You need to sign in or sign up before continuing.
distribute_transpiler.py 47.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18 19

import distributed_splitter as splitter
20 21
from .. import core
from ..framework import Program, default_main_program, Variable, Parameter
22 23 24 25

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
26 27


T
typhoonzero 已提交
28 29 30 31 32 33
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
34

T
typhoonzero 已提交
35 36
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
37 38


39
class UnionFind(object):
40
    """ Union-find data structure.
41

42
    Union-find is a data structure that keeps track of a set of elements partitioned
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


90 91 92 93
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
94 95 96 97 98
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
99
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
100 101
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
102

T
typhoonzero 已提交
103 104
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
105 106
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
107 108
        :return: A list of VarBlocks. Each VarBlock specifies a shard of
           the var.
T
typhoonzero 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
127
        # update split_count after aligning
T
typhoonzero 已提交
128 129 130 131 132 133 134 135 136
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


137 138 139 140 141 142 143 144 145 146
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


T
done  
typhoonzero 已提交
147 148
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
149
                  trainer_id,
T
done  
typhoonzero 已提交
150 151 152
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Q
tmp  
qiaolongfei 已提交
153 154
                  split_method=splitter.round_robin,
                  sync_mode=True):
T
done  
typhoonzero 已提交
155
        """
156 157
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
158
            to do parameter optimization. And the optimization graph will be put
159
            into a parameter server program.
T
done  
typhoonzero 已提交
160

161
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
162 163
            parameter servers.

T
typhoonzero 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
            Steps to transpile trainer:
            1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
            2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
            3. modify trainer program add split_op to each grad variable.
            4. append send_op to send splited variables to server and fetch
               params(splited blocks or origin param) from server.
            5. append concat_op to merge splited blocks to update local weights.

            Steps to transpile pserver:
            1. create new program for parameter server.
            2. create params and grad variables that assigned to current server instance.
            3. create a sub-block in the server side program
            4. append ops that should run on current server instance.
            5. add listen_and_serv op

T
typhoonzero 已提交
179 180
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
T
typhoonzero 已提交
181
            :param program: program to transpile, default is default_main_program
T
typhoonzero 已提交
182
            :type program: Program
T
done  
typhoonzero 已提交
183 184
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
185 186 187 188 189
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
            :param split_method: A function to determin how to split variables
                to different servers equally.
            :type split_method: function
Q
qiaolongfei 已提交
190 191 192
            :type sync_mode: boolean default True
            :param sync_mode: if sync_mode is set True, it means that dist transpiler
            will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
193
        """
T
typhoonzero 已提交
194
        assert (callable(split_method))
T
done  
typhoonzero 已提交
195 196
        if program is None:
            program = default_main_program()
197 198
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
199
        self.sync_mode = sync_mode
T
typhoonzero 已提交
200 201 202 203
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
204
        pserver_endpoints = pservers.split(",")
205
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
206
        self.optimize_ops, params_grads = self._get_optimize_pass()
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
229

230 231
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
232 233 234 235 236 237 238 239
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != framework.grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
264 265
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
266 267
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
268
        grad_var_mapping = self._append_split_op(program, grad_blocks)
269 270 271 272
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
        # step3: Add gradients as send op inputs and parameters as send
        # op outputs.
T
typhoonzero 已提交
273
        send_inputs = []
T
typhoonzero 已提交
274
        send_outputs = []
T
typhoonzero 已提交
275 276 277 278 279 280
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
281 282
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
283
        eplist = split_method(send_inputs, pserver_endpoints)
284
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
285 286 287 288 289 290 291 292
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
293

T
typhoonzero 已提交
294
        rpc_client_var = program.global_block().create_var(
295
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
296
            persistable=True,
T
typhoonzero 已提交
297
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
298

299
        # create send_op
T
typhoonzero 已提交
300
        program.global_block().append_op(
T
typhoonzero 已提交
301 302
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
303 304
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
Q
qiaolongfei 已提交
305 306 307 308 309
            attrs={
                "endpoints": pserver_endpoints,
                "epmap": eplist,
                "sync_mode": self.sync_mode
            })
310
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
311
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
312 313
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
314
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
315
            program.global_block().append_op(
T
typhoonzero 已提交
316
                type="concat",
T
typhoonzero 已提交
317
                inputs={"X": splited_var},
T
typhoonzero 已提交
318
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
319
                attrs={"axis": 0})
T
typhoonzero 已提交
320

321 322 323 324 325 326
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
327 328
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
329
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
330
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
331 332
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
333 334 335 336

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
337
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
338 339 340 341 342 343
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
344
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
345 346 347 348 349 350 351 352
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
353 354 355 356 357 358

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
359 360 361 362 363 364 365 366 367
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
368
            if self.sync_mode and self.trainer_num > 1:
369
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
370 371 372 373 374 375 376 377 378
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
379

Q
qiaolongfei 已提交
380
        # step 3
381
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
382 383 384
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
385
        # step 3.2
T
typhoonzero 已提交
386 387 388 389 390 391
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
392
        # step 3.3
T
typhoonzero 已提交
393
        # Iterate through the ops, and if an op and the optimize ops
394
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
395
        # append it into the sub program.
T
typhoonzero 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
412 413
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
414

Q
qiaolongfei 已提交
415
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
416
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
417
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
T
typhoonzero 已提交
418 419 420 421
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

422
        # append lr decay ops to the child block if exists
423 424
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
425 426
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
427
            for _, op in enumerate(lr_ops):
428
                self._append_pserver_non_opt_ops(lr_decay_block, op)
429

T
typhoonzero 已提交
430
        # append op to the current block
Q
qiaolongfei 已提交
431
        grad_to_block_id = []
Q
qiaolongfei 已提交
432
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
433
        for idx, opt_op in enumerate(opt_op_on_pserver):
434
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
435 436
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
437
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
438
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
439 440

        # append global ops
441
        if global_ops:
Q
qiaolongfei 已提交
442 443 444
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
445 446
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
447 448 449 450 451 452 453 454 455

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

456 457 458 459
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
460
            table_opt_block = self._create_table_optimize_block(
Q
qiaolongfei 已提交
461
                pserver_index, pserver_program, pre_block_idx)
462
            prefetch_block = self._create_prefetch_block(
463
                pserver_index, pserver_program, table_opt_block)
464 465 466 467 468 469 470 471 472

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
473 474 475 476 477 478
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
479
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
480
                "endpoint": endpoint,
481
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
482 483
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
484
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
485
            })
486

T
typhoonzero 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
511
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
613
                    delete_ops(program.global_block(), [op])
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
        table_grad_name = framework.grad_var_name(self.table_name)
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
661
            type="lookup_sparse_table",
662 663 664 665 666 667 668 669 670 671 672
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
Q
qiaolongfei 已提交
673
                                     pre_block_idx):
674 675 676 677 678 679 680 681 682 683 684
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
685 686 687 688 689 690 691 692
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
693 694 695 696 697 698 699 700 701 702 703
        grad_var = _clone_var(
            pserver_program.global_block(),
            self.origin_program.global_block().vars[framework.grad_var_name(
                self.table_name)],
            persistable=False)

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
704
        table_opt_block = pserver_program.create_block(pre_block_idx)
705 706 707
        # only support sgd now
        assert table_opt_op.type == "sgd"

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
            table_grad_list = [
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

            # append sum op for table_grad_list
            table_opt_block.append_op(
                type="sum",
                inputs={"X": table_grad_list},
                outputs={"Out": [grad_var]})
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

741 742
        return table_opt_block

T
typhoonzero 已提交
743 744 745 746 747 748
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
749
        Create vars for each split.
T
typhoonzero 已提交
750 751
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
752
        :return: A dict mapping from original var name to each var split.
T
typhoonzero 已提交
753
        """
T
typhoonzero 已提交
754
        block_map = dict()
T
typhoonzero 已提交
755
        var_mapping = dict()
T
typhoonzero 已提交
756 757 758 759 760 761
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
762
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
763
            if len(splited) == 1:
764
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
765 766 767 768 769 770 771 772
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
773
                continue
T
typhoonzero 已提交
774 775

            var_mapping[varname] = []
T
typhoonzero 已提交
776 777 778 779
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
780

T
typhoonzero 已提交
781
            for i, block in enumerate(splited):
T
typhoonzero 已提交
782
                size = block[1]
T
typhoonzero 已提交
783 784 785 786
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
787
                new_var_name = ""
788
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
789 790 791 792 793
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
794
                var = program.global_block().create_var(
T
typhoonzero 已提交
795 796
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
797
                    dtype=orig_var.dtype,
798
                    type=orig_var.type,
T
typhoonzero 已提交
799
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
800
                var_mapping[varname].append(var)
T
typhoonzero 已提交
801
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
802
        return var_mapping
T
done  
typhoonzero 已提交
803

804 805 806 807 808 809 810 811 812 813 814
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
815 816 817 818 819 820 821
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
822
            persistable=persistable)
T
done  
typhoonzero 已提交
823

T
typhoonzero 已提交
824
    def _append_split_op(self, program, gradblocks):
825
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
826
        add_suffix = False
827
        if self.trainer_num > 1:
T
typhoonzero 已提交
828
            add_suffix = True
T
typhoonzero 已提交
829
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
830
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
831
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
832 833
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
834
                continue
T
typhoonzero 已提交
835
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
836
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
837 838 839 840 841 842 843 844
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
845
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
846 847 848 849
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
T
typhoonzero 已提交
850
                    type="split_byref",
851 852 853 854 855 856 857
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
858
        return var_mapping
T
done  
typhoonzero 已提交
859

T
typhoonzero 已提交
860 861 862 863
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
864
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
887 888 889 890 891
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
892 893
        else:
            orig_var_name = varname
T
typhoonzero 已提交
894 895
        return orig_var_name

896
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
897
                            grad_to_block_id, origin_program):
898
        program = optimize_block.program
T
typhoonzero 已提交
899
        pserver_block = program.global_block()
T
typhoonzero 已提交
900
        new_inputs = dict()
T
typhoonzero 已提交
901 902
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
903
        for key in opt_op.input_names:
T
typhoonzero 已提交
904 905 906
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
907
                    if same_or_split_var(
T
typhoonzero 已提交
908 909
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
910 911 912 913 914 915
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
916 917
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
918 919
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
920
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
921
                    vars2merge = []
922
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
923 924 925 926
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

927
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
928 929 930
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
931
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
932 933 934 935 936
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
937
                            attrs={"scale": 1.0 / float(self.trainer_num)})
938

T
typhoonzero 已提交
939 940 941 942 943
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
944
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
945 946 947 948
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
949
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
950
                    name=param_block.name,
T
typhoonzero 已提交
951
                    persistable=True,
T
typhoonzero 已提交
952 953 954
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
955
            elif key == "LearningRate":
956
                # learning rate variable has already be created by non-optimize op,
957
                # don't create it once again.
958 959 960 961 962 963 964 965 966 967 968
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
969

T
typhoonzero 已提交
970
        for key in opt_op.input_names:
971 972
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
973
                continue
974
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
975 976 977 978
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
979
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
980 981 982 983 984
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
985

986
        # change output's ParamOut variable
987 988
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
989
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
990

991
        optimize_block.append_op(
T
typhoonzero 已提交
992 993
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
994
            outputs=outputs,
T
typhoonzero 已提交
995 996
            attrs=opt_op.attrs)

997 998
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
999
        # Append the ops for parameters that do not need to be optimized/updated
1000 1001
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1002 1003 1004 1005
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1006
            for var in varlist:
1007 1008
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1009 1010 1011 1012 1013
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1014 1015
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1016

1017 1018 1019 1020 1021
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1022
                program.global_block().clone_variable(var)
1023

1024
        optimize_block.append_op(
T
typhoonzero 已提交
1025
            type=opt_op.type,
T
typhoonzero 已提交
1026 1027
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1028 1029
            attrs=opt_op.attrs)

1030 1031 1032 1033
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1047 1048
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1049
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1050
        op2_output_names = op2.desc.output_arg_names()
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1070
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1071 1072
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1073 1074 1075 1076 1077 1078 1079
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1080
        if op.input("Param")[0] in param_names:
1081 1082 1083
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1084
                param = op.input("Param")[0]
T
typhoonzero 已提交
1085
                if same_or_split_var(n, param) and n != param:
1086 1087 1088
                    return True
            return False

T
typhoonzero 已提交
1089
    def _get_input_map_from_op(self, varmap, op):
1090
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1103
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1125
        block = self.origin_program.global_block()
1126 1127 1128 1129 1130
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1144 1145
                    # we only need to append op for once
                    break
1146
        return lr_ops
Y
Yancey1989 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

    def _get_optimize_pass(self):
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1159 1160
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1161 1162 1163
            else:
                pass
        return opt_ops, params_grads
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False