Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6fa56b9d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6fa56b9d
编写于
1月 10, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
left startup program bug
上级
50a02adf
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
59 addition
and
23 deletion
+59
-23
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+59
-23
未找到文件。
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
6fa56b9d
...
...
@@ -56,8 +56,6 @@ def split_dense_variable(var_list,
(
block_id
)
*
block_size
))
block
=
VarBlock
(
var
.
name
,
block_id
,
curr_block_size
)
blocks
.
append
(
str
(
block
))
print
(
"$$ splited var: "
,
var
.
name
,
var
.
shape
,
split_count
,
len
(
blocks
),
block_size
)
return
blocks
...
...
@@ -126,7 +124,7 @@ class DistributeTranspiler:
# let send_op know which endpoint to send which var, eplist is of the same
# order of send_inputs.
eplist
=
split_method
(
send_inputs
,
pserver_endpoints
)
# create mapping of endpoint -> var to create pserver side program
# create mapping of endpoint ->
splited
var to create pserver side program
self
.
param_grad_ep_mapping
=
dict
()
for
i
,
ep
in
enumerate
(
eplist
):
param
=
send_outputs
[
i
]
...
...
@@ -142,7 +140,6 @@ class DistributeTranspiler:
outputs
=
{
"Out"
:
send_outputs
},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
"epmap"
:
eplist
})
# step4
for
varname
,
splited_var
in
param_var_mapping
.
iteritems
():
if
len
(
splited_var
)
<=
1
:
...
...
@@ -187,21 +184,6 @@ class DistributeTranspiler:
var_mapping
[
varname
].
append
(
var
)
return
var_mapping
def
_clone_param
(
self
,
block
,
v
):
assert
isinstance
(
v
,
Parameter
)
new_p
=
Parameter
(
block
=
block
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
,
type
=
v
.
type
,
lod_level
=
v
.
lod_level
,
stop_gradient
=
v
.
stop_gradient
,
trainable
=
v
.
trainable
,
optimize_attr
=
v
.
optimize_attr
,
regularizer
=
v
.
regularizer
,
name
=
v
.
name
)
block
.
vars
[
new_p
.
name
]
=
new_p
def
_clone_var
(
self
,
block
,
var
):
assert
isinstance
(
var
,
Variable
)
return
block
.
create_var
(
...
...
@@ -210,7 +192,9 @@ class DistributeTranspiler:
dtype
=
var
.
dtype
,
type
=
var
.
type
,
lod_level
=
var
.
lod_level
,
persistable
=
var
.
persistable
)
# HACK: let all param in pserver persistable so child
# program in recv can get them
persistable
=
True
)
def
_append_split_op
(
self
,
program
,
gradblocks
):
var_mapping
=
self
.
_create_vars_from_blocklist
(
program
,
gradblocks
)
...
...
@@ -318,9 +302,10 @@ class DistributeTranspiler:
return
tmpvar
=
program
.
global_block
().
create_var
(
name
=
param_block
.
name
,
persistable
=
param_block
.
persistabl
e
,
persistable
=
Tru
e
,
dtype
=
param_block
.
dtype
,
shape
=
param_block
.
shape
)
new_inputs
[
key
]
=
tmpvar
for
key
,
var
in
opt_op
.
inputs
.
iteritems
():
...
...
@@ -330,7 +315,6 @@ class DistributeTranspiler:
param_shape
=
new_inputs
[
"Param"
].
shape
new_shape
=
self
.
_get_optimizer_input_shape
(
opt_op
.
type
,
key
,
var
.
shape
,
param_shape
)
print
(
"var, new shape"
,
key
,
var
.
name
,
new_shape
)
tmpvar
=
program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
...
...
@@ -338,7 +322,8 @@ class DistributeTranspiler:
shape
=
new_shape
)
new_inputs
[
key
]
=
tmpvar
# FIXME: change outputs ParamOut
# change outputs ParamOut variable
opt_op
.
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
new_inputs
,
...
...
@@ -380,6 +365,7 @@ class DistributeTranspiler:
else
:
self
.
_append_pserver_non_opt_ops
(
optimize_sub_program
,
opt_op
)
print
(
"####"
,
optimize_sub_program
)
pserver_program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{
"RX"
:
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]
...
...
@@ -400,3 +386,53 @@ class DistributeTranspiler:
})
pserver_program
.
sync_with_cpp
()
return
pserver_program
def
get_startup_program
(
self
,
endpoint
):
"""
Get startup program for current parameter server.
Modify operator input variables if there are variables that
was splited to several blocks.
"""
s_prog
=
Program
()
orig_s_prog
=
framework
.
default_startup_program
()
params
=
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
def
_get_splited_name_and_shape
(
varname
):
for
idx
,
splited_param
in
enumerate
(
params
):
pname
=
splited_param
.
name
if
pname
.
startswith
(
varname
)
and
varname
!=
pname
:
return
pname
,
splited_param
.
shape
return
""
,
[]
# 1. create vars
created_var_map
=
dict
()
for
var
in
params
:
print
(
"%%%% append var"
,
var
.
name
,
var
.
shape
)
tmpvar
=
s_prog
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
True
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
created_var_map
[
var
.
name
]
=
tmpvar
# 2. rename op outputs
for
op
in
orig_s_prog
.
global_block
().
ops
:
new_outputs
=
dict
()
for
key
,
var
in
op
.
outputs
.
iteritems
():
newname
,
_
=
_get_splited_name_and_shape
(
var
.
name
)
if
newname
:
new_outputs
[
key
]
=
created_var_map
[
newname
]
else
:
new_outputs
[
key
]
=
var
# do not append startup op if var is not on this pserver
var_on_pserver
=
False
for
_
,
var
in
new_outputs
.
iteritems
():
if
var
.
name
in
created_var_map
:
var_on_pserver
=
True
if
var_on_pserver
:
s_prog
.
global_block
().
append_op
(
type
=
op
.
type
,
inputs
=
op
.
inputs
,
outputs
=
new_outputs
,
attrs
=
op
.
attrs
)
return
s_prog
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录