distribute_transpiler.py 51.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18

Y
Yancey1989 已提交
19
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
20
from .. import core, framework
T
typhoonzero 已提交
21 22 23
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
24 25 26

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
Y
Yancey1989 已提交
27 28 29
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
30 31


T
typhoonzero 已提交
32 33 34 35 36 37
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
38

T
typhoonzero 已提交
39 40
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
41 42


43
class UnionFind(object):
44
    """ Union-find data structure.
45

46
    Union-find is a data structure that keeps track of a set of elements partitioned
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


94 95 96 97
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


98
def split_dense_variable(var_list, service_count, min_block_size=8192):
T
typhoonzero 已提交
99
    """
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit). 

    Args:
        var_list (list): List of variables.
        service_count (int): Numel of pserver services. A pserver may have two
            or more listening ports.
        min_block_size (int): Minimum splitted block size.
    Returns:
        blocks (list[(varname, block_id, current_block_size)]): A list 
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
116 117 118
    """
    blocks = []
    for var in var_list:
119
        split_count = service_count
T
typhoonzero 已提交
120 121 122 123
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
124
        if max_pserver_count < service_count:
T
typhoonzero 已提交
125 126 127 128 129 130 131 132 133
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
134
        # update split_count after aligning
T
typhoonzero 已提交
135 136 137 138 139 140 141 142 143
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


144 145 146 147 148 149 150 151 152 153
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


Y
Yancey1989 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167
def find_op_by_input_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.input_arg_names:
            return index
    return -1


def find_op_by_output_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.output_arg_names:
            return index
    return -1


T
done  
typhoonzero 已提交
168 169
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
170
                  trainer_id,
T
done  
typhoonzero 已提交
171 172 173
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Y
Yancey1989 已提交
174
                  split_method=RoundRobin,
Q
tmp  
qiaolongfei 已提交
175
                  sync_mode=True):
T
done  
typhoonzero 已提交
176
        """
T
typhoonzero 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        Transpile the program to distributed data-parallelism programs.
        The main_program will be transformed to use a remote parameter server
        to do parameter optimization. And the optimization graph will be put
        into a parameter server program.

        Use different methods to split trainable variables to different
        parameter servers.

        Steps to transpile trainer:
        1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
        2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
        3. modify trainer program add split_op to each grad variable.
        4. append send_op to send splited variables to server and fetch
            params(splited blocks or origin param) from server.
        5. append concat_op to merge splited blocks to update local weights.

        Steps to transpile pserver:
        1. create new program for parameter server.
        2. create params and grad variables that assigned to current server instance.
        3. create a sub-block in the server side program
        4. append ops that should run on current server instance.
        5. add listen_and_serv op

        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
214
        """
Y
Yancey1989 已提交
215
        assert (split_method.__bases__[0] == PSDispatcher)
T
done  
typhoonzero 已提交
216 217
        if program is None:
            program = default_main_program()
218 219
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
220
        self.sync_mode = sync_mode
T
typhoonzero 已提交
221 222 223 224
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
225
        pserver_endpoints = pservers.split(",")
226
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
227
        self.optimize_ops, params_grads = self._get_optimize_pass()
Y
Yancey1989 已提交
228
        ps_dispatcher = split_method(pserver_endpoints)
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
251

252 253
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
254 255 256 257 258 259 260 261
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
262 263 264 265 266 267 268

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
269
                if grad.name != grad_var_name(self.table_name)
270 271 272 273 274 275
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
276
            if self.sync_mode:
277
                self.trainer_side_table_grad_list = [
278 279 280 281 282 283 284 285 286
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
287
                self.trainer_side_table_grad_list = [
288 289 290 291 292 293 294
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
295

T
typhoonzero 已提交
296 297
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
Y
update  
Yancey1989 已提交
298
        assert (len(grad_blocks) == len(param_blocks))
299 300 301 302
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
Y
update  
Yancey1989 已提交
303 304 305 306 307 308 309 310 311
        grad_var_mapping = self._create_vars_from_blocklist(
            program, grad_blocks, add_trainer_suffix=self.trainer_num > 1)
        grad_param_mapping = dict()
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            grad_param_mapping[grad_var_mapping[g_name][int(g_bid)]] =  \
                    param_var_mapping[p_name][int(p_bid)]

Y
Yancey1989 已提交
312
        # step 3: transpile trainer side program, insert recv op and send op.
313

314
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
315
        self.param_grad_ep_mapping = dict()
Y
Yancey1989 已提交
316 317 318 319 320 321 322 323 324 325 326
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
327
        send_vars = []
Y
Yancey1989 已提交
328
        for orig_varname, splited_vars in grad_var_mapping.items():
Y
update  
Yancey1989 已提交
329
            eplist = ps_dispatcher.dispatch(splited_vars)
Y
Yancey1989 已提交
330 331 332 333 334 335 336 337 338
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
339
                index += 1
Y
Yancey1989 已提交
340 341 342 343
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
344
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
345
                index=index + 1,
Y
Yancey1989 已提交
346
                type="send_vars",
Y
update  
Yancey1989 已提交
347
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
348 349 350 351 352
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
353 354
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
355 356 357 358 359

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
360
                outputs={},
Y
Yancey1989 已提交
361 362
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
363 364
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
365
                })
Y
Yancey1989 已提交
366 367 368

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
369 370 371
        for _, var in enumerate(send_vars):
            recv_vars.append(grad_param_mapping[var])
        ps_dispatcher.reset()
Y
Yancey1989 已提交
372 373
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
374
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
375 376 377 378 379 380 381 382 383 384 385 386
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
        # step4: Concat the parameters splits together after recv.
        for varname, splited_var in param_var_mapping.iteritems():
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
387 388 389 390 391
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
392

T
typhoonzero 已提交
393
        program.global_block().append_op(
Y
Yancey1989 已提交
394 395
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
396
            outputs={},
Q
qiaolongfei 已提交
397 398
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
399
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
400
            })
Y
Yancey1989 已提交
401

T
typhoonzero 已提交
402
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
403 404
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
405
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
406
            program.global_block().append_op(
T
typhoonzero 已提交
407
                type="concat",
T
typhoonzero 已提交
408
                inputs={"X": splited_var},
T
typhoonzero 已提交
409
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
410
                attrs={"axis": 0})
T
typhoonzero 已提交
411

412
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
413 414
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
415
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
416

T
typhoonzero 已提交
417 418
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
419
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
420
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
421 422
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
423 424 425 426

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
427
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
428 429 430 431 432 433
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
434
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
435 436 437 438 439 440 441 442
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
443 444 445 446 447 448

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
449 450 451 452 453 454 455 456 457
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
458
            if self.sync_mode and self.trainer_num > 1:
459
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
460 461 462 463 464 465 466 467 468
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
469

Q
qiaolongfei 已提交
470
        # step 3
471
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
472 473 474
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
475
        # step 3.2
T
typhoonzero 已提交
476 477 478 479 480 481
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
482
        # step 3.3
T
typhoonzero 已提交
483
        # Iterate through the ops, and if an op and the optimize ops
484
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
485
        # append it into the sub program.
T
typhoonzero 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
502 503
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
504

Q
qiaolongfei 已提交
505
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
506
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
507
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
Y
Yancey 已提交
508
                                         self.origin_program)
T
typhoonzero 已提交
509 510 511
            else:
                self._append_pserver_non_opt_ops(block, op)

512
        # append lr decay ops to the child block if exists
513 514
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
515 516
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
517
            for _, op in enumerate(lr_ops):
518
                self._append_pserver_non_opt_ops(lr_decay_block, op)
519

T
typhoonzero 已提交
520
        # append op to the current block
Q
qiaolongfei 已提交
521
        grad_to_block_id = []
Q
qiaolongfei 已提交
522
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
523
        for idx, opt_op in enumerate(opt_op_on_pserver):
524
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
525 526
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
527
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
528
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
529 530

        # append global ops
531
        if global_ops:
Q
qiaolongfei 已提交
532 533 534
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
535 536
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
537 538 539 540 541 542 543 544 545

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

546 547 548 549
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
550
            table_opt_block = self._create_table_optimize_block(
551
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
552
            prefetch_block = self._create_prefetch_block(
553
                pserver_index, pserver_program, table_opt_block)
554 555 556 557 558 559 560 561 562

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
563 564 565 566 567 568
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
569
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
570
                "endpoint": endpoint,
571
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
572 573
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
574
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
575
            })
576

T
typhoonzero 已提交
577 578 579 580 581 582 583 584 585 586
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
587
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
601
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

634
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
635 636
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
Y
Yancey1989 已提交
683 684
                        outputs={"Out": self.prefetch_output_vars},
                        attrs={
685
                            "epmap": pserver_endpoints,
Y
Yancey1989 已提交
686 687
                            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                        })
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
703
                    delete_ops(program.global_block(), [op])
704 705 706
                    # break for loop
                    break

Y
Yancey1989 已提交
707
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
708 709 710
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
711
        table_grad_name = grad_var_name(self.table_name)
712 713 714 715 716 717 718 719 720 721
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
722
                    outputs={"Out": self.trainer_side_table_grad_list})
723 724 725
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
726
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
727 728 729 730 731 732
                    outputs={},
                    attrs={
                        "sync_send": True,
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
753
            type="lookup_sparse_table",
754 755 756 757 758 759 760 761 762 763 764
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
765
                                     pre_block_idx, grad_to_block_id):
766 767
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
768 769 770 771 772 773 774 775
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
776 777 778
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
        grad_var = pserver_program.global_block().clone_variable(
T
typhoonzero 已提交
779
            self.origin_program.global_block().vars[grad_var_name(
780
                self.table_name)])
781 782 783 784 785 786

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
787
        table_opt_block = pserver_program.create_block(pre_block_idx)
788 789 790
        # only support sgd now
        assert table_opt_op.type == "sgd"

791 792 793
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
794
            pserver_side_table_grad_list = [
795 796 797 798 799 800 801 802 803
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

804
            # append sum op for pserver_side_table_grad_list
805 806
            table_opt_block.append_op(
                type="sum",
807
                inputs={"X": pserver_side_table_grad_list},
808
                outputs={"Out": [grad_var]})
809 810
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
811
            origin_grad_name = grad_var.name
812 813
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
814 815
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
816
                                 " grad_var:" + grad_var.name)
817 818
            grad_var = pserver_program.global_block().rename_var(
                origin_grad_name, splited_grad_name)
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

834 835 836
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

837 838
        return table_opt_block

T
typhoonzero 已提交
839 840 841 842 843 844
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
845
        Create vars for each split.
T
typhoonzero 已提交
846 847
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
848 849 850 851 852 853 854
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
        Returns: 
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping 
                from original var name to each var split.
T
typhoonzero 已提交
855
        """
856 857

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
858
        block_map = dict()
859

T
typhoonzero 已提交
860
        var_mapping = dict()
T
typhoonzero 已提交
861 862 863 864 865 866
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
867
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
868
            if len(splited) == 1:
869
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
870 871 872 873 874 875 876 877
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
878
                continue
T
typhoonzero 已提交
879 880

            var_mapping[varname] = []
T
typhoonzero 已提交
881 882 883 884
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
885

T
typhoonzero 已提交
886
            for i, block in enumerate(splited):
T
typhoonzero 已提交
887
                size = block[1]
T
typhoonzero 已提交
888 889 890 891
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
892
                new_var_name = ""
893
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
894 895 896 897 898
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
899
                var = program.global_block().create_var(
T
typhoonzero 已提交
900 901
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
902
                    dtype=orig_var.dtype,
903
                    type=orig_var.type,
T
typhoonzero 已提交
904
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
905
                var_mapping[varname].append(var)
T
typhoonzero 已提交
906
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
907
        return var_mapping
T
done  
typhoonzero 已提交
908

909 910 911 912 913 914 915 916 917 918 919
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
920 921 922 923 924 925 926
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
927
            persistable=persistable)
T
done  
typhoonzero 已提交
928

Y
Yancey1989 已提交
929
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
954

T
typhoonzero 已提交
955 956 957 958
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
959
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
982 983 984 985 986
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
987 988
        else:
            orig_var_name = varname
T
typhoonzero 已提交
989 990
        return orig_var_name

991
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
992
                            grad_to_block_id, origin_program):
993
        program = optimize_block.program
T
typhoonzero 已提交
994
        pserver_block = program.global_block()
T
typhoonzero 已提交
995
        new_inputs = dict()
T
typhoonzero 已提交
996 997
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
998
        for key in opt_op.input_names:
T
typhoonzero 已提交
999 1000 1001
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
1002
                    if same_or_split_var(
T
typhoonzero 已提交
1003 1004
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
1005 1006 1007 1008 1009 1010
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
1011 1012
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
1013 1014
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
1015
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
1016
                    vars2merge = []
1017
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
1018 1019 1020 1021
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

1022
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
1023 1024 1025
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
1026
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
1027 1028 1029 1030 1031
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
1032
                            attrs={"scale": 1.0 / float(self.trainer_num)})
1033

T
typhoonzero 已提交
1034 1035 1036 1037 1038
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1039
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1040 1041 1042 1043
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1044
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1045
                    name=param_block.name,
T
typhoonzero 已提交
1046
                    persistable=True,
T
typhoonzero 已提交
1047 1048 1049
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1050
            elif key == "LearningRate":
1051
                # learning rate variable has already be created by non-optimize op,
1052
                # don't create it once again.
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1064

T
typhoonzero 已提交
1065
        for key in opt_op.input_names:
1066 1067
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1068
                continue
1069
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1070 1071 1072 1073
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1074
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1075 1076 1077 1078 1079
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1080

1081
        # change output's ParamOut variable
1082 1083
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1084
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1085

1086
        optimize_block.append_op(
T
typhoonzero 已提交
1087 1088
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1089
            outputs=outputs,
T
typhoonzero 已提交
1090 1091
            attrs=opt_op.attrs)

1092 1093
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1094
        # Append the ops for parameters that do not need to be optimized/updated
1095 1096
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1097 1098 1099 1100
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1101
            for var in varlist:
1102 1103
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1104 1105 1106 1107 1108
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1109 1110
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1111

1112 1113 1114 1115 1116
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1117
                program.global_block().clone_variable(var)
1118

1119
        optimize_block.append_op(
T
typhoonzero 已提交
1120
            type=opt_op.type,
T
typhoonzero 已提交
1121 1122
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1123 1124
            attrs=opt_op.attrs)

1125 1126 1127 1128
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1142 1143
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1144
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1145
        op2_output_names = op2.desc.output_arg_names()
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1165
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1166 1167
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1168 1169 1170 1171 1172 1173 1174
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1175
        if op.input("Param")[0] in param_names:
1176 1177 1178
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1179
                param = op.input("Param")[0]
T
typhoonzero 已提交
1180
                if same_or_split_var(n, param) and n != param:
1181 1182 1183
                    return True
            return False

T
typhoonzero 已提交
1184
    def _get_input_map_from_op(self, varmap, op):
1185
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1198
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1220
        block = self.origin_program.global_block()
1221 1222 1223 1224 1225
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1239 1240
                    # we only need to append op for once
                    break
1241
        return lr_ops
Y
Yancey1989 已提交
1242 1243

    def _get_optimize_pass(self):
1244 1245 1246 1247 1248 1249
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1260 1261
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1262 1263 1264
            else:
                pass
        return opt_ops, params_grads
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False