distribute_transpiler.py 65.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
S
seiriosPlus 已提交
34
import random
35
import numpy as np
36
import collections
37

38
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
39
from .. import core, framework
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
41
                        default_startup_program, Block, \
W
Wu Yi 已提交
42
                        Parameter, grad_var_name
43 44
from .details import *
from functools import reduce
45 46 47

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
48
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
49 50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
52 53


T
typhoonzero 已提交
54 55 56 57 58 59
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
60

T
typhoonzero 已提交
61 62
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
63 64


65 66 67 68
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
69
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
70
    """
71 72 73 74 75 76
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
77
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
78 79 80

    Args:
        var_list (list): List of variables.
81 82
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
83 84
        min_block_size (int): Minimum splitted block size.
    Returns:
85
        blocks (list[(varname, block_id, current_block_size)]): A list
86
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
87 88 89
    """
    blocks = []
    for var in var_list:
90
        split_count = slice_count
T
typhoonzero 已提交
91 92 93 94
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
95
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
96 97 98 99 100 101 102 103 104
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
105
        # update split_count after aligning
T
typhoonzero 已提交
106
        split_count = int(math.ceil(var_numel / float(block_size)))
107
        for block_id in range(split_count):
T
typhoonzero 已提交
108 109 110 111 112 113 114
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
115 116 117 118 119 120 121
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
122
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
123 124 125 126 127 128 129 130
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
131
class DistributeTranspiler(object):
Y
yi.wu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
166

G
gongweibao 已提交
167 168 169 170 171 172 173 174 175 176 177 178
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

179 180 181 182 183 184 185
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
186 187 188 189 190 191 192 193 194 195 196
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
197 198 199 200
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
G
gongweibao 已提交
201 202 203
        self.origin_startup_program = default_startup_program().clone()

        self.startup_program = default_startup_program()
204 205 206 207 208 209 210
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
211
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
212
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
213 214 215
        self.param_name_to_grad_name = dict()
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
216

G
gongweibao 已提交
217
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
218
        self._init_splited_vars()
219

G
gongweibao 已提交
220
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
221
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
222
        send_vars = []
223 224 225 226 227 228

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
229
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
230

G
gongweibao 已提交
231
        if not self.config.slice_var_up:
232
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
233
            random.shuffle(grad_var_mapping_items)
234

235 236
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
237
            eplist = ps_dispatcher.dispatch(splited_vars)
238

G
gongweibao 已提交
239
            if not self.config.slice_var_up:
240 241
                assert (len(splited_vars) == 1)

242
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
243
            if len(splited_vars) == 1:
244
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
245
                index = find_op_by_output_arg(program.global_block(),
246
                                              splited_grad_varname)
Y
Yancey1989 已提交
247
            elif len(splited_vars) > 1:
248
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
249
                index = find_op_by_output_arg(program.global_block(),
250
                                              splited_grad_varname)
Y
Yancey1989 已提交
251
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
252
                index += 1
Y
Yancey1989 已提交
253 254
            else:
                AssertionError("Can not insert the send op by original "
255
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
256

257 258
            dummy_output = program.global_block().create_var()
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
259
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
260
                index=index + 1,
261
                type="send",
Y
update  
Yancey1989 已提交
262
                inputs={"X": splited_vars},
263
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
264 265
                attrs={
                    "epmap": eplist,
266 267
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
268
                })
Y
update  
Yancey1989 已提交
269 270
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
271 272 273 274 275

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
276
                outputs={},
Y
Yancey1989 已提交
277 278
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
279
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
280
                })
Y
Yancey1989 已提交
281

G
gongweibao 已提交
282
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
283
        recv_vars = []
Y
update  
Yancey1989 已提交
284
        for _, var in enumerate(send_vars):
285
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
286
        ps_dispatcher.reset()
Y
Yancey1989 已提交
287 288
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
289
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
290 291
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
292

Y
Yancey1989 已提交
293
        # step4: Concat the parameters splits together after recv.
294
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
295 296 297 298
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
299 300
            grad_send_dummy_out = grad_name_to_send_dummy_out[
                self.param_name_to_grad_name[param_varname]]
Y
Yancey1989 已提交
301 302
            program.global_block().append_op(
                type="recv",
303
                inputs={"X": [grad_send_dummy_out]},
Y
Yancey1989 已提交
304 305 306
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
307 308
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
309
                })
T
typhoonzero 已提交
310

Q
qiaolongfei 已提交
311 312 313 314 315 316 317 318 319
        if self.sync_mode:
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
                outputs={},
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
320

321
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
322 323
            if len(splited_var) <= 1:
                continue
324
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
325
            program.global_block().append_op(
T
typhoonzero 已提交
326
                type="concat",
T
typhoonzero 已提交
327
                inputs={"X": splited_var},
T
typhoonzero 已提交
328
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
329
                attrs={"axis": 0})
T
typhoonzero 已提交
330

G
gongweibao 已提交
331 332
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

333
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
334 335
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
336
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
337

T
typhoonzero 已提交
338
    def get_trainer_program(self):
Y
yi.wu 已提交
339 340 341 342 343 344
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
345
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
346
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
347
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
348
        self.origin_program.__str__()
G
gongweibao 已提交
349

350
        return self.origin_program
T
typhoonzero 已提交
351

G
gongweibao 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    def _get_trainer_startup_program(self,
                                     recv_vars,
                                     eplist,
                                     startup_program=None):
        """
        Get transpiled trainer side startup program.

        Args:
            startup_program(Program): Startup program.

        Returns:
            Program: trainer side startup program.
        """
        if startup_program is None:
            startup_program = self.startup_program

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

        for varname, splited_var in self.param_var_mapping.iteritems():
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
392
                inputs={"X": []},
G
gongweibao 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={},
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        for varname, splited_var in self.param_var_mapping.iteritems():
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
            orig_param = startup_program.global_block().vars[varname]
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
421 422
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
423
        Get parameter server side program.
424

Y
yi.wu 已提交
425 426
        Args:
            endpoint (str): current parameter server endpoint.
427

Y
yi.wu 已提交
428 429
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
430
        """
Y
yi.wu 已提交
431 432 433 434 435
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
436 437
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
438
        pserver_program.random_seed = self.origin_program.random_seed
439
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
440 441 442 443 444 445 446 447
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
448 449 450 451 452
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
453 454 455 456 457 458 459 460 461
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
462
            if self.sync_mode and self.trainer_num > 1:
463
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
464 465 466 467 468 469 470 471 472
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
473

Q
qiaolongfei 已提交
474
        # step 3
475
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
476 477 478
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
479
        # step 3.2
T
typhoonzero 已提交
480 481 482 483
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
484 485
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
486
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
487
        # step 3.3
T
typhoonzero 已提交
488
        # Iterate through the ops, and if an op and the optimize ops
489
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
490
        # append it into the sub program.
T
typhoonzero 已提交
491 492 493

        global_ops = []

Y
wip  
yi.wu 已提交
494 495
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
496
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
497
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
498
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
499
            elif op not in lr_ops:
Q
Qiyang Min 已提交
500
                self._append_pserver_non_opt_ops(block, op)
501 502 503 504 505 506

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
507

Y
Yancey1989 已提交
508
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
509 510 511 512 513 514 515 516
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
517
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
518 519 520

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
521
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
522 523

            # clone ops
Y
Yancey1989 已提交
524 525
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
526
                # clone sub_block of op
Y
Yancey1989 已提交
527
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
528 529 530 531

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

532
        # append lr decay ops to the child block if exists
533
        lr_ops = self._get_lr_ops()
534 535
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
536
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
537 538
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
539
            optimize_blocks.append(lr_decay_block)
540
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
541
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
542
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
543 544
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
545

T
typhoonzero 已提交
546
        # append op to the current block
Q
qiaolongfei 已提交
547
        grad_to_block_id = []
Q
qiaolongfei 已提交
548
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
549
        for idx, opt_op in enumerate(opt_op_on_pserver):
550
            per_opt_block = pserver_program.create_block(pre_block_idx)
551
            optimize_blocks.append(per_opt_block)
552
            # append grad merging ops before clip and weight decay
553
            # cases may like:
T
typhoonzero 已提交
554
            # L2Decay op -> clip op -> optimize
555 556 557 558 559 560 561
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
562
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
563 564
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
565
                if ufind.is_connected(op, opt_op) and op not in global_ops:
566
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
567
                                           merged_var, lr_ops)
T
typhoonzero 已提交
568

W
Wu Yi 已提交
569 570
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
571
        # append global ops
572
        if global_ops:
Q
qiaolongfei 已提交
573 574
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
575
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
576
            for glb_op in global_ops:
X
Xi Chen 已提交
577
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
578
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
579

580
        # process distributed lookup_table
Q
qiaolongfei 已提交
581
        prefetch_var_name_to_block_id = []
582 583
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
584
            table_opt_block = self._create_table_optimize_block(
585
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
586
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
587
            prefetch_var_name_to_block_id = self._create_prefetch_block(
588
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
589 590
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
591 592 593 594

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
595
            assert len(prefetch_var_name_to_block_id) > 0
596
        else:
Q
qiaolongfei 已提交
597
            assert len(prefetch_var_name_to_block_id) == 0
598

599
        attrs = {
600
            "optimize_blocks": optimize_blocks,
601 602 603
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
604
            "grad_to_block_id": grad_to_block_id,
605 606 607 608
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
609
            attrs['checkpint_block_id'] = checkpoint_block_id
610

T
typhoonzero 已提交
611 612 613 614 615
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
616
            attrs=attrs)
617

W
Wu Yi 已提交
618
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
619 620
        return pserver_program

621 622 623 624
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
625 626 627 628
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
629 630 631 632 633

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
634 635
            startup_program (Program): if pass None, will use
                default_startup_program
636

Y
yi.wu 已提交
637 638
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
639 640
        """
        s_prog = Program()
641 642 643 644
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
645
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
646 647 648 649 650 651 652 653 654 655 656
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
657
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
658
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
659
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
660 661 662 663
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
664
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
665 666
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
667 668 669 670 671 672 673 674 675 676
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
677 678

            if op_on_pserver:
679 680 681
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
682 683 684
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
685
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
686 687 688 689
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
690
                    attrs=op.all_attrs())
T
typhoonzero 已提交
691 692
        return s_prog

693 694
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
695 696 697 698 699 700 701 702 703
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
704
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
756
    def _init_splited_vars(self):
Y
yi.wu 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
780
        if self.config.slice_var_up:
Y
yi.wu 已提交
781 782
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
783 784 785
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
786
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
787 788
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
789 790 791
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
792 793 794 795
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
796 797
        assert (len(grad_blocks) == len(param_blocks))

798
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
799 800
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
801
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
802 803 804 805
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
806
        # dict(grad_splited_var -> param_splited_var)
807
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
808 809 810 811
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
812
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
813 814

        # create mapping of endpoint -> split var to create pserver side program
815
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
816 817 818 819 820 821 822 823 824
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

825
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
826 827
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
828
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
829 830 831 832 833 834 835 836 837
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
838 839 840 841 842 843 844 845 846

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

847
                    lookup_table_op_index = list(all_ops).index(op)
848 849 850
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
851
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
852
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
853 854 855 856 857 858
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
859
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
860 861 862 863
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
864 865

                    # insert split_ids_op
W
Wu Yi 已提交
866
                    program.global_block()._insert_op(
867
                        index=lookup_table_op_index,
868 869 870 871 872 873 874
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
875
                        outputs={"Out": prefetch_input_vars})
876 877

                    # insert prefetch_op
W
Wu Yi 已提交
878
                    program.global_block()._insert_op(
879
                        index=lookup_table_op_index + 1,
880
                        type="prefetch",
Q
qiaolongfei 已提交
881 882
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
883
                        attrs={
884
                            "epmap": pserver_endpoints,
885 886 887
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
888
                        })
889 890

                    # insert concat_op
W
Wu Yi 已提交
891
                    program.global_block()._insert_op(
892 893 894 895 896 897 898
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
899
                            'X': prefetch_output_vars
900
                        },
901 902 903 904 905
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
906
                        })
907 908

                    # delete lookup_table_op
909
                    delete_ops(program.global_block(), [op])
910 911 912
                    # break for loop
                    break

Y
Yancey1989 已提交
913
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
914
        # 2. add split_ids_op and send_op to send gradient to pservers
915 916
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
917
        table_grad_name = grad_var_name(self.table_name)
918 919 920 921
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
922
                program.global_block()._insert_op(
923 924 925 926 927
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
928
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
929
                program.global_block()._insert_op(
930
                    index=op_index + 2,
931
                    type="send",
932
                    inputs={'X': self.trainer_side_table_grad_list},
933
                    outputs={'Out': []},
Y
Yancey1989 已提交
934
                    attrs={
935
                        "sync_mode": True,
Y
Yancey1989 已提交
936 937 938
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
939 940 941 942 943 944
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
973 974

    def _create_table_optimize_block(self, pserver_index, pserver_program,
975
                                     pre_block_idx, grad_to_block_id):
976 977
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
978 979
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
980

T
tangwei12 已提交
981
        zero_dim = int(
T
tangwei12 已提交
982 983 984 985
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
986 987
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
988
            shape=table_shape,
Y
Yancey1989 已提交
989 990 991
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
992 993
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
994
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
995
            self.origin_program.global_block().vars[grad_var_name(
996
                self.table_name)])
997 998 999 1000

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1001 1002
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1003
        ][0]
Q
qiaolongfei 已提交
1004
        table_opt_block = pserver_program.create_block(pre_block_idx)
1005

1006 1007 1008
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1009
            pserver_side_table_grad_list = [
1010 1011 1012 1013 1014 1015 1016 1017 1018
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1019
            # append sum op for pserver_side_table_grad_list
1020 1021
            table_opt_block.append_op(
                type="sum",
1022
                inputs={"X": pserver_side_table_grad_list},
1023 1024
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1025 1026
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1027
            origin_grad_name = grad_var.name
1028 1029
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1030 1031
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1032
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1033
            grad_var = pserver_program.global_block()._rename_var(
1034
                origin_grad_name, splited_grad_name)
1035 1036 1037 1038 1039 1040 1041 1042 1043

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1044
        # only support sgd now
1045 1046 1047 1048
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1049
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1050

1051 1052 1053
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1054 1055
        return table_opt_block

T
tangwei12 已提交
1056 1057 1058 1059 1060 1061
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1062
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1063
            name="kLookupTablePath",
T
tangwei12 已提交
1064 1065
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1066

T
tangwei12 已提交
1067
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1068
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1069 1070 1071 1072
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1073
            attrs={'file_path': "none"})
T
tangwei12 已提交
1074 1075 1076

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1077 1078 1079 1080 1081
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1082
        Create vars for each split.
T
typhoonzero 已提交
1083 1084
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1085 1086 1087 1088
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1089
        Returns:
1090
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1091
                from original var name to each var split.
T
typhoonzero 已提交
1092
        """
1093 1094

        # varname->[(block_id, current_block_size)]
1095
        block_map = collections.OrderedDict()
1096

1097
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1098 1099
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1100
            if varname not in block_map:
T
typhoonzero 已提交
1101
                block_map[varname] = []
1102
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1103

M
minqiyang 已提交
1104
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1105
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1106
            if len(splited) == 1:
1107
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1108 1109
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1110
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1111 1112 1113 1114 1115
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1116
                continue
T
typhoonzero 已提交
1117
            var_mapping[varname] = []
T
typhoonzero 已提交
1118 1119 1120 1121
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1122

T
typhoonzero 已提交
1123
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1124
                size = block[1]
M
minqiyang 已提交
1125
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1126 1127 1128
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1129
                new_var_name = ""
1130
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1131 1132 1133 1134 1135
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1136
                var = program.global_block().create_var(
T
typhoonzero 已提交
1137 1138
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1139
                    dtype=orig_var.dtype,
1140
                    type=orig_var.type,
T
typhoonzero 已提交
1141
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1142
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1143
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1144
        return var_mapping
T
done  
typhoonzero 已提交
1145

W
Wu Yi 已提交
1146
    def _create_splited_vars(self, source_var, block, tag):
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1157 1158 1159 1160 1161 1162
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1163
            persistable=persistable)
T
done  
typhoonzero 已提交
1164

Y
Yancey1989 已提交
1165
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1166 1167 1168 1169
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1170
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1180
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1190

T
typhoonzero 已提交
1191 1192 1193 1194
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1195
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1218 1219
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1220
        orig_var_name = ""
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1231
        else:
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1259
        else:
1260 1261 1262 1263 1264 1265
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1266
            for i in range(self.trainer_num):
1267 1268 1269 1270 1271 1272 1273
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1274 1275
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1276 1277 1278 1279 1280 1281 1282 1283
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1284

1285
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1286
                            grad_to_block_id, origin_program, merged_var):
1287
        program = optimize_block.program
T
typhoonzero 已提交
1288
        pserver_block = program.global_block()
1289
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1290

T
typhoonzero 已提交
1291 1292
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
W
Wu Yi 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301
        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1302
        for key in opt_op.input_names:
T
typhoonzero 已提交
1303 1304
            if key == "Grad":
                new_inputs[key] = merged_var
W
Wu Yi 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
            # For RMSProp optimizer
            elif key == "Moment" or key == "MeanSquare":
                param_block = _get_param_block(opt_op)
                if not param_block:
                    return
                moment_var = origin_program.global_block().vars[opt_op.input(
                    key)[0]]
                tmpvar = pserver_block.create_var(
                    name=moment_var.name,
                    persistable=moment_var.persistable,
                    dtype=moment_var.dtype,
                    # change to use same shape as param
                    # TODO(typhoonzero): didn't append .block in the var name,
                    # may affect checkpoint saving? Need to verify.
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
1321
            elif key == "Param":
W
Wu Yi 已提交
1322
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1323 1324
                if not param_block:
                    return
T
typhoonzero 已提交
1325
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1326
                    name=param_block.name,
T
typhoonzero 已提交
1327
                    persistable=True,
T
typhoonzero 已提交
1328 1329 1330
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1331
            elif key == "LearningRate":
1332
                # learning rate variable has already be created by non-optimize op,
1333
                # don't create it once again.
1334
                lr_varname = opt_op.input(key)[0]
1335
                if lr_varname in pserver_block.vars:
1336 1337 1338 1339 1340 1341 1342 1343 1344
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1345

T
typhoonzero 已提交
1346
        for key in opt_op.input_names:
1347
            new_shape = None
W
Wu Yi 已提交
1348
            if key in ["Param", "Grad", "LearningRate", "Moment", "MeanSquare"]:
T
typhoonzero 已提交
1349
                continue
1350
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1351 1352 1353 1354
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1355
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1356 1357 1358 1359 1360
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1361

1362
        # change output's ParamOut variable
1363 1364
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1365
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1366

1367
        optimize_block.append_op(
T
typhoonzero 已提交
1368 1369
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1370
            outputs=outputs,
G
gongweibao 已提交
1371
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1372

1373 1374
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1375
        for _, g in six.iteritems(var_dict):
1376 1377 1378 1379 1380 1381
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1382 1383 1384
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1385
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1386 1387 1388 1389
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1390
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1391 1392 1393

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1394
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1395 1396 1397 1398
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1399
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1400

Y
Yancey1989 已提交
1401
        return block.append_op(
G
gongweibao 已提交
1402
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1403 1404

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1405
        program = optimize_block.program
1406
        # Append the ops for parameters that do not need to be optimized/updated
1407 1408
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1409
        for key, varlist in six.iteritems(inputs):
1410 1411
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1412
            for var in varlist:
1413 1414 1415 1416 1417 1418
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1419
                elif var.name not in program.global_block().vars:
1420
                    program.global_block().create_var(
T
typhoonzero 已提交
1421 1422 1423 1424 1425
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1426 1427
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1428
        for key, varlist in six.iteritems(outputs):
1429 1430 1431
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1432 1433 1434 1435
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1436
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1437
                    program.global_block()._clone_variable(var)
1438

Y
Yancey1989 已提交
1439
        return optimize_block.append_op(
T
typhoonzero 已提交
1440
            type=opt_op.type,
T
typhoonzero 已提交
1441 1442
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1443
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1444

1445 1446 1447 1448
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1449 1450
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1451 1452 1453 1454 1455 1456
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1457 1458
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1459 1460 1461 1462 1463 1464
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1465
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1466 1467
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1468 1469 1470 1471 1472 1473 1474
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1475
        if op.input("Param")[0] in param_names:
1476 1477 1478
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1479
                param = op.input("Param")[0]
T
typhoonzero 已提交
1480
                if same_or_split_var(n, param) and n != param:
1481 1482 1483
                    return True
            return False

T
typhoonzero 已提交
1484
    def _get_input_map_from_op(self, varmap, op):
1485
        """Returns a dict from op input name to the vars in varmap."""
1486
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1498
        """Returns a dict from op output name to the vars in varmap."""
1499
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1509 1510 1511 1512 1513 1514

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1515
            if self._is_optimizer_op(op):
1516 1517 1518 1519
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1520
        block = self.origin_program.global_block()
1521 1522 1523 1524 1525
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1526

1527 1528 1529 1530 1531
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1532
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1533 1534 1535 1536 1537 1538
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1539 1540
                    # we only need to append op for once
                    break
1541
        return lr_ops
Y
Yancey1989 已提交
1542

W
Wu Yi 已提交
1543 1544 1545 1546 1547
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1548 1549
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1550 1551 1552
            return True
        return False

Y
Yancey1989 已提交
1553
    def _get_optimize_pass(self):
1554
        """
1555
        Get optimizer operators, parameters and gradients from origin_program
1556 1557 1558 1559
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1560 1561 1562
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1563
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1564
        for op in block.ops:
W
Wu Yi 已提交
1565
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1566
                opt_ops.append(op)
1567 1568 1569 1570 1571
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1572 1573
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1574 1575 1576 1577
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1578 1579 1580
            else:
                pass
        return opt_ops, params_grads