Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b1e51836
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b1e51836
编写于
5月 10, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
overlap sendop and backward ops
上级
2a22da6c
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
167 addition
and
55 deletion
+167
-55
paddle/fluid/operators/recv_op.cc
paddle/fluid/operators/recv_op.cc
+12
-6
python/paddle/fluid/transpiler/__init__.py
python/paddle/fluid/transpiler/__init__.py
+2
-1
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+75
-48
python/paddle/fluid/transpiler/ps_dispatcher.py
python/paddle/fluid/transpiler/ps_dispatcher.py
+78
-0
未找到文件。
paddle/fluid/operators/recv_op.cc
浏览文件 @
b1e51836
...
...
@@ -36,19 +36,22 @@ class RecvOp : public framework::OperatorBase {
const
platform
::
Place
&
place
)
const
override
{
auto
outs
=
Outputs
(
"Out"
);
std
::
vector
<
std
::
string
>
epmap
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
);
auto
client_var_name
=
Output
(
"RPCClient"
);
PADDLE_ENFORCE_NOT_NULL
(
scope
.
FindVar
(
client_var_name
),
"Can not find variable '%s' in the scope."
,
client_var_name
);
auto
*
client_var
=
scope
.
FindVar
(
client_var_name
);
detail
::
RPCClient
*
rpc_client
=
client_var
->
GetMutable
<
detail
::
RPCClient
>
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
ctx
=
*
pool
.
Get
(
place
);
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
i
++
)
{
VLOG
(
3
)
<<
"getting "
<<
outs
[
i
];
client_
.
AsyncGetVariable
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]);
VLOG
(
3
)
<<
"getting "
<<
outs
[
i
]
<<
" from "
<<
epmap
[
i
]
;
rpc_client
->
AsyncGetVariable
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]);
}
PADDLE_ENFORCE
(
client_
.
Wait
());
PADDLE_ENFORCE
(
rpc_client
->
Wait
());
}
private:
mutable
detail
::
RPCClient
client_
;
};
class
RecvOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -56,6 +59,9 @@ class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
RecvOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddOutput
(
"Out"
,
"(Tensor) Variables to get from server."
).
AsDuplicable
();
AddOutput
(
"RPCClient"
,
"(RPCClient) The RPC client object which is"
"initialized at most once."
);
AddComment
(
R"DOC(
Recv operator
...
...
python/paddle/fluid/transpiler/__init__.py
浏览文件 @
b1e51836
...
...
@@ -15,8 +15,9 @@ from distribute_transpiler import DistributeTranspiler
from
inference_transpiler
import
InferenceTranspiler
from
memory_optimization_transpiler
import
memory_optimize
,
release_memory
from
distribute_transpiler_simple
import
SimpleDistributeTranspiler
from
ps_dispatcher
import
HashName
,
RoundRobin
__all__
=
[
"DistributeTranspiler"
,
"InferenceTranspiler"
,
"SimpleDistributeTranspiler"
,
"memory_optimize"
,
"release_memory"
"memory_optimize"
,
"release_memory"
,
"HashName"
,
"RoundRobin"
]
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
b1e51836
...
...
@@ -17,7 +17,8 @@ from __future__ import print_function
import
math
import
distributed_splitter
as
splitter
from
..
import
core
from
ps_dispatcher
import
RoundRobin
,
HashName
,
PSDispatcher
from
..
import
core
,
framework
from
..framework
import
Program
,
default_main_program
,
Variable
,
Parameter
LOOKUP_TABLE_TYPE
=
"lookup_table"
...
...
@@ -144,13 +145,27 @@ def delete_ops(block, ops):
block
.
program
.
sync_with_cpp
()
def
find_op_by_input_arg
(
block
,
arg_name
):
for
index
,
op
in
enumerate
(
block
.
ops
):
if
arg_name
in
op
.
input_arg_names
:
return
index
return
-
1
def
find_op_by_output_arg
(
block
,
arg_name
):
for
index
,
op
in
enumerate
(
block
.
ops
):
if
arg_name
in
op
.
output_arg_names
:
return
index
return
-
1
class
DistributeTranspiler
:
def
transpile
(
self
,
trainer_id
,
program
=
None
,
pservers
=
"127.0.0.1:6174"
,
trainers
=
1
,
split_method
=
splitter
.
round_r
obin
,
split_method
=
RoundR
obin
,
sync_mode
=
True
):
"""
Transpile the program to distributed data-parallelism programs.
...
...
@@ -184,14 +199,14 @@ class DistributeTranspiler:
:type pservers: string
:param trainers: total number of workers/trainers in the job
:type trainers: int
:param split_method: A
function to determin how to split variables
to different servers equally.
:type split_method:
function
:param split_method: A
instance to determin how to dispatch variable
blocks
to different servers equally.
:type split_method:
A instance based on PSDispatcher class.
:type sync_mode: boolean default True
:param sync_mode: if sync_mode is set True, it means that dist transpiler
will transpile the program into sync_mode pserver and trainer program.
"""
assert
(
callable
(
split_method
)
)
assert
(
split_method
.
__bases__
[
0
]
==
PSDispatcher
)
if
program
is
None
:
program
=
default_main_program
()
self
.
origin_program
=
program
...
...
@@ -204,6 +219,7 @@ class DistributeTranspiler:
pserver_endpoints
=
pservers
.
split
(
","
)
self
.
pserver_endpoints
=
pserver_endpoints
self
.
optimize_ops
,
params_grads
=
self
.
_get_optimize_pass
()
ps_dispatcher
=
split_method
(
pserver_endpoints
)
# process lookup_table_op
# 1. check all lookup_table_op is distributed
...
...
@@ -268,56 +284,67 @@ class DistributeTranspiler:
grad_var_mapping
=
self
.
_append_split_op
(
program
,
grad_blocks
)
param_var_mapping
=
self
.
_create_vars_from_blocklist
(
program
,
param_blocks
)
# step3: Add gradients as send op inputs and parameters as send
# op outputs.
send_inputs
=
[]
send_outputs
=
[]
for
b
in
grad_blocks
:
# append by order
varname
,
block_id
,
_
=
b
.
split
(
":"
)
send_inputs
.
append
(
grad_var_mapping
[
varname
][
int
(
block_id
)])
for
b
in
param_blocks
:
varname
,
block_id
,
_
=
b
.
split
(
":"
)
send_outputs
.
append
(
param_var_mapping
[
varname
][
int
(
block_id
)])
# let send_op know which endpoint to send which var to, eplist has the same
# order as send_inputs.
eplist
=
split_method
(
send_inputs
,
pserver_endpoints
)
# create mapping of endpoint -> split var to create pserver side program
self
.
param_grad_ep_mapping
=
dict
()
for
i
,
ep
in
enumerate
(
eplist
):
param
=
send_outputs
[
i
]
grad
=
send_inputs
[
i
]
if
not
self
.
param_grad_ep_mapping
.
has_key
(
ep
):
self
.
param_grad_ep_mapping
[
ep
]
=
{
"params"
:
[],
"grads"
:
[]}
self
.
param_grad_ep_mapping
[
ep
][
"params"
].
append
(
param
)
self
.
param_grad_ep_mapping
[
ep
][
"grads"
].
append
(
grad
)
rpc_client_var
=
program
.
global_block
().
create_var
(
name
=
RPC_CLIENT_VAR_NAME
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
# create send_op
# step 3: transpile trainer side program, insert recv op and send op.
# create mapping of endpoint -> split var to create pserver side program
self
.
param_grad_ep_mapping
=
dict
()
[
self
.
param_grad_ep_mapping
.
update
({
ep
:
{
"params"
:
[],
"grads"
:
[]
}
})
for
ep
in
self
.
pserver_endpoints
]
# step 3.1: insert send op to send gradient vars to parameter servers
ps_dispatcher
.
reset
()
for
varname
,
send_vars
in
grad_var_mapping
.
items
():
index
=
find_op_by_output_arg
(
program
.
global_block
(),
varname
)
eplist
=
ps_dispatcher
.
dispatch
(
send_vars
)
program
.
global_block
().
insert_op
(
index
=
index
,
type
=
"send_vars"
,
inputs
=
{
"X"
:
send_vars
},
outputs
=
{
"RPCClient"
:
rpc_client_var
},
attrs
=
{
"epmap"
:
eplist
})
if
self
.
sync_mode
:
program
.
global_block
().
append_op
(
type
=
"send_barrier"
,
inputs
=
{},
outputs
=
{
"RPCClient"
:
rpc_client_var
},
attrs
=
{
"endpoints"
:
pserver_endpoints
})
# step 3.2: insert recv op to receive parameters from parameter server
ps_dispatcher
.
reset
()
recv_vars
=
[]
for
b
in
param_blocks
:
varname
,
block_id
,
_
=
b
.
split
(
":"
)
recv_vars
.
append
(
param_var_mapping
[
varname
][
int
(
block_id
)])
for
b
in
grad_blocks
:
varname
,
block_id
,
_
=
b
.
split
(
":"
)
send_vars
.
append
(
grad_var_mapping
[
varname
][
int
(
block_id
)])
eplist
=
ps_dispatcher
.
dispatch
(
recv_vars
)
for
i
,
ep
in
enumerate
(
eplist
):
self
.
param_grad_ep_mapping
[
ep
][
"params"
].
append
(
recv_vars
[
i
])
self
.
param_grad_ep_mapping
[
ep
][
"grads"
].
append
(
send_vars
[
i
])
program
.
global_block
().
append_op
(
type
=
"
send
"
,
inputs
=
{
"X"
:
send_inputs
},
outputs
=
{
"Out"
:
send_output
s
,
type
=
"
recv
"
,
inputs
=
{},
outputs
=
{
"Out"
:
recv_var
s
,
"RPCClient"
:
rpc_client_var
},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
"epmap"
:
eplist
,
"sync_mode"
:
self
.
sync_mode
})
# step4: Concat the parameters splits together after recv.
for
varname
,
splited_var
in
param_var_mapping
.
iteritems
():
if
len
(
splited_var
)
<=
1
:
continue
orig_param
=
program
.
global_block
().
vars
[
varname
]
program
.
global_block
().
append_op
(
type
=
"concat"
,
inputs
=
{
"X"
:
splited_var
},
outputs
=
{
"Out"
:
[
orig_param
]},
attrs
=
{
"axis"
:
0
})
attrs
=
{
"epmap"
:
eplist
})
# TODO(Yancey1989): check dist lookup table
if
self
.
has_distributed_lookup_table
:
self
.
_replace_lookup_table_op_with_prefetch
(
program
,
rpc_client_var
,
eplist
)
...
...
python/paddle/fluid/transpiler/
distributed_splitt
er.py
→
python/paddle/fluid/transpiler/
ps_dispatch
er.py
浏览文件 @
b1e51836
...
...
@@ -13,45 +13,66 @@
# limitations under the License.
def
hash_name
(
varlist
,
pserver_endpoints
):
class
PSDispatcher
(
object
):
"""
hash variable names to several endpoints.
DistributedSpliter is the base class for dispatching vars
into different pserver instance.
You need to implement the `dispatch` inferface.
"""
def
__init__
(
self
,
pserver_endpoints
):
self
.
_eps
=
pserver_endpoints
self
.
_step
=
0
@
property
def
eps
(
self
):
return
self
.
_eps
def
reset
(
self
):
self
.
_step
=
0
def
dispatch
(
self
,
varlist
):
"""
:param varlist: a list of Variables
:return: a map of pserver endpoint -> varname
"""
AssertionError
(
"Interface has not been implemented."
)
Args:
varlist(list): a list of Variables
Returns(dict): a map of pserver endpoint -> varname
class
HashName
(
PSDispatcher
):
"""
Hash variable names to servral endpoints
"""
def
__init__
(
self
,
pserver_endpoints
):
super
(
self
.
__class__
,
self
).
__init__
(
pserver_endpoints
)
def
_hash_block
(
block_str
,
total
):
def
_hash_block
(
self
,
block_str
,
total
):
return
hash
(
block_str
)
%
total
eplist
=
[]
for
var
in
varlist
:
server_id
=
_hash_block
(
var
.
name
(),
len
(
pserver_endpoints
))
server_for_param
=
pserver_endpoints
[
server_id
]
eplist
.
append
(
server_for_param
)
return
eplist
def
dispatch
(
self
,
varlist
):
eplist
=
[]
for
var
in
varlist
:
server_id
=
self
.
_hash_block
(
var
.
name
(),
len
(
self
.
_eps
))
server_for_param
=
self
.
_eps
[
server_id
]
eplist
.
append
(
server_for_param
)
return
eplist
def
round_robin
(
varlist
,
pserver_endpoints
):
class
RoundRobin
(
PSDispatcher
):
"""
Distribute variables to several endpoints.
Args:
varlist(list): a list of variables
pserver_endpoints(list): a list of pserver endpoints
Returns(list[int]): the endpoint for each variable
Distribute variables to serveral endpoints.
"""
assert
(
len
(
varlist
)
>=
len
(
pserver_endpoints
))
eplist
=
[]
pserver_idx
=
0
for
var
in
varlist
:
server_for_param
=
pserver_endpoints
[
pserver_idx
]
eplist
.
append
(
server_for_param
)
pserver_idx
+=
1
if
pserver_idx
>=
len
(
pserver_endpoints
):
pserver_idx
=
0
return
eplist
def
__init__
(
self
,
pserver_endpoints
):
super
(
self
.
__class__
,
self
).
__init__
(
pserver_endpoints
)
def
dispatch
(
self
,
varlist
):
eplist
=
[]
for
var
in
varlist
:
server_for_param
=
self
.
_eps
[
self
.
_step
]
eplist
.
append
(
server_for_param
)
self
.
_step
+=
1
if
self
.
_step
>=
len
(
self
.
_eps
):
self
.
_step
=
0
return
eplist
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录