distribute_transpiler.py 50.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18

Y
Yancey1989 已提交
19 20
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
from .. import core, framework
T
typhoonzero 已提交
21 22 23
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
24 25 26 27

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
28 29


T
typhoonzero 已提交
30 31 32 33 34 35
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
36

T
typhoonzero 已提交
37 38
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
39 40


41
class UnionFind(object):
42
    """ Union-find data structure.
43

44
    Union-find is a data structure that keeps track of a set of elements partitioned
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


92 93 94 95
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


96
def split_dense_variable(var_list, service_count, min_block_size=8192):
T
typhoonzero 已提交
97
    """
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit). 

    Args:
        var_list (list): List of variables.
        service_count (int): Numel of pserver services. A pserver may have two
            or more listening ports.
        min_block_size (int): Minimum splitted block size.
    Returns:
        blocks (list[(varname, block_id, current_block_size)]): A list 
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
114 115 116
    """
    blocks = []
    for var in var_list:
117
        split_count = service_count
T
typhoonzero 已提交
118 119 120 121
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
122
        if max_pserver_count < service_count:
T
typhoonzero 已提交
123 124 125 126 127 128 129 130 131
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
132
        # update split_count after aligning
T
typhoonzero 已提交
133 134 135 136 137 138 139 140 141
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


142 143 144 145 146 147 148 149 150 151
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


Y
Yancey1989 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165
def find_op_by_input_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.input_arg_names:
            return index
    return -1


def find_op_by_output_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.output_arg_names:
            return index
    return -1


T
done  
typhoonzero 已提交
166 167
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
168
                  trainer_id,
T
done  
typhoonzero 已提交
169 170 171
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Y
Yancey1989 已提交
172
                  split_method=RoundRobin,
Q
tmp  
qiaolongfei 已提交
173
                  sync_mode=True):
T
done  
typhoonzero 已提交
174
        """
T
typhoonzero 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        Transpile the program to distributed data-parallelism programs.
        The main_program will be transformed to use a remote parameter server
        to do parameter optimization. And the optimization graph will be put
        into a parameter server program.

        Use different methods to split trainable variables to different
        parameter servers.

        Steps to transpile trainer:
        1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
        2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
        3. modify trainer program add split_op to each grad variable.
        4. append send_op to send splited variables to server and fetch
            params(splited blocks or origin param) from server.
        5. append concat_op to merge splited blocks to update local weights.

        Steps to transpile pserver:
        1. create new program for parameter server.
        2. create params and grad variables that assigned to current server instance.
        3. create a sub-block in the server side program
        4. append ops that should run on current server instance.
        5. add listen_and_serv op

        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
212
        """
Y
Yancey1989 已提交
213
        assert (split_method.__bases__[0] == PSDispatcher)
T
done  
typhoonzero 已提交
214 215
        if program is None:
            program = default_main_program()
216 217
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
218
        self.sync_mode = sync_mode
T
typhoonzero 已提交
219 220 221 222
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
223
        pserver_endpoints = pservers.split(",")
224
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
225
        self.optimize_ops, params_grads = self._get_optimize_pass()
Y
Yancey1989 已提交
226
        ps_dispatcher = split_method(pserver_endpoints)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
249

250 251
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
252 253 254 255 256 257 258 259
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
260 261 262 263 264 265 266

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
267
                if grad.name != grad_var_name(self.table_name)
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
284 285
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
Y
update  
Yancey1989 已提交
286
        assert (len(grad_blocks) == len(param_blocks))
287 288 289 290
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
Y
update  
Yancey1989 已提交
291 292 293 294 295 296 297 298 299
        grad_var_mapping = self._create_vars_from_blocklist(
            program, grad_blocks, add_trainer_suffix=self.trainer_num > 1)
        grad_param_mapping = dict()
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            grad_param_mapping[grad_var_mapping[g_name][int(g_bid)]] =  \
                    param_var_mapping[p_name][int(p_bid)]

T
typhoonzero 已提交
300
        rpc_client_var = program.global_block().create_var(
301
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
302
            persistable=True,
T
typhoonzero 已提交
303
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
304

Y
Yancey1989 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        # step 3: transpile trainer side program, insert recv op and send op.

        # create mapping of endpoint -> split var to create pserver side program
        self.param_grad_ep_mapping = dict()
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
320
        send_vars = []
Y
Yancey1989 已提交
321
        for orig_varname, splited_vars in grad_var_mapping.items():
Y
update  
Yancey1989 已提交
322
            eplist = ps_dispatcher.dispatch(splited_vars)
Y
Yancey1989 已提交
323 324 325 326 327 328 329 330 331
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
332
                index += 1
Y
Yancey1989 已提交
333 334 335 336
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
337
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
338
                index=index + 1,
Y
Yancey1989 已提交
339
                type="send_vars",
Y
update  
Yancey1989 已提交
340
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
341 342
                outputs={"RPCClient": rpc_client_var},
                attrs={"epmap": eplist})
Y
update  
Yancey1989 已提交
343 344
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
345 346 347 348 349 350

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
                outputs={"RPCClient": rpc_client_var},
Y
Yancey1989 已提交
351 352 353 354
                attrs={
                    "endpoints": pserver_endpoints,
                    "sync_mode": self.sync_mode
                })
Y
Yancey1989 已提交
355 356 357

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
358 359 360
        for _, var in enumerate(send_vars):
            recv_vars.append(grad_param_mapping[var])
        ps_dispatcher.reset()
Y
Yancey1989 已提交
361 362
        eplist = ps_dispatcher.dispatch(recv_vars)

Y
Yancey1989 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
        for i, ep in enumerate(eplist):
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
        # step4: Concat the parameters splits together after recv.
        for varname, splited_var in param_var_mapping.iteritems():
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
                outputs={"Out": splited_var,
                         "RPCClient": rpc_client_var},
                attrs={"epmap": eps})
T
typhoonzero 已提交
379

Y
Yancey1989 已提交
380 381 382 383 384 385
        program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={"RPCClient": rpc_client_var},
            attrs={"endpoints": pserver_endpoints})

Y
fix pe  
Yancey1989 已提交
386 387 388 389 390 391 392 393 394
        for varname, splited_var in param_var_mapping.iteritems():
            if len(splited_var) <= 1:
                continue
            orig_param = program.global_block().vars[varname]
            program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})
Y
update  
Yancey1989 已提交
395

396 397 398 399 400 401
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
402 403
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
404
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
405
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
406 407
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
408 409 410 411

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
412
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
413 414 415 416 417 418
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
419
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
420 421 422 423 424 425 426 427
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
428 429 430 431 432 433

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
434 435 436 437 438 439 440 441 442
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
443
            if self.sync_mode and self.trainer_num > 1:
444
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
445 446 447 448 449 450 451 452 453
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
454

Q
qiaolongfei 已提交
455
        # step 3
456
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
457 458 459
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
460
        # step 3.2
T
typhoonzero 已提交
461 462 463 464 465 466
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
467
        # step 3.3
T
typhoonzero 已提交
468
        # Iterate through the ops, and if an op and the optimize ops
469
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
470
        # append it into the sub program.
T
typhoonzero 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
487 488
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
489

Q
qiaolongfei 已提交
490
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
491
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
492
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
Y
Yancey 已提交
493
                                         self.origin_program)
T
typhoonzero 已提交
494 495 496
            else:
                self._append_pserver_non_opt_ops(block, op)

497
        # append lr decay ops to the child block if exists
498 499
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
500 501
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
502
            for _, op in enumerate(lr_ops):
503
                self._append_pserver_non_opt_ops(lr_decay_block, op)
504

T
typhoonzero 已提交
505
        # append op to the current block
Q
qiaolongfei 已提交
506
        grad_to_block_id = []
Q
qiaolongfei 已提交
507
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
508
        for idx, opt_op in enumerate(opt_op_on_pserver):
509
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
510 511
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
512
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
513
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
514 515

        # append global ops
516
        if global_ops:
Q
qiaolongfei 已提交
517 518 519
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
520 521
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
522 523 524 525 526 527 528 529 530

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

531 532 533 534
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
535
            table_opt_block = self._create_table_optimize_block(
Q
qiaolongfei 已提交
536
                pserver_index, pserver_program, pre_block_idx)
537
            prefetch_block = self._create_prefetch_block(
538
                pserver_index, pserver_program, table_opt_block)
539 540 541 542 543 544 545 546 547

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
548 549 550 551 552 553
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
554
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
555
                "endpoint": endpoint,
556
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
557 558
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
559
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
560
            })
561

T
typhoonzero 已提交
562 563 564 565 566 567 568 569 570 571
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
572
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
586
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
688
                    delete_ops(program.global_block(), [op])
689 690 691 692 693 694 695 696
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
697
        table_grad_name = grad_var_name(self.table_name)
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
736
            type="lookup_sparse_table",
737 738 739 740 741 742 743 744 745 746 747
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
Q
qiaolongfei 已提交
748
                                     pre_block_idx):
749 750 751 752 753 754 755 756 757 758 759
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
760 761 762 763 764 765 766 767
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
768 769
        grad_var = _clone_var(
            pserver_program.global_block(),
T
typhoonzero 已提交
770
            self.origin_program.global_block().vars[grad_var_name(
771 772 773 774 775 776 777 778
                self.table_name)],
            persistable=False)

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
779
        table_opt_block = pserver_program.create_block(pre_block_idx)
780 781 782
        # only support sgd now
        assert table_opt_op.type == "sgd"

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
            table_grad_list = [
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

            # append sum op for table_grad_list
            table_opt_block.append_op(
                type="sum",
                inputs={"X": table_grad_list},
                outputs={"Out": [grad_var]})
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

816 817
        return table_opt_block

T
typhoonzero 已提交
818 819 820 821 822 823
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
824
        Create vars for each split.
T
typhoonzero 已提交
825 826
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
827 828 829 830 831 832 833
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
        Returns: 
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping 
                from original var name to each var split.
T
typhoonzero 已提交
834
        """
835 836

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
837
        block_map = dict()
838

T
typhoonzero 已提交
839
        var_mapping = dict()
T
typhoonzero 已提交
840 841 842 843 844 845
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
846
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
847
            if len(splited) == 1:
848
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
849 850 851 852 853 854 855 856
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
857
                continue
T
typhoonzero 已提交
858 859

            var_mapping[varname] = []
T
typhoonzero 已提交
860 861 862 863
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
864

T
typhoonzero 已提交
865
            for i, block in enumerate(splited):
T
typhoonzero 已提交
866
                size = block[1]
T
typhoonzero 已提交
867 868 869 870
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
871
                new_var_name = ""
872
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
873 874 875 876 877
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
878
                var = program.global_block().create_var(
T
typhoonzero 已提交
879 880
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
881
                    dtype=orig_var.dtype,
882
                    type=orig_var.type,
T
typhoonzero 已提交
883
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
884
                var_mapping[varname].append(var)
T
typhoonzero 已提交
885
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
886
        return var_mapping
T
done  
typhoonzero 已提交
887

888 889 890 891 892 893 894 895 896 897 898
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
899 900 901 902 903 904 905
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
906
            persistable=persistable)
T
done  
typhoonzero 已提交
907

Y
Yancey1989 已提交
908
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")

T
typhoonzero 已提交
934 935 936 937
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
938
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
961 962 963 964 965
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
966 967
        else:
            orig_var_name = varname
T
typhoonzero 已提交
968 969
        return orig_var_name

970
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
971
                            grad_to_block_id, origin_program):
972
        program = optimize_block.program
T
typhoonzero 已提交
973
        pserver_block = program.global_block()
T
typhoonzero 已提交
974
        new_inputs = dict()
T
typhoonzero 已提交
975 976
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
977
        for key in opt_op.input_names:
T
typhoonzero 已提交
978 979 980
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
981
                    if same_or_split_var(
T
typhoonzero 已提交
982 983
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
984 985 986 987 988 989
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
990 991
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
992 993
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
994
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
995
                    vars2merge = []
996
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
997 998 999 1000
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

1001
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
1002 1003 1004
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
1005
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
1006 1007 1008 1009 1010
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
1011
                            attrs={"scale": 1.0 / float(self.trainer_num)})
1012

T
typhoonzero 已提交
1013 1014 1015 1016 1017
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1018
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1019 1020 1021 1022
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1023
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1024
                    name=param_block.name,
T
typhoonzero 已提交
1025
                    persistable=True,
T
typhoonzero 已提交
1026 1027 1028
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1029
            elif key == "LearningRate":
1030
                # learning rate variable has already be created by non-optimize op,
1031
                # don't create it once again.
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1043

T
typhoonzero 已提交
1044
        for key in opt_op.input_names:
1045 1046
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1047
                continue
1048
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1049 1050 1051 1052
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1053
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1054 1055 1056 1057 1058
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1059

1060
        # change output's ParamOut variable
1061 1062
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1063
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1064

1065
        optimize_block.append_op(
T
typhoonzero 已提交
1066 1067
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1068
            outputs=outputs,
T
typhoonzero 已提交
1069 1070
            attrs=opt_op.attrs)

1071 1072
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1073
        # Append the ops for parameters that do not need to be optimized/updated
1074 1075
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1076 1077 1078 1079
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1080
            for var in varlist:
1081 1082
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1083 1084 1085 1086 1087
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1088 1089
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1090

1091 1092 1093 1094 1095
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1096
                program.global_block().clone_variable(var)
1097

1098
        optimize_block.append_op(
T
typhoonzero 已提交
1099
            type=opt_op.type,
T
typhoonzero 已提交
1100 1101
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1102 1103
            attrs=opt_op.attrs)

1104 1105 1106 1107
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1121 1122
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1123
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1124
        op2_output_names = op2.desc.output_arg_names()
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1144
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1145 1146
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1147 1148 1149 1150 1151 1152 1153
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1154
        if op.input("Param")[0] in param_names:
1155 1156 1157
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1158
                param = op.input("Param")[0]
T
typhoonzero 已提交
1159
                if same_or_split_var(n, param) and n != param:
1160 1161 1162
                    return True
            return False

T
typhoonzero 已提交
1163
    def _get_input_map_from_op(self, varmap, op):
1164
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1177
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1199
        block = self.origin_program.global_block()
1200 1201 1202 1203 1204
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1205

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1218 1219
                    # we only need to append op for once
                    break
1220
        return lr_ops
Y
Yancey1989 已提交
1221 1222

    def _get_optimize_pass(self):
1223 1224 1225 1226 1227 1228
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1239 1240
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1241 1242 1243
            else:
                pass
        return opt_ops, params_grads
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False