distribute_transpiler.py 64.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
S
seiriosPlus 已提交
34
import random
35
import numpy as np
36
import collections
37

38
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
39
from .. import core, framework
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
41
                        default_startup_program, Block, \
W
Wu Yi 已提交
42
                        Parameter, grad_var_name
43 44
from .details import *
from functools import reduce
45 46 47

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
48
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
49 50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
52 53


T
typhoonzero 已提交
54 55 56 57 58 59
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
60

T
typhoonzero 已提交
61 62
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
63 64


65 66 67 68
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
69
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
70
    """
71 72 73 74 75 76
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
77
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
78 79 80

    Args:
        var_list (list): List of variables.
81 82
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
83 84
        min_block_size (int): Minimum splitted block size.
    Returns:
85
        blocks (list[(varname, block_id, current_block_size)]): A list
86
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
87 88 89
    """
    blocks = []
    for var in var_list:
90
        split_count = slice_count
T
typhoonzero 已提交
91 92 93 94
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
95
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
96 97 98 99 100 101 102 103 104
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
105
        # update split_count after aligning
T
typhoonzero 已提交
106
        split_count = int(math.ceil(var_numel / float(block_size)))
107
        for block_id in range(split_count):
T
typhoonzero 已提交
108 109 110 111 112 113 114
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
115 116 117 118 119 120 121
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
122
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
123 124 125 126 127 128 129 130
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
131
class DistributeTranspiler(object):
Y
yi.wu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
166

G
gongweibao 已提交
167 168 169 170 171 172 173 174 175 176 177 178
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

179 180 181 182 183 184 185
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
186 187 188 189 190 191 192 193 194 195 196
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
197 198 199 200
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
G
gongweibao 已提交
201 202 203
        self.origin_startup_program = default_startup_program().clone()

        self.startup_program = default_startup_program()
204 205 206 207 208 209 210
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
211
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
212 213
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

G
gongweibao 已提交
214
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
215
        self._init_splited_vars()
216

G
gongweibao 已提交
217
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
218
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
219
        send_vars = []
220 221 222 223 224 225

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
226
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
227

G
gongweibao 已提交
228
        if not self.config.slice_var_up:
229
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
230
            random.shuffle(grad_var_mapping_items)
231 232

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
233
            eplist = ps_dispatcher.dispatch(splited_vars)
234

G
gongweibao 已提交
235
            if not self.config.slice_var_up:
236 237
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
238 239 240 241 242 243 244 245 246
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
247
                index += 1
Y
Yancey1989 已提交
248 249 250 251
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

W
Wu Yi 已提交
252
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
253
                index=index + 1,
254
                type="send",
Y
update  
Yancey1989 已提交
255
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
256 257 258 259 260
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
261 262
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
263 264 265 266 267

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
268
                outputs={},
Y
Yancey1989 已提交
269 270
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
271 272
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
273
                })
Y
Yancey1989 已提交
274

G
gongweibao 已提交
275
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
276
        recv_vars = []
Y
update  
Yancey1989 已提交
277
        for _, var in enumerate(send_vars):
278
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
279
        ps_dispatcher.reset()
Y
Yancey1989 已提交
280 281
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
282
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
283 284
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
285

Y
Yancey1989 已提交
286
        # step4: Concat the parameters splits together after recv.
M
minqiyang 已提交
287
        for varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
288 289 290 291 292 293 294 295
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
296 297 298 299 300
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
301

Q
qiaolongfei 已提交
302 303 304 305 306 307 308 309 310
        if self.sync_mode:
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
                outputs={},
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
311

M
minqiyang 已提交
312
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
313 314
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
315
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
316
            program.global_block().append_op(
T
typhoonzero 已提交
317
                type="concat",
T
typhoonzero 已提交
318
                inputs={"X": splited_var},
T
typhoonzero 已提交
319
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
320
                attrs={"axis": 0})
T
typhoonzero 已提交
321

G
gongweibao 已提交
322 323
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

324
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
325 326
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
327
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
328

T
typhoonzero 已提交
329
    def get_trainer_program(self):
Y
yi.wu 已提交
330 331 332 333 334 335
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
336
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
337
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
338
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
339
        self.origin_program.__str__()
G
gongweibao 已提交
340

341
        return self.origin_program
T
typhoonzero 已提交
342

G
gongweibao 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    def _get_trainer_startup_program(self,
                                     recv_vars,
                                     eplist,
                                     startup_program=None):
        """
        Get transpiled trainer side startup program.

        Args:
            startup_program(Program): Startup program.

        Returns:
            Program: trainer side startup program.
        """
        if startup_program is None:
            startup_program = self.startup_program

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

        for varname, splited_var in self.param_var_mapping.iteritems():
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
                inputs={},
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={},
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        for varname, splited_var in self.param_var_mapping.iteritems():
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
            orig_param = startup_program.global_block().vars[varname]
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
412 413
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
414
        Get parameter server side program.
415

Y
yi.wu 已提交
416 417
        Args:
            endpoint (str): current parameter server endpoint.
418

Y
yi.wu 已提交
419 420
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
421
        """
Y
yi.wu 已提交
422 423 424 425 426
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
427 428
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
429
        pserver_program.random_seed = self.origin_program.random_seed
430
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
431 432 433 434 435 436 437 438
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
439 440 441 442 443
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
444 445 446 447 448 449 450 451 452
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
453
            if self.sync_mode and self.trainer_num > 1:
454
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
455 456 457 458 459 460 461 462 463
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
464

Q
qiaolongfei 已提交
465
        # step 3
466
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
467 468 469
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
470
        # step 3.2
T
typhoonzero 已提交
471 472 473 474
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
475 476
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
477
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
478
        # step 3.3
T
typhoonzero 已提交
479
        # Iterate through the ops, and if an op and the optimize ops
480
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
481
        # append it into the sub program.
T
typhoonzero 已提交
482 483 484

        global_ops = []

Y
wip  
yi.wu 已提交
485 486
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
487
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
488
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
489
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
490
            elif op not in lr_ops:
Q
Qiyang Min 已提交
491
                self._append_pserver_non_opt_ops(block, op)
492 493 494 495 496 497

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
498

Y
Yancey1989 已提交
499
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
500 501 502 503 504 505 506 507
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
508
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
509 510 511

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
512
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
513 514

            # clone ops
Y
Yancey1989 已提交
515 516
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
517
                # clone sub_block of op
Y
Yancey1989 已提交
518
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
519 520 521 522

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

523
        # append lr decay ops to the child block if exists
524
        lr_ops = self._get_lr_ops()
525 526
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
527
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
528 529
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
530
            optimize_blocks.append(lr_decay_block)
531
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
532
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
533
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
534 535
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
536

T
typhoonzero 已提交
537
        # append op to the current block
Q
qiaolongfei 已提交
538
        grad_to_block_id = []
Q
qiaolongfei 已提交
539
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
540
        for idx, opt_op in enumerate(opt_op_on_pserver):
541
            per_opt_block = pserver_program.create_block(pre_block_idx)
542
            optimize_blocks.append(per_opt_block)
543
            # append grad merging ops before clip and weight decay
544
            # cases may like:
T
typhoonzero 已提交
545
            # L2Decay op -> clip op -> optimize
546 547 548 549 550 551 552
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
553
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
554 555
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
556
                if ufind.is_connected(op, opt_op) and op not in global_ops:
557
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
558
                                           merged_var, lr_ops)
T
typhoonzero 已提交
559

W
Wu Yi 已提交
560 561
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
562
        # append global ops
563
        if global_ops:
Q
qiaolongfei 已提交
564 565
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
566
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
567
            for glb_op in global_ops:
X
Xi Chen 已提交
568
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
569
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
570

571
        # process distributed lookup_table
Q
qiaolongfei 已提交
572
        prefetch_var_name_to_block_id = []
573 574
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
575
            table_opt_block = self._create_table_optimize_block(
576
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
577
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
578
            prefetch_var_name_to_block_id = self._create_prefetch_block(
579
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
580 581
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
582 583 584 585

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
586
            assert len(prefetch_var_name_to_block_id) > 0
587
        else:
Q
qiaolongfei 已提交
588
            assert len(prefetch_var_name_to_block_id) == 0
589

590
        attrs = {
591
            "optimize_blocks": optimize_blocks,
592 593 594
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
595
            "grad_to_block_id": grad_to_block_id,
596 597 598 599
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
600
            attrs['checkpint_block_id'] = checkpoint_block_id
601

T
typhoonzero 已提交
602 603 604 605 606
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
607
            attrs=attrs)
608

W
Wu Yi 已提交
609
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
610 611
        return pserver_program

612 613 614 615
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
616 617 618 619
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
620 621 622 623 624

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
625 626
            startup_program (Program): if pass None, will use
                default_startup_program
627

Y
yi.wu 已提交
628 629
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
630 631
        """
        s_prog = Program()
632 633 634 635
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
636
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
637 638 639 640 641 642 643 644 645 646 647
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
648
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
649
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
650
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
651 652 653 654
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
655
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
656 657
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
658 659 660 661 662 663 664 665 666 667
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
668 669

            if op_on_pserver:
670 671 672
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
673 674 675
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
676
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
677 678 679 680
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
681
                    attrs=op.all_attrs())
T
typhoonzero 已提交
682 683
        return s_prog

684 685
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
686 687 688 689 690 691 692 693 694
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
695
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
747
    def _init_splited_vars(self):
Y
yi.wu 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
771
        if self.config.slice_var_up:
Y
yi.wu 已提交
772 773
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
774 775 776
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
777
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
778 779
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
780 781 782
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
783 784 785 786
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
787 788 789 790 791 792 793 794 795
        assert (len(grad_blocks) == len(param_blocks))

        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
796
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
797 798 799 800 801 802 803
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]

        # create mapping of endpoint -> split var to create pserver side program
804
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
805 806 807 808 809 810 811 812 813
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

814
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
815 816
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
817
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
818 819 820 821 822 823 824 825 826
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
827 828 829 830 831 832 833 834 835

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

836
                    lookup_table_op_index = list(all_ops).index(op)
837 838 839
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
840
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
841
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
842 843 844 845 846 847
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
848
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
849 850 851 852
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
853 854

                    # insert split_ids_op
W
Wu Yi 已提交
855
                    program.global_block()._insert_op(
856
                        index=lookup_table_op_index,
857 858 859 860 861 862 863
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
864
                        outputs={"Out": prefetch_input_vars})
865 866

                    # insert prefetch_op
W
Wu Yi 已提交
867
                    program.global_block()._insert_op(
868
                        index=lookup_table_op_index + 1,
869
                        type="prefetch",
Q
qiaolongfei 已提交
870 871
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
872
                        attrs={
873
                            "epmap": pserver_endpoints,
874 875 876
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
877
                        })
878 879

                    # insert concat_op
W
Wu Yi 已提交
880
                    program.global_block()._insert_op(
881 882 883 884 885 886 887
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
888
                            'X': prefetch_output_vars
889
                        },
890 891 892 893 894
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
895
                        })
896 897

                    # delete lookup_table_op
898
                    delete_ops(program.global_block(), [op])
899 900 901
                    # break for loop
                    break

Y
Yancey1989 已提交
902
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
903
        # 2. add split_ids_op and send_op to send gradient to pservers
904 905
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
906
        table_grad_name = grad_var_name(self.table_name)
907 908 909 910
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
911
                program.global_block()._insert_op(
912 913 914 915 916
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
917
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
918
                program.global_block()._insert_op(
919
                    index=op_index + 2,
920
                    type="send",
921
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
922 923
                    outputs={},
                    attrs={
924
                        "sync_mode": True,
Y
Yancey1989 已提交
925 926 927
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
928 929 930 931 932 933
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
962 963

    def _create_table_optimize_block(self, pserver_index, pserver_program,
964
                                     pre_block_idx, grad_to_block_id):
965 966
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
967 968
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
969

T
tangwei12 已提交
970
        zero_dim = int(
T
tangwei12 已提交
971 972 973 974
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
975 976
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
977
            shape=table_shape,
Y
Yancey1989 已提交
978 979 980
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
981 982
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
983
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
984
            self.origin_program.global_block().vars[grad_var_name(
985
                self.table_name)])
986 987 988 989

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
990 991
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
992
        ][0]
Q
qiaolongfei 已提交
993
        table_opt_block = pserver_program.create_block(pre_block_idx)
994

995 996 997
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
998
            pserver_side_table_grad_list = [
999 1000 1001 1002 1003 1004 1005 1006 1007
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1008
            # append sum op for pserver_side_table_grad_list
1009 1010
            table_opt_block.append_op(
                type="sum",
1011
                inputs={"X": pserver_side_table_grad_list},
1012 1013
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1014 1015
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1016
            origin_grad_name = grad_var.name
1017 1018
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1019 1020
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1021
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1022
            grad_var = pserver_program.global_block()._rename_var(
1023
                origin_grad_name, splited_grad_name)
1024 1025 1026 1027 1028 1029 1030 1031 1032

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1033
        # only support sgd now
1034 1035 1036 1037
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1038
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1039

1040 1041 1042
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1043 1044
        return table_opt_block

T
tangwei12 已提交
1045 1046 1047 1048 1049 1050
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1051
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1052
            name="kLookupTablePath",
T
tangwei12 已提交
1053 1054
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1055

T
tangwei12 已提交
1056
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1057
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1058 1059 1060 1061
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1062
            attrs={'file_path': "none"})
T
tangwei12 已提交
1063 1064 1065

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1066 1067 1068 1069 1070
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1071
        Create vars for each split.
T
typhoonzero 已提交
1072 1073
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1074 1075 1076 1077
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1078
        Returns:
1079
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1080
                from original var name to each var split.
T
typhoonzero 已提交
1081
        """
1082 1083

        # varname->[(block_id, current_block_size)]
1084
        block_map = collections.OrderedDict()
1085

1086
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1087 1088
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1089
            if varname not in block_map:
T
typhoonzero 已提交
1090
                block_map[varname] = []
1091
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1092

M
minqiyang 已提交
1093
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1094
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1095
            if len(splited) == 1:
1096
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1097 1098
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1099
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1100 1101 1102 1103 1104
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1105
                continue
T
typhoonzero 已提交
1106
            var_mapping[varname] = []
T
typhoonzero 已提交
1107 1108 1109 1110
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1111

T
typhoonzero 已提交
1112
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1113
                size = block[1]
M
minqiyang 已提交
1114
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1115 1116 1117
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1118
                new_var_name = ""
1119
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1120 1121 1122 1123 1124
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1125
                var = program.global_block().create_var(
T
typhoonzero 已提交
1126 1127
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1128
                    dtype=orig_var.dtype,
1129
                    type=orig_var.type,
T
typhoonzero 已提交
1130
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1131
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1132
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1133
        return var_mapping
T
done  
typhoonzero 已提交
1134

W
Wu Yi 已提交
1135
    def _create_splited_vars(self, source_var, block, tag):
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1146 1147 1148 1149 1150 1151
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1152
            persistable=persistable)
T
done  
typhoonzero 已提交
1153

Y
Yancey1989 已提交
1154
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1155 1156 1157 1158
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1159
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1169
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1179

T
typhoonzero 已提交
1180 1181 1182 1183
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1184
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1207 1208
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1209
        orig_var_name = ""
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1220
        else:
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1248
        else:
1249 1250 1251 1252 1253 1254
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1255
            for i in range(self.trainer_num):
1256 1257 1258 1259 1260 1261 1262
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1263 1264
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1265 1266 1267 1268 1269 1270 1271 1272
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1273

1274
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1275
                            grad_to_block_id, origin_program, merged_var):
1276
        program = optimize_block.program
T
typhoonzero 已提交
1277
        pserver_block = program.global_block()
1278
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1279

T
typhoonzero 已提交
1280 1281
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
W
Wu Yi 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290
        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1291
        for key in opt_op.input_names:
T
typhoonzero 已提交
1292 1293
            if key == "Grad":
                new_inputs[key] = merged_var
W
Wu Yi 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
            # For RMSProp optimizer
            elif key == "Moment" or key == "MeanSquare":
                param_block = _get_param_block(opt_op)
                if not param_block:
                    return
                moment_var = origin_program.global_block().vars[opt_op.input(
                    key)[0]]
                tmpvar = pserver_block.create_var(
                    name=moment_var.name,
                    persistable=moment_var.persistable,
                    dtype=moment_var.dtype,
                    # change to use same shape as param
                    # TODO(typhoonzero): didn't append .block in the var name,
                    # may affect checkpoint saving? Need to verify.
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
1310
            elif key == "Param":
W
Wu Yi 已提交
1311
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1312 1313
                if not param_block:
                    return
T
typhoonzero 已提交
1314
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1315
                    name=param_block.name,
T
typhoonzero 已提交
1316
                    persistable=True,
T
typhoonzero 已提交
1317 1318 1319
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1320
            elif key == "LearningRate":
1321
                # learning rate variable has already be created by non-optimize op,
1322
                # don't create it once again.
1323
                lr_varname = opt_op.input(key)[0]
1324
                if lr_varname in pserver_block.vars:
1325 1326 1327 1328 1329 1330 1331 1332 1333
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1334

T
typhoonzero 已提交
1335
        for key in opt_op.input_names:
1336
            new_shape = None
W
Wu Yi 已提交
1337
            if key in ["Param", "Grad", "LearningRate", "Moment", "MeanSquare"]:
T
typhoonzero 已提交
1338
                continue
1339
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1340 1341 1342 1343
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1344
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1345 1346 1347 1348 1349
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1350

1351
        # change output's ParamOut variable
1352 1353
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1354
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1355

1356
        optimize_block.append_op(
T
typhoonzero 已提交
1357 1358
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1359
            outputs=outputs,
G
gongweibao 已提交
1360
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1361

1362 1363
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1364
        for _, g in six.iteritems(var_dict):
1365 1366 1367 1368 1369 1370
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1371 1372 1373
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1374
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1375 1376 1377 1378
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1379
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1380 1381 1382

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1383
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1384 1385 1386 1387
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1388
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1389

Y
Yancey1989 已提交
1390
        return block.append_op(
G
gongweibao 已提交
1391
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1392 1393

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1394
        program = optimize_block.program
1395
        # Append the ops for parameters that do not need to be optimized/updated
1396 1397
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1398
        for key, varlist in six.iteritems(inputs):
1399 1400
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1401
            for var in varlist:
1402 1403 1404 1405 1406 1407
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1408
                elif var.name not in program.global_block().vars:
1409
                    program.global_block().create_var(
T
typhoonzero 已提交
1410 1411 1412 1413 1414
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1415 1416
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1417
        for key, varlist in six.iteritems(outputs):
1418 1419 1420
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1421 1422 1423 1424
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1425
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1426
                    program.global_block()._clone_variable(var)
1427

Y
Yancey1989 已提交
1428
        return optimize_block.append_op(
T
typhoonzero 已提交
1429
            type=opt_op.type,
T
typhoonzero 已提交
1430 1431
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1432
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1433

1434 1435 1436 1437
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1438 1439
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1440 1441 1442 1443 1444 1445
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1446 1447
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1448 1449 1450 1451 1452 1453
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1454
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1455 1456
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1457 1458 1459 1460 1461 1462 1463
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1464
        if op.input("Param")[0] in param_names:
1465 1466 1467
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1468
                param = op.input("Param")[0]
T
typhoonzero 已提交
1469
                if same_or_split_var(n, param) and n != param:
1470 1471 1472
                    return True
            return False

T
typhoonzero 已提交
1473
    def _get_input_map_from_op(self, varmap, op):
1474
        """Returns a dict from op input name to the vars in varmap."""
1475
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1487
        """Returns a dict from op output name to the vars in varmap."""
1488
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1498 1499 1500 1501 1502 1503

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1504
            if self._is_optimizer_op(op):
1505 1506 1507 1508
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1509
        block = self.origin_program.global_block()
1510 1511 1512 1513 1514
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1515

1516 1517 1518 1519 1520
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1521
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1522 1523 1524 1525 1526 1527
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1528 1529
                    # we only need to append op for once
                    break
1530
        return lr_ops
Y
Yancey1989 已提交
1531

W
Wu Yi 已提交
1532 1533 1534 1535 1536
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1537 1538
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1539 1540 1541
            return True
        return False

Y
Yancey1989 已提交
1542
    def _get_optimize_pass(self):
1543
        """
1544
        Get optimizer operators, parameters and gradients from origin_program
1545 1546 1547 1548
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1549 1550 1551
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1552
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1553
        for op in block.ops:
W
Wu Yi 已提交
1554
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1555
                opt_ops.append(op)
1556 1557 1558 1559 1560
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1561 1562
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1563 1564 1565 1566
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1567 1568 1569
            else:
                pass
        return opt_ops, params_grads