distribute_transpiler.py 50.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18

Y
Yancey1989 已提交
19 20
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
from .. import core, framework
T
typhoonzero 已提交
21 22 23
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
24 25 26 27

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
28 29


T
typhoonzero 已提交
30 31 32 33 34 35
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
36

T
typhoonzero 已提交
37 38
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
39 40


41
class UnionFind(object):
42
    """ Union-find data structure.
43

44
    Union-find is a data structure that keeps track of a set of elements partitioned
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


92 93 94 95
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


96
def split_dense_variable(var_list, service_count, min_block_size=8192):
T
typhoonzero 已提交
97
    """
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit). 

    Args:
        var_list (list): List of variables.
        service_count (int): Numel of pserver services. A pserver may have two
            or more listening ports.
        min_block_size (int): Minimum splitted block size.
    Returns:
        blocks (list[(varname, block_id, current_block_size)]): A list 
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
114 115 116
    """
    blocks = []
    for var in var_list:
117
        split_count = service_count
T
typhoonzero 已提交
118 119 120 121
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
122
        if max_pserver_count < service_count:
T
typhoonzero 已提交
123 124 125 126 127 128 129 130 131
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
132
        # update split_count after aligning
T
typhoonzero 已提交
133 134 135 136 137 138 139 140 141
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


142 143 144 145 146 147 148 149 150 151
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


Y
Yancey1989 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165
def find_op_by_input_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.input_arg_names:
            return index
    return -1


def find_op_by_output_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.output_arg_names:
            return index
    return -1


T
done  
typhoonzero 已提交
166 167
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
168
                  trainer_id,
T
done  
typhoonzero 已提交
169 170 171
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Y
Yancey1989 已提交
172
                  split_method=RoundRobin,
Q
tmp  
qiaolongfei 已提交
173
                  sync_mode=True):
T
done  
typhoonzero 已提交
174
        """
T
typhoonzero 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        Transpile the program to distributed data-parallelism programs.
        The main_program will be transformed to use a remote parameter server
        to do parameter optimization. And the optimization graph will be put
        into a parameter server program.

        Use different methods to split trainable variables to different
        parameter servers.

        Steps to transpile trainer:
        1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
        2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
        3. modify trainer program add split_op to each grad variable.
        4. append send_op to send splited variables to server and fetch
            params(splited blocks or origin param) from server.
        5. append concat_op to merge splited blocks to update local weights.

        Steps to transpile pserver:
        1. create new program for parameter server.
        2. create params and grad variables that assigned to current server instance.
        3. create a sub-block in the server side program
        4. append ops that should run on current server instance.
        5. add listen_and_serv op

        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
212
        """
Y
Yancey1989 已提交
213
        assert (split_method.__bases__[0] == PSDispatcher)
T
done  
typhoonzero 已提交
214 215
        if program is None:
            program = default_main_program()
216 217
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
218
        self.sync_mode = sync_mode
T
typhoonzero 已提交
219 220 221 222
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
223
        pserver_endpoints = pservers.split(",")
224
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
225
        self.optimize_ops, params_grads = self._get_optimize_pass()
Y
Yancey1989 已提交
226
        ps_dispatcher = split_method(pserver_endpoints)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
249

250 251
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
252 253 254 255 256 257 258 259
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
260 261 262 263 264 265 266

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
267
                if grad.name != grad_var_name(self.table_name)
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
284 285
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
Y
update  
Yancey1989 已提交
286
        assert (len(grad_blocks) == len(param_blocks))
287 288 289 290
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
Y
update  
Yancey1989 已提交
291 292 293 294 295 296 297 298 299
        grad_var_mapping = self._create_vars_from_blocklist(
            program, grad_blocks, add_trainer_suffix=self.trainer_num > 1)
        grad_param_mapping = dict()
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            grad_param_mapping[grad_var_mapping[g_name][int(g_bid)]] =  \
                    param_var_mapping[p_name][int(p_bid)]

T
typhoonzero 已提交
300
        rpc_client_var = program.global_block().create_var(
301
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
302
            persistable=True,
T
typhoonzero 已提交
303
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
304

Y
Yancey1989 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        # step 3: transpile trainer side program, insert recv op and send op.

        # create mapping of endpoint -> split var to create pserver side program
        self.param_grad_ep_mapping = dict()
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
320
        send_vars = []
Y
Yancey1989 已提交
321
        for orig_varname, splited_vars in grad_var_mapping.items():
Y
update  
Yancey1989 已提交
322
            eplist = ps_dispatcher.dispatch(splited_vars)
Y
Yancey1989 已提交
323 324 325 326 327 328 329 330 331
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
332
                index += 1
Y
Yancey1989 已提交
333 334 335 336
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
337
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
338
                index=index + 1,
Y
Yancey1989 已提交
339
                type="send_vars",
Y
update  
Yancey1989 已提交
340
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
341 342
                outputs={"RPCClient": rpc_client_var},
                attrs={"epmap": eplist})
Y
update  
Yancey1989 已提交
343 344
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
345 346 347 348 349 350 351 352 353 354

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
                outputs={"RPCClient": rpc_client_var},
                attrs={"endpoints": pserver_endpoints})

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
355 356 357
        for _, var in enumerate(send_vars):
            recv_vars.append(grad_param_mapping[var])
        ps_dispatcher.reset()
Y
Yancey1989 已提交
358 359
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
360
        program.global_block().append_op(
Y
Yancey1989 已提交
361 362 363
            type="recv",
            inputs={},
            outputs={"Out": recv_vars,
T
typhoonzero 已提交
364
                     "RPCClient": rpc_client_var},
Y
Yancey1989 已提交
365
            attrs={"epmap": eplist})
T
typhoonzero 已提交
366

Y
Yancey1989 已提交
367 368 369 370 371 372
        program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={"RPCClient": rpc_client_var},
            attrs={"endpoints": pserver_endpoints})

Y
update  
Yancey1989 已提交
373 374 375
        for i, ep in enumerate(eplist):
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
Y
fix pe  
Yancey1989 已提交
376 377 378 379 380 381 382 383 384 385
        # step4: Concat the parameters splits together after recv.
        for varname, splited_var in param_var_mapping.iteritems():
            if len(splited_var) <= 1:
                continue
            orig_param = program.global_block().vars[varname]
            program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})
Y
update  
Yancey1989 已提交
386

Y
Yancey1989 已提交
387
        # TODO(Yancey1989): check dist lookup table
388 389 390 391 392 393
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
394 395
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
396
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
397
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
398 399
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
400 401 402 403

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
404
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
405 406 407 408 409 410
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
411
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
412 413 414 415 416 417 418 419
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
420 421 422 423 424 425

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
426 427 428 429 430 431 432 433 434
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
435
            if self.sync_mode and self.trainer_num > 1:
436
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
437 438 439 440 441 442 443 444 445
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
446

Q
qiaolongfei 已提交
447
        # step 3
448
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
449 450 451
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
452
        # step 3.2
T
typhoonzero 已提交
453 454 455 456 457 458
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
459
        # step 3.3
T
typhoonzero 已提交
460
        # Iterate through the ops, and if an op and the optimize ops
461
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
462
        # append it into the sub program.
T
typhoonzero 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
479 480
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
481

Q
qiaolongfei 已提交
482
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
483
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
484
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
Y
Yancey 已提交
485
                                         self.origin_program)
T
typhoonzero 已提交
486 487 488
            else:
                self._append_pserver_non_opt_ops(block, op)

489
        # append lr decay ops to the child block if exists
490 491
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
492 493
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
494
            for _, op in enumerate(lr_ops):
495
                self._append_pserver_non_opt_ops(lr_decay_block, op)
496

T
typhoonzero 已提交
497
        # append op to the current block
Q
qiaolongfei 已提交
498
        grad_to_block_id = []
Q
qiaolongfei 已提交
499
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
500
        for idx, opt_op in enumerate(opt_op_on_pserver):
501
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
502 503
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
504
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
505
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
506 507

        # append global ops
508
        if global_ops:
Q
qiaolongfei 已提交
509 510 511
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
512 513
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
514 515 516 517 518 519 520 521 522

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

523 524 525 526
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
527
            table_opt_block = self._create_table_optimize_block(
Q
qiaolongfei 已提交
528
                pserver_index, pserver_program, pre_block_idx)
529
            prefetch_block = self._create_prefetch_block(
530
                pserver_index, pserver_program, table_opt_block)
531 532 533 534 535 536 537 538 539

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
540 541 542 543 544 545
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
546
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
547
                "endpoint": endpoint,
548
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
549 550
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
551
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
552
            })
553

T
typhoonzero 已提交
554 555 556 557 558 559 560 561 562 563
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
564
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
578
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
680
                    delete_ops(program.global_block(), [op])
681 682 683 684 685 686 687 688
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
689
        table_grad_name = grad_var_name(self.table_name)
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
728
            type="lookup_sparse_table",
729 730 731 732 733 734 735 736 737 738 739
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
Q
qiaolongfei 已提交
740
                                     pre_block_idx):
741 742 743 744 745 746 747 748 749 750 751
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
752 753 754 755 756 757 758 759
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
760 761
        grad_var = _clone_var(
            pserver_program.global_block(),
T
typhoonzero 已提交
762
            self.origin_program.global_block().vars[grad_var_name(
763 764 765 766 767 768 769 770
                self.table_name)],
            persistable=False)

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
771
        table_opt_block = pserver_program.create_block(pre_block_idx)
772 773 774
        # only support sgd now
        assert table_opt_op.type == "sgd"

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
            table_grad_list = [
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

            # append sum op for table_grad_list
            table_opt_block.append_op(
                type="sum",
                inputs={"X": table_grad_list},
                outputs={"Out": [grad_var]})
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

808 809
        return table_opt_block

T
typhoonzero 已提交
810 811 812 813 814 815
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
816
        Create vars for each split.
T
typhoonzero 已提交
817 818
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
819 820 821 822 823 824 825
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
        Returns: 
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping 
                from original var name to each var split.
T
typhoonzero 已提交
826
        """
827 828

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
829
        block_map = dict()
830

T
typhoonzero 已提交
831
        var_mapping = dict()
T
typhoonzero 已提交
832 833 834 835 836 837
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
838
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
839
            if len(splited) == 1:
840
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
841 842 843 844 845 846 847 848
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
849
                continue
T
typhoonzero 已提交
850 851

            var_mapping[varname] = []
T
typhoonzero 已提交
852 853 854 855
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
856

T
typhoonzero 已提交
857
            for i, block in enumerate(splited):
T
typhoonzero 已提交
858
                size = block[1]
T
typhoonzero 已提交
859 860 861 862
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
863
                new_var_name = ""
864
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
865 866 867 868 869
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
870
                var = program.global_block().create_var(
T
typhoonzero 已提交
871 872
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
873
                    dtype=orig_var.dtype,
874
                    type=orig_var.type,
T
typhoonzero 已提交
875
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
876
                var_mapping[varname].append(var)
T
typhoonzero 已提交
877
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
878
        return var_mapping
T
done  
typhoonzero 已提交
879

880 881 882 883 884 885 886 887 888 889 890
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
891 892 893 894 895 896 897
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
898
            persistable=persistable)
T
done  
typhoonzero 已提交
899

Y
Yancey1989 已提交
900
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")

T
typhoonzero 已提交
926 927 928 929
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
930
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
953 954 955 956 957
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
958 959
        else:
            orig_var_name = varname
T
typhoonzero 已提交
960 961
        return orig_var_name

962
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
963
                            grad_to_block_id, origin_program):
964
        program = optimize_block.program
T
typhoonzero 已提交
965
        pserver_block = program.global_block()
T
typhoonzero 已提交
966
        new_inputs = dict()
T
typhoonzero 已提交
967 968
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
969
        for key in opt_op.input_names:
T
typhoonzero 已提交
970 971 972
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
973
                    if same_or_split_var(
T
typhoonzero 已提交
974 975
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
976 977 978 979 980 981
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
982 983
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
984 985
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
986
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
987
                    vars2merge = []
988
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
989 990 991 992
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

993
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
994 995 996
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
997
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
998 999 1000 1001 1002
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
1003
                            attrs={"scale": 1.0 / float(self.trainer_num)})
1004

T
typhoonzero 已提交
1005 1006 1007 1008 1009
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1010
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1011 1012 1013 1014
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1015
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1016
                    name=param_block.name,
T
typhoonzero 已提交
1017
                    persistable=True,
T
typhoonzero 已提交
1018 1019 1020
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1021
            elif key == "LearningRate":
1022
                # learning rate variable has already be created by non-optimize op,
1023
                # don't create it once again.
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1035

T
typhoonzero 已提交
1036
        for key in opt_op.input_names:
1037 1038
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1039
                continue
1040
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1041 1042 1043 1044
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1045
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1046 1047 1048 1049 1050
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1051

1052
        # change output's ParamOut variable
1053 1054
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1055
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1056

1057
        optimize_block.append_op(
T
typhoonzero 已提交
1058 1059
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1060
            outputs=outputs,
T
typhoonzero 已提交
1061 1062
            attrs=opt_op.attrs)

1063 1064
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1065
        # Append the ops for parameters that do not need to be optimized/updated
1066 1067
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1068 1069 1070 1071
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1072
            for var in varlist:
1073 1074
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1075 1076 1077 1078 1079
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1080 1081
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1082

1083 1084 1085 1086 1087
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1088
                program.global_block().clone_variable(var)
1089

1090
        optimize_block.append_op(
T
typhoonzero 已提交
1091
            type=opt_op.type,
T
typhoonzero 已提交
1092 1093
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1094 1095
            attrs=opt_op.attrs)

1096 1097 1098 1099
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1113 1114
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1115
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1116
        op2_output_names = op2.desc.output_arg_names()
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1136
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1137 1138
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1139 1140 1141 1142 1143 1144 1145
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1146
        if op.input("Param")[0] in param_names:
1147 1148 1149
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1150
                param = op.input("Param")[0]
T
typhoonzero 已提交
1151
                if same_or_split_var(n, param) and n != param:
1152 1153 1154
                    return True
            return False

T
typhoonzero 已提交
1155
    def _get_input_map_from_op(self, varmap, op):
1156
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1169
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1191
        block = self.origin_program.global_block()
1192 1193 1194 1195 1196
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1210 1211
                    # we only need to append op for once
                    break
1212
        return lr_ops
Y
Yancey1989 已提交
1213 1214

    def _get_optimize_pass(self):
1215 1216 1217 1218 1219 1220
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1231 1232
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1233 1234 1235
            else:
                pass
        return opt_ops, params_grads
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False