer side startup program.
Args:
startup_program(Program): Startup program.
Returns:
Program: trainer side startup program.
"""
if
startup_program
is
None
:
startup_program
=
self
.
startup_program
# FIXME(gongwb): delete not need ops.
# note that: some parameter is not trainable and those ops can't be deleted.
for
varname
,
splited_var
in
self
.
param_var_mapping
.
iteritems
():
# Get the eplist of recv vars
eps
=
[]
for
var
in
splited_var
:
index
=
[
v
.
name
for
v
in
recv_vars
].
index
(
var
.
name
)
eps
.
append
(
eplist
[
index
])
for
var
in
splited_var
:
if
startup_program
.
global_block
().
has_var
(
var
.
name
):
continue
startup_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
False
,
type
=
var
.
type
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
,
lod_level
=
var
.
lod_level
)
op
=
startup_program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{},
outputs
=
{
"Out"
:
splited_var
},
attrs
=
{
"epmap"
:
eps
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
startup_program
.
global_block
().
append_op
(
type
=
"fetch_barrier"
,
inputs
=
{},
outputs
=
{},
attrs
=
{
"endpoints"
:
self
.
pserver_endpoints
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
for
varname
,
splited_var
in
self
.
param_var_mapping
.
iteritems
():
#add concat ops to merge splited parameters received from parameter servers.
if
len
(
splited_var
)
<=
1
:
continue
orig_param
=
startup_program
.
global_block
().
vars
[
varname
]
startup_program
.
global_block
().
append_op
(
type
=
"concat"
,
inputs
=
{
"X"
:
splited_var
},
outputs
=
{
"Out"
:
[
orig_param
]},
attrs
=
{
"axis"
:
0
})
return
startup_program
def
get_pserver_program
(
self
,
endpoint
):
"""
Get parameter server side program.
...
...
@@ -576,14 +651,16 @@ class DistributeTranspiler(object):
new_outputs
=
dict
()
# do not append startup op if var is not on this pserver
op_on_pserver
=
False
for
key
in
op
.
output_names
:
newname
,
_
=
_get_splited_name_and_shape
(
op
.
output
(
key
)[
0
])
if
newname
:
op_on_pserver
=
True
new_outputs
[
key
]
=
created_var_map
[
newname
]
elif
op
.
output
(
key
)[
0
]
in
pserver_vars
:
op_on_pserver
=
True
new_outputs
[
key
]
=
pserver_vars
[
op
.
output
(
key
)[
0
]]
# TODO(gongwb): remove this line.
if
op
.
type
not
in
[
"recv"
,
"fetch_barrier"
,
"concat"
]:
for
key
in
op
.
output_names
:
newname
,
_
=
_get_splited_name_and_shape
(
op
.
output
(
key
)[
0
])
if
newname
:
op_on_pserver
=
True
new_outputs
[
key
]
=
created_var_map
[
newname
]
elif
op
.
output
(
key
)[
0
]
in
pserver_vars
:
op_on_pserver
=
True
new_outputs
[
key
]
=
pserver_vars
[
op
.
output
(
key
)[
0
]]
if
op_on_pserver
:
# most startup program ops have no inputs
...
...
@@ -1022,7 +1099,6 @@ class DistributeTranspiler(object):
var_mapping
[
varname
]
=
\
[
program
.
global_block
().
var
(
orig_var
.
name
)]
continue
var_mapping
[
varname
]
=
[]
orig_shape
=
orig_var
.
shape
orig_dim1_flatten
=
1
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录