activation.py 58.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...tensor.ops import sigmoid  # noqa: F401
Z
zhiboniu 已提交
16 17
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20 21
from ...tensor.manipulation import chunk
from ...tensor.math import multiply
22

23 24
import warnings
from ...fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
25
from ...fluid.framework import convert_np_dtype_to_dtype_
26
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
27
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
28
import paddle
29
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
Z
zhiboniu 已提交
30
from paddle.framework import core
31
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
32

33 34
__all__ = []

35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

    .. math::

        celu(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

66
    if _in_legacy_dygraph():
67
        return _legacy_C_ops.celu(x, 'alpha', alpha)
68
    if in_dygraph_mode():
69
        return _C_ops.celu(x, alpha)
70 71 72 73

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
74 75 76 77
    helper.append_op(type='celu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
78 79 80
    return out


81
def elu(x, alpha=1.0, name=None):
82
    r"""
83 84
    elu activation.

85
    .. math::
86

Z
zhupengyang 已提交
87 88 89 90 91 92 93
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
94 95 96 97 98 99

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
100

101 102
    Returns:
        A Tensor with the same data type and shape as ``x`` .
103

104 105 106
    Examples:
        .. code-block:: python

107 108
            import paddle
            import paddle.nn.functional as F
109

Z
zhupengyang 已提交
110
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
111
            out = F.elu(x, alpha=0.2)
112 113
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
114 115
    """

116
    if in_dygraph_mode():
117
        return _C_ops.elu(x, alpha)
118 119

    if _in_legacy_dygraph():
120
        return _legacy_C_ops.elu(x, 'alpha', alpha)
121 122 123 124

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
125 126 127 128
    helper.append_op(type='elu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
129 130 131
    return out


132
@inplace_apis_in_dygraph_only
133 134 135 136 137
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
Z
zhupengyang 已提交
138
    assert alpha >= 0., "elu_ only support alpha >= 0, please use elu instead."
139
    if in_dygraph_mode():
140 141
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
142 143


144
def gelu(x, approximate=False, name=None):
145
    r"""
146 147 148
    gelu activation.

    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161 162 163 164
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
165

166 167
    Returns:
        A Tensor with the same data type and shape as ``x`` .
168

169 170 171
    Examples:
        .. code-block:: python

172 173
            import paddle
            import paddle.nn.functional as F
174

Z
zhupengyang 已提交
175 176 177 178 179 180 181
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
182 183
    """

184
    if in_dygraph_mode():
185
        return _C_ops.gelu(x, approximate)
186 187

    if _in_legacy_dygraph():
188
        return _legacy_C_ops.gelu(x, 'approximate', approximate)
189 190 191 192

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
193 194 195 196
    helper.append_op(type='gelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'approximate': approximate})
197 198 199
    return out


200
def hardshrink(x, threshold=0.5, name=None):
201
    r"""
202 203 204 205 206
    hard shrinkage activation

    .. math::

        hardshrink(x)=
207 208 209 210 211 212 213
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
214 215 216 217 218 219 220 221 222 223 224 225 226

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

227 228
            import paddle
            import paddle.nn.functional as F
229

Z
zhupengyang 已提交
230
            x = paddle.to_tensor([-1, 0.3, 2.5])
231
            out = F.hardshrink(x) # [-1., 0., 2.5]
232 233

    """
H
hong 已提交
234
    if in_dygraph_mode():
235
        return _C_ops.hard_shrink(x, threshold)
H
hong 已提交
236 237

    if _in_legacy_dygraph():
238
        return _legacy_C_ops.hard_shrink(x, 'threshold', threshold)
239 240 241 242 243

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
244 245 246 247
    helper.append_op(type='hard_shrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
248 249 250
    return out


251
def hardtanh(x, min=-1.0, max=1.0, name=None):
252
    r"""
253 254 255 256
    hardtanh activation

    .. math::

257 258 259 260 261 262 263 264
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
265

266
    Parameters:
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
287
    if in_dygraph_mode():
288
        return _C_ops.brelu(x, min, max)
H
hong 已提交
289 290

    if _in_legacy_dygraph():
291
        return _legacy_C_ops.brelu(x, 't_min', min, 't_max', max)
292 293 294 295 296 297

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
298 299 300 301 302 303 304
    helper.append_op(type='brelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         't_min': min,
                         't_max': max
                     })
305 306 307
    return out


308
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
309
    r"""
310 311 312 313 314 315 316 317
    hardsigmoid activation.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
318 319 320 321 322 323 324
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
325 326 327

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
328 329
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
346
    if in_dygraph_mode():
347
        return _C_ops.hard_sigmoid(x, slope, offset)
H
hong 已提交
348 349

    if _in_legacy_dygraph():
350
        return _legacy_C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
351 352 353 354 355 356

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
357 358 359 360 361 362 363
    helper.append_op(type='hard_sigmoid',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'slope': slope,
                         'offset': offset
                     })
364 365 366 367
    return out


def hardswish(x, name=None):
368
    r"""
369 370 371 372 373 374 375 376 377
    hardswish activation

    hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        hardswish(x)=
378 379 380 381 382 383 384
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

404
    if _in_legacy_dygraph():
405
        return _legacy_C_ops.hard_swish(x)
406
    if in_dygraph_mode():
407
        return _C_ops.hard_swish(x, 6, 6, 3)
408 409 410 411 412 413 414 415 416 417

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


418
def leaky_relu(x, negative_slope=0.01, name=None):
419
    r"""
420 421
    leaky_relu activation

422
    .. math::
423 424 425 426 427 428 429
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
447
            x = paddle.to_tensor([-2., 0., 1.])
448 449 450
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
451 452

    """
453
    if in_dygraph_mode():
454
        return _C_ops.leaky_relu(x, negative_slope)
455 456

    if _in_legacy_dygraph():
457
        return _legacy_C_ops.leaky_relu(x, 'alpha', negative_slope)
458 459 460 461 462

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
463 464 465 466
    helper.append_op(type='leaky_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': negative_slope})
467 468 469
    return out


470
def prelu(x, weight, data_format="NCHW", name=None):
471 472 473 474 475 476 477 478 479 480 481 482 483
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
484 485
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
486 487 488 489 490 491 492 493 494 495

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

496
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
497 498 499 500
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
501 502 503 504 505
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

    mode = 'all'
    if weight.shape[0] > 1:
522 523 524 525 526 527 528 529 530 531 532

        true_data_format = [
            'NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC'
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format))

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

533 534 535
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
536 537 538 539 540 541 542 543

        #NOTE(GuoxiaWang): support NHWC data format
        if data_format == 'NHWC':
            assert weight.shape[0] == x.shape[
                -1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        else:
            assert weight.shape[0] == x.shape[
                1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
544 545
        mode = 'channel'

546
    if in_dygraph_mode():
547
        return _C_ops.prelu(x, weight, data_format, mode)
548
    if _in_legacy_dygraph():
549 550
        return _legacy_C_ops.prelu(x, weight, 'mode', mode, 'data_format',
                                   data_format)
551

552
    helper = LayerHelper('prelu', **locals())
553
    out = helper.create_variable_for_type_inference(x.dtype)
554 555 556 557 558 559 560 561 562 563
    helper.append_op(type="prelu",
                     inputs={
                         "X": x,
                         "Alpha": weight
                     },
                     outputs={"Out": out},
                     attrs={
                         "mode": mode,
                         "data_format": data_format
                     })
564 565 566
    return out


567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
def rrelu(x, lower=1. / 8., upper=1. / 3., training=True, name=None):
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
630
            print(out)
631 632 633 634 635 636 637 638 639 640 641 642 643 644
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    if not in_dynamic_mode():
        check_variable_and_dtype(x, 'X', ['float16', 'float32', 'float64'],
                                 'rrelu')

    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
645 646
            "The lower and upper values must be float type. Received: lower {}, upper {}."
            .format(lower, upper))
647 648 649

    if lower < 0 or lower > 1:
        raise ValueError(
650 651
            "The lower value must be no less than zero or greater than one. Received: {}."
            .format(lower))
652 653 654

    if upper < lower:
        raise ValueError(
655 656
            "The upper value must be greater than lower value. Received: lower {}, upper {}."
            .format(lower, upper))
657 658 659 660 661 662 663 664 665

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
                upper))

    is_test = not training

    if _in_legacy_dygraph():
666 667
        out, noise = _legacy_C_ops.rrelu(x, 'lower', lower, 'upper', upper,
                                         'is_test', is_test)
668 669 670 671 672 673
        return out

    helper = LayerHelper('rrelu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    noise = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
674 675 676 677 678 679 680
    helper.append_op(type='rrelu',
                     inputs={"X": x},
                     outputs={
                         "Out": out,
                         "Noise": noise
                     },
                     attrs=attrs)
681 682 683
    return out


684
def relu(x, name=None):
685
    """
686
    relu activation.
687

688
    .. math::
689 690 691 692

        out = max(x, 0)

    Parameters:
693 694 695
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
696 697

    Returns:
698
        A Tensor with the same data type and shape as ``x`` .
699 700 701 702

    Examples:
        .. code-block:: python

703 704
            import paddle
            import paddle.nn.functional as F
705

706 707 708 709
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
710 711
    """

712
    if in_dygraph_mode():
W
wanghuancoder 已提交
713
        return _C_ops.relu(x)
714 715
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
716
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
717
    helper = LayerHelper('relu', **locals())
718 719 720 721 722
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


723
@inplace_apis_in_dygraph_only
724 725 726 727 728
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
729 730
    if in_dygraph_mode():
        return _C_ops.relu_(x)
731 732
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu_(x)
733 734


735
def log_sigmoid(x, name=None):
736
    r"""
737
    log_sigmoid activation.
738

739
    .. math::
740

741
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
742

743 744 745 746
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
747

748 749
    Returns:
        A Tensor with the same data type and shape as ``x`` .
750

751 752 753
    Examples:
        .. code-block:: python

754 755
            import paddle
            import paddle.nn.functional as F
756

757 758
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
759 760
    """

H
hong 已提交
761
    if in_dygraph_mode():
762
        return _C_ops.logsigmoid(x)
H
hong 已提交
763 764

    if _in_legacy_dygraph():
765
        return _legacy_C_ops.logsigmoid(x)
766 767

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
768 769
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
770 771 772
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
773 774


775
def maxout(x, groups, axis=1, name=None):
776
    r"""
777 778 779 780 781 782 783 784
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

785 786 787 788 789 790 791 792 793
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
830
    if _in_legacy_dygraph():
831
        return _legacy_C_ops.maxout(x, 'groups', groups, 'axis', axis)
832
    if in_dygraph_mode():
833
        return _C_ops.maxout(x, groups, axis)
834 835 836 837 838 839 840 841 842 843
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
844 845 846 847 848 849 850
    helper.append_op(type='maxout',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'groups': groups,
                         'axis': axis
                     })
851 852 853
    return out


854 855 856 857 858 859
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

860
        relu6(x) = min(max(0,x), 6)
861

862
    Parameters:
863 864 865 866 867 868 869 870 871 872
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

873 874
            import paddle
            import paddle.nn.functional as F
875

876 877 878 879
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
880 881
    """
    threshold = 6.0
882
    if in_dygraph_mode():
883
        return _C_ops.relu6(x, threshold)
Z
zhiboniu 已提交
884
    if in_dynamic_mode():
885
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
886 887 888 889

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
890 891 892 893
    helper.append_op(type='relu6',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
894 895 896 897 898 899 900
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
901
    r"""
902 903 904 905
    selu activation

    .. math::

906
        selu(x)= scale *
907 908 909 910 911 912
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
913

914
    Parameters:
915
        x (Tensor): The input Tensor with data type float32, float64.
916 917
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
918 919 920 921 922 923 924 925 926
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

927 928
            import paddle
            import paddle.nn.functional as F
929

930 931 932 933
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
934
    """
935 936 937 938 939 940 941 942
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

H
hong 已提交
943
    if in_dygraph_mode():
944
        return _C_ops.selu(x, scale, alpha)
H
hong 已提交
945
    if _in_legacy_dygraph():
946
        return _legacy_C_ops.selu(x, 'scale', scale, 'alpha', alpha)
947 948 949 950

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
951 952 953 954 955 956 957
    helper.append_op(type='selu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'scale': scale,
                         'alpha': alpha
                     })
958 959 960
    return out


M
minghaoBD 已提交
961
def silu(x, name=None):
962 963 964 965 966
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
967 968 969 970 971 972 973 974 975 976 977 978
        silu(x) = \frac{x}{1 + e^{-x}}
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python
979 980 981 982 983 984

            import paddle
            import paddle.nn.functional as F
            
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
985 986
    """

987
    if in_dygraph_mode():
W
wanghuancoder 已提交
988
        return _C_ops.silu(x)
989 990
    if _in_legacy_dygraph():
        return _legacy_C_ops.silu(x)
M
minghaoBD 已提交
991 992 993 994 995 996 997 998

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


999
def softmax(x, axis=-1, dtype=None, name=None):
1000
    r"""
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1026
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1075 1076 1077 1078 1079 1080
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
1081
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1082 1083 1084 1085
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1086 1087
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1088 1089 1090 1091

    Examples:
        .. code-block:: python

1092 1093 1094
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1113
    """
1114 1115 1116

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1117
    use_cudnn = True
1118

H
hong 已提交
1119 1120
    if in_dygraph_mode():
        outs_cast = x if dtype is None \
1121 1122
            else _C_ops.cast(x, dtype)
        return _C_ops.softmax(outs_cast, axis)
H
hong 已提交
1123 1124

    if _in_legacy_dygraph():
1125
        outs_cast = x if dtype is None \
1126 1127 1128
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.softmax(outs_cast, 'axis', axis, 'use_cudnn',
                                     use_cudnn)
1129 1130 1131 1132 1133

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
1134 1135 1136
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'softmax',
            'If dtype is not None, it only support float32 or float64.')
1137 1138 1139 1140 1141

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
1142 1143 1144 1145 1146 1147 1148
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': outs_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1149 1150

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
1151 1152 1153 1154 1155 1156 1157
    helper.append_op(type='softmax',
                     inputs={'X': outs_cast},
                     outputs={'Out': outs_softmax},
                     attrs={
                         'axis': axis,
                         'use_cudnn': use_cudnn
                     })
1158 1159

    return outs_softmax
1160 1161


1162
@inplace_apis_in_dygraph_only
1163 1164 1165 1166 1167 1168 1169 1170
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
1171 1172 1173

    if in_dygraph_mode():
        outs_cast = x if dtype is None \
1174 1175
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.softmax_(outs_cast, axis)
1176 1177 1178

    if _in_legacy_dygraph():
        outs_cast = x if dtype is None \
1179 1180 1181
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.softmax_(outs_cast, 'axis', axis, 'use_cudnn',
                                      use_cudnn)
1182 1183


1184
def softplus(x, beta=1, threshold=20, name=None):
1185
    r"""
1186 1187 1188 1189
    softplus activation

    .. math::

1190 1191
        softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
1192

1193
    Parameters:
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1206 1207 1208
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1209

1210 1211
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1212
    """
W
Wang Bojun 已提交
1213 1214

    if in_dygraph_mode():
1215
        return _C_ops.softplus(x, beta, threshold)
W
Wang Bojun 已提交
1216 1217

    if _in_legacy_dygraph():
1218
        return _legacy_C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1219 1220 1221 1222 1223

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1224 1225 1226 1227 1228 1229 1230
    helper.append_op(type='softplus',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'beta': beta,
                         'threshold': threshold
                     })
1231 1232 1233 1234
    return out


def softshrink(x, threshold=0.5, name=None):
1235
    r"""
1236 1237 1238 1239
    softshrink activation

    .. math::

1240 1241 1242 1243 1244 1245 1246 1247
        softshrink(x)= 
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1248

1249
    Parameters:
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1261 1262 1263
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1264

1265 1266
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1267
    """
1268 1269 1270 1271 1272
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1273
    if in_dygraph_mode():
1274
        return _C_ops.soft_shrink(x, threshold)
1275
    if _in_legacy_dygraph():
1276
        return _legacy_C_ops.softshrink(x, 'lambda', threshold)
1277 1278 1279 1280 1281

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1282 1283 1284 1285
    helper.append_op(type='softshrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'lambda': threshold})
1286 1287 1288 1289
    return out


def softsign(x, name=None):
1290
    r"""
1291 1292 1293 1294
    softsign activation

    .. math::

1295
        softsign(x) = \frac{x}{1 + |x|}
1296

1297
    Parameters:
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1308 1309 1310
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1311

1312 1313
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1314
    """
1315
    if in_dygraph_mode():
W
wanghuancoder 已提交
1316
        return _C_ops.softsign(x)
1317 1318
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1319 1320 1321 1322 1323 1324 1325 1326 1327

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1328
def swish(x, name=None):
1329
    r"""
1330 1331 1332 1333
    swish activation.

    .. math::

1334
        swish(x) = \frac{x}{1 + e^{-x}}
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """
1354
    if in_dygraph_mode():
1355
        return _C_ops.swish(x, 1.0)
1356
    if _in_legacy_dygraph():
1357
        return _legacy_C_ops.swish(x, 'beta', 1.0)
1358 1359 1360 1361

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1362 1363 1364 1365
    helper.append_op(type='swish',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'beta': 1.0})
1366 1367 1368
    return out


1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1396
            x = paddle.to_tensor([-5., 0., 5.])
1397 1398
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1399
    if in_dygraph_mode():
1400
        return _C_ops.mish(x, 20)
1401
    if _in_legacy_dygraph():
1402
        return _legacy_C_ops.mish(x)
1403 1404 1405 1406 1407 1408 1409 1410

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1411 1412 1413 1414 1415 1416
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1417
        tanhshrink(x) = x - tanh(x)
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1430 1431 1432
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1433

1434 1435
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1436
    """
H
hong 已提交
1437
    if in_dygraph_mode():
1438
        return _C_ops.tanh_shrink(x)
H
hong 已提交
1439 1440

    if _in_legacy_dygraph():
1441
        return _legacy_C_ops.tanh_shrink(x)
1442 1443 1444 1445 1446 1447 1448 1449 1450

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1451
def thresholded_relu(x, threshold=1.0, name=None):
1452
    r"""
1453 1454 1455 1456
    thresholded relu activation.

    .. math::

1457 1458 1459 1460 1461 1462 1463 1464
        thresholded\_relu(x) = 
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

H
hong 已提交
1486
    if in_dygraph_mode():
1487
        return _C_ops.thresholded_relu(x, threshold)
H
hong 已提交
1488 1489

    if _in_legacy_dygraph():
1490
        return _legacy_C_ops.thresholded_relu(x, 'threshold', threshold)
1491 1492 1493 1494 1495

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1496 1497 1498 1499
    helper.append_op(type='thresholded_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
1500 1501 1502
    return out


1503
def log_softmax(x, axis=-1, dtype=None, name=None):
1504
    r"""
1505 1506
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1507 1508 1509

    .. math::

1510 1511 1512 1513
        \begin{aligned} 
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1514 1515

    Parameters:
1516 1517 1518 1519 1520 1521 1522
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1523
            to ``dtype`` before the operation is performed. This is useful for
1524 1525 1526 1527 1528
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1529

1530
    Returns:
1531 1532
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1533 1534 1535 1536

    Examples:
        .. code-block:: python

1537 1538 1539
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1540 1541 1542 1543 1544 1545
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1558 1559 1560

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1561

H
hong 已提交
1562
    if in_dygraph_mode():
1563
        if dtype is not None:
1564 1565
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1566

H
hong 已提交
1567 1568
    if _in_legacy_dygraph():
        if dtype is not None:
1569 1570
            x = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.log_softmax(x, 'axis', axis)
H
hong 已提交
1571

1572
    if dtype is None:
1573 1574 1575
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
1576 1577 1578
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
            'If dtype is not None, it only support float32 or float64.')
1579

1580
    helper = LayerHelper("log_softmax", **locals())
1581
    out_cast = x
1582
    if dtype is not None:
1583
        out_cast = helper.create_variable_for_type_inference(dtype)
1584 1585 1586 1587 1588 1589 1590
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': out_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1591

1592
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1593 1594 1595 1596
    helper.append_op(type='log_softmax',
                     inputs={'X': out_cast},
                     outputs={'Out': out},
                     attrs={'axis': axis})
1597

1598
    return out
F
Feiyu Chan 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645


def glu(x, axis=-1, name=None):
    r"""
    The gated linear unit. The input is evenly splited into 2 parts along a 
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which split the input tensor. It 
            should be in range [-D, D), where D is the dimensions of ``x`` . 
            If ``axis`` < 0, it works the same way as :math:`axis + D` . 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type as x. The size of the given aixs is 
        halved.
    
    Examples:
        .. code-block:: python
        
            import paddle
            from paddle.nn import functional as F
            
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
        
    """
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             "glu")
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch 
            of independent distributions and the last dimension represents 
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
        hard (bool, optional): if True, the returned samples will be discretized as 
            one-hot vectors, but will be differentiated as if it is the soft sample 
            in autograd. Default is False.
        axis (int, optional): The axis along will be calculated softmax value. 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution. 
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be 
        probability distributions that sum to 1 across ``axis``.
    
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
        
    """
H
hong 已提交
1706
    if in_dygraph_mode():
1707
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1708

Z
zhiboniu 已提交
1709
    if in_dynamic_mode():
1710 1711
        return _legacy_C_ops.gumbel_softmax(x, 'temperature', temperature,
                                            'hard', hard, 'axis', axis)
1712 1713 1714 1715

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1716 1717 1718 1719 1720 1721 1722 1723
    helper.append_op(type='gumbel_softmax',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'temperature': temperature,
                         'hard': hard,
                         'axis': axis
                     })
1724
    return out