activation.py 57.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...tensor.ops import sigmoid  # noqa: F401
Z
zhiboniu 已提交
16 17
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20 21
from ...tensor.manipulation import chunk
from ...tensor.math import multiply
22

23 24
import warnings
from ...fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
25
from ...fluid.framework import convert_np_dtype_to_dtype_
L
Ligoml 已提交
26 27 28 29 30
from ...fluid.framework import (
    _in_legacy_dygraph,
    in_dygraph_mode,
    _non_static_mode,
)
31
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
32
import paddle
33
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
Z
zhiboniu 已提交
34
from paddle.framework import core
35
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
36

37 38
__all__ = []

39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

    .. math::

        celu(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

70
    if _in_legacy_dygraph():
71
        return _legacy_C_ops.celu(x, 'alpha', alpha)
72
    if in_dygraph_mode():
73
        return _C_ops.celu(x, alpha)
74 75 76 77

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
78 79 80 81 82 83
    helper.append_op(
        type='celu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha},
    )
84 85 86
    return out


87
def elu(x, alpha=1.0, name=None):
88
    r"""
89 90
    elu activation.

91
    .. math::
92

Z
zhupengyang 已提交
93 94 95 96 97 98 99
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
100 101 102 103 104 105

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
106

107 108
    Returns:
        A Tensor with the same data type and shape as ``x`` .
109

110 111 112
    Examples:
        .. code-block:: python

113 114
            import paddle
            import paddle.nn.functional as F
115

Z
zhupengyang 已提交
116
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
117
            out = F.elu(x, alpha=0.2)
118 119
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
120 121
    """

122
    if in_dygraph_mode():
123
        return _C_ops.elu(x, alpha)
124 125

    if _in_legacy_dygraph():
126
        return _legacy_C_ops.elu(x, 'alpha', alpha)
127 128 129 130

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
131 132 133 134 135 136
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha},
    )
137 138 139
    return out


140
@inplace_apis_in_dygraph_only
141 142 143 144 145
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
L
Ligoml 已提交
146
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
147
    if in_dygraph_mode():
148 149
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
150 151


152
def gelu(x, approximate=False, name=None):
153
    r"""
154 155 156
    gelu activation.

    if approximate is True
157 158 159

    .. math::

160
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
161

162
    else
163 164 165

    .. math::

166
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
167

168 169 170 171 172
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
173

174 175
    Returns:
        A Tensor with the same data type and shape as ``x`` .
176

177 178 179
    Examples:
        .. code-block:: python

180 181
            import paddle
            import paddle.nn.functional as F
182

Z
zhupengyang 已提交
183 184 185 186 187 188 189
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
190 191
    """

192
    if in_dygraph_mode():
193
        return _C_ops.gelu(x, approximate)
194 195

    if _in_legacy_dygraph():
196
        return _legacy_C_ops.gelu(x, 'approximate', approximate)
197 198 199 200

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
201 202 203 204 205 206
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate},
    )
207 208 209
    return out


210
def hardshrink(x, threshold=0.5, name=None):
211
    r"""
212 213 214 215 216
    hard shrinkage activation

    .. math::

        hardshrink(x)=
217 218 219 220 221 222 223
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
224 225 226 227 228 229 230 231 232 233 234 235 236

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

237 238
            import paddle
            import paddle.nn.functional as F
239

Z
zhupengyang 已提交
240
            x = paddle.to_tensor([-1, 0.3, 2.5])
241
            out = F.hardshrink(x) # [-1., 0., 2.5]
242 243

    """
H
hong 已提交
244
    if in_dygraph_mode():
245
        return _C_ops.hard_shrink(x, threshold)
H
hong 已提交
246 247

    if _in_legacy_dygraph():
248
        return _legacy_C_ops.hard_shrink(x, 'threshold', threshold)
249

L
Ligoml 已提交
250 251 252
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardshrink'
    )
253 254
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
255 256 257 258 259 260
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
261 262 263
    return out


264
def hardtanh(x, min=-1.0, max=1.0, name=None):
265
    r"""
266 267 268 269
    hardtanh activation

    .. math::

270 271 272 273 274 275 276 277
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
278

279
    Parameters:
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
300
    if in_dygraph_mode():
301
        return _C_ops.brelu(x, min, max)
H
hong 已提交
302 303

    if _in_legacy_dygraph():
304
        return _legacy_C_ops.brelu(x, 't_min', min, 't_max', max)
305

L
Ligoml 已提交
306 307 308
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
    )
309 310 311

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
312 313 314 315 316 317
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min, 't_max': max},
    )
318 319 320
    return out


321
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
322
    r"""
323 324 325 326 327 328 329 330
    hardsigmoid activation.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
331 332 333 334 335 336 337
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
338 339 340

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
341 342
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
359
    if in_dygraph_mode():
360
        return _C_ops.hard_sigmoid(x, slope, offset)
H
hong 已提交
361 362

    if _in_legacy_dygraph():
363
        return _legacy_C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
364

L
Ligoml 已提交
365 366 367
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardsigmoid'
    )
368 369 370

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
371 372 373 374 375 376
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope, 'offset': offset},
    )
377 378 379 380
    return out


def hardswish(x, name=None):
381
    r"""
382 383 384 385 386 387 388 389 390
    hardswish activation

    hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        hardswish(x)=
391 392 393 394 395 396 397
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

417
    if _in_legacy_dygraph():
418
        return _legacy_C_ops.hard_swish(x)
419
    if in_dygraph_mode():
420
        return _C_ops.hard_swish(x, 6, 6, 3)
421

L
Ligoml 已提交
422 423 424
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardswish'
    )
425 426 427 428 429 430 431

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


432
def leaky_relu(x, negative_slope=0.01, name=None):
433
    r"""
434 435
    leaky_relu activation

436
    .. math::
437 438 439 440 441 442 443
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
461
            x = paddle.to_tensor([-2., 0., 1.])
462 463 464
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
465 466

    """
467
    if in_dygraph_mode():
468
        return _C_ops.leaky_relu(x, negative_slope)
469 470

    if _in_legacy_dygraph():
471
        return _legacy_C_ops.leaky_relu(x, 'alpha', negative_slope)
472

L
Ligoml 已提交
473 474 475
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'leaky_relu'
    )
476 477
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
478 479 480 481 482 483
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope},
    )
484 485 486
    return out


487
def prelu(x, weight, data_format="NCHW", name=None):
488 489 490 491 492 493 494 495 496 497 498 499 500
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
501 502
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
503 504 505 506 507 508 509 510 511 512

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

513
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
514 515 516 517
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
518 519 520 521 522
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
523 524 525 526 527 528 529 530
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
L
Ligoml 已提交
531 532 533
    check_variable_and_dtype(
        weight, 'weight', ['float16', 'float32', 'float64'], 'prelu'
    )
534

L
Ligoml 已提交
535 536 537
    assert (
        len(weight.shape) == 1
    ), "The dim count of weight shape should be 1 in prelu()."
538 539 540

    mode = 'all'
    if weight.shape[0] > 1:
541 542

        true_data_format = [
L
Ligoml 已提交
543 544 545 546 547 548 549
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
550 551 552 553
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
L
Ligoml 已提交
554 555
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
556 557 558

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

L
Ligoml 已提交
559 560 561
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
562

L
Ligoml 已提交
563
        # NOTE(GuoxiaWang): support NHWC data format
564
        if data_format == 'NHWC':
L
Ligoml 已提交
565 566 567
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
568
        else:
L
Ligoml 已提交
569 570 571
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
572 573
        mode = 'channel'

574
    if in_dygraph_mode():
575
        return _C_ops.prelu(x, weight, data_format, mode)
576
    if _in_legacy_dygraph():
L
Ligoml 已提交
577 578 579
        return _legacy_C_ops.prelu(
            x, weight, 'mode', mode, 'data_format', data_format
        )
580

581
    helper = LayerHelper('prelu', **locals())
582
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
583 584 585 586 587 588
    helper.append_op(
        type="prelu",
        inputs={"X": x, "Alpha": weight},
        outputs={"Out": out},
        attrs={"mode": mode, "data_format": data_format},
    )
589 590 591
    return out


L
Ligoml 已提交
592
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
655
            print(out)
656 657 658 659 660 661 662 663 664
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    if not in_dynamic_mode():
L
Ligoml 已提交
665 666 667
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64'], 'rrelu'
        )
668 669 670

    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
L
Ligoml 已提交
671 672 673 674
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
675 676 677

    if lower < 0 or lower > 1:
        raise ValueError(
L
Ligoml 已提交
678 679 680 681
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
682 683 684

    if upper < lower:
        raise ValueError(
L
Ligoml 已提交
685 686 687 688
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
689 690 691 692

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
L
Ligoml 已提交
693 694 695
                upper
            )
        )
696 697 698 699

    is_test = not training

    if _in_legacy_dygraph():
L
Ligoml 已提交
700 701 702
        out, noise = _legacy_C_ops.rrelu(
            x, 'lower', lower, 'upper', upper, 'is_test', is_test
        )
703 704 705 706 707 708
        return out

    helper = LayerHelper('rrelu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    noise = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
L
Ligoml 已提交
709 710 711 712 713 714
    helper.append_op(
        type='rrelu',
        inputs={"X": x},
        outputs={"Out": out, "Noise": noise},
        attrs=attrs,
    )
715 716 717
    return out


718
def relu(x, name=None):
719
    """
720
    relu activation.
721

722
    .. math::
723 724 725 726

        out = max(x, 0)

    Parameters:
727 728 729
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
730 731

    Returns:
732
        A Tensor with the same data type and shape as ``x`` .
733 734 735 736

    Examples:
        .. code-block:: python

737 738
            import paddle
            import paddle.nn.functional as F
739

740 741 742 743
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
744 745
    """

746
    if in_dygraph_mode():
W
wanghuancoder 已提交
747
        return _C_ops.relu(x)
748 749
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
750
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
751
    helper = LayerHelper('relu', **locals())
752 753 754 755 756
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


757
@inplace_apis_in_dygraph_only
758 759 760 761 762
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
763 764
    if in_dygraph_mode():
        return _C_ops.relu_(x)
765 766
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu_(x)
767 768


769
def log_sigmoid(x, name=None):
770
    r"""
771
    log_sigmoid activation.
772

773
    .. math::
774

775
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
776

777 778 779 780
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
781

782 783
    Returns:
        A Tensor with the same data type and shape as ``x`` .
784

785 786 787
    Examples:
        .. code-block:: python

788 789
            import paddle
            import paddle.nn.functional as F
790

791 792
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
793 794
    """

H
hong 已提交
795
    if in_dygraph_mode():
796
        return _C_ops.logsigmoid(x)
H
hong 已提交
797 798

    if _in_legacy_dygraph():
799
        return _legacy_C_ops.logsigmoid(x)
800

L
Ligoml 已提交
801 802 803
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
    )
804
    helper = LayerHelper("log_sigmoid", **locals())
805 806 807
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
808 809


810
def maxout(x, groups, axis=1, name=None):
811
    r"""
812 813 814 815 816 817 818 819
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

820 821 822 823 824 825 826 827 828
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
865
    if _in_legacy_dygraph():
866
        return _legacy_C_ops.maxout(x, 'groups', groups, 'axis', axis)
867
    if in_dygraph_mode():
868
        return _C_ops.maxout(x, groups, axis)
869 870 871 872
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
L
Ligoml 已提交
873 874
            "Attr(axis): %s." % str(axis)
        )
875 876 877 878 879
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
880 881 882 883 884 885
    helper.append_op(
        type='maxout',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'groups': groups, 'axis': axis},
    )
886 887 888
    return out


889 890 891 892 893 894
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

895
        relu6(x) = min(max(0,x), 6)
896

897
    Parameters:
898 899 900 901 902 903 904 905 906 907
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

908 909
            import paddle
            import paddle.nn.functional as F
910

911 912 913 914
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
915 916
    """
    threshold = 6.0
917
    if in_dygraph_mode():
918
        return _C_ops.relu6(x, threshold)
Z
zhiboniu 已提交
919
    if in_dynamic_mode():
920
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
921 922 923 924

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
925 926 927 928 929 930
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
931 932 933
    return out


L
Ligoml 已提交
934 935 936 937 938 939
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
940
    r"""
941 942 943 944
    selu activation

    .. math::

945
        selu(x)= scale *
946 947 948 949 950 951
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
952

953
    Parameters:
954
        x (Tensor): The input Tensor with data type float32, float64.
955 956
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
957 958 959 960 961 962 963 964 965
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

966 967
            import paddle
            import paddle.nn.functional as F
968

969 970 971 972
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
973
    """
974 975
    if scale <= 1.0:
        raise ValueError(
L
Ligoml 已提交
976 977
            "The scale must be greater than 1.0. Received: {}.".format(scale)
        )
978 979 980

    if alpha < 0:
        raise ValueError(
L
Ligoml 已提交
981 982
            "The alpha must be no less than zero. Received: {}.".format(alpha)
        )
983

H
hong 已提交
984
    if in_dygraph_mode():
985
        return _C_ops.selu(x, scale, alpha)
H
hong 已提交
986
    if _in_legacy_dygraph():
987
        return _legacy_C_ops.selu(x, 'scale', scale, 'alpha', alpha)
988 989 990 991

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
992 993 994 995 996 997
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale, 'alpha': alpha},
    )
998 999 1000
    return out


M
minghaoBD 已提交
1001
def silu(x, name=None):
1002 1003 1004 1005 1006
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
1007
        silu(x) = \frac{x}{1 + e^{-x}}
L
Ligoml 已提交
1008

M
minghaoBD 已提交
1009 1010 1011 1012
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
1013

M
minghaoBD 已提交
1014 1015
    Returns:
        A Tensor with the same data type and shape as ``x`` .
L
Ligoml 已提交
1016

M
minghaoBD 已提交
1017 1018
    Examples:
        .. code-block:: python
1019 1020 1021

            import paddle
            import paddle.nn.functional as F
L
Ligoml 已提交
1022

1023 1024
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
1025 1026
    """

1027
    if in_dygraph_mode():
W
wanghuancoder 已提交
1028
        return _C_ops.silu(x)
1029 1030
    if _in_legacy_dygraph():
        return _legacy_C_ops.silu(x)
M
minghaoBD 已提交
1031 1032 1033 1034 1035 1036 1037 1038

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


1039
def softmax(x, axis=-1, dtype=None, name=None):
1040
    r"""
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1066
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1115 1116 1117 1118 1119 1120
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
1121
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1122 1123 1124 1125
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1126 1127
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1128 1129 1130 1131

    Examples:
        .. code-block:: python

1132 1133 1134
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1153
    """
1154 1155 1156

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1157
    use_cudnn = True
1158

H
hong 已提交
1159
    if in_dygraph_mode():
L
Ligoml 已提交
1160
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1161
        return _C_ops.softmax(outs_cast, axis)
H
hong 已提交
1162 1163

    if _in_legacy_dygraph():
L
Ligoml 已提交
1164 1165 1166
        outs_cast = (
            x
            if dtype is None
1167
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
L
Ligoml 已提交
1168 1169 1170 1171
        )
        return _legacy_C_ops.softmax(
            outs_cast, 'axis', axis, 'use_cudnn', use_cudnn
        )
1172 1173

    if dtype is None:
L
Ligoml 已提交
1174 1175 1176
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'softmax'
        )
1177
    else:
1178
        check_dtype(
L
Ligoml 已提交
1179 1180 1181 1182 1183 1184
            dtype,
            'dtype',
            ['float32', 'float64'],
            'softmax',
            'If dtype is not None, it only support float32 or float64.',
        )
1185 1186 1187 1188 1189

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
1190 1191 1192 1193 1194 1195
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
        )
1196 1197

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
L
Ligoml 已提交
1198 1199 1200 1201 1202 1203
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis, 'use_cudnn': use_cudnn},
    )
1204 1205

    return outs_softmax
1206 1207


1208
@inplace_apis_in_dygraph_only
1209 1210 1211 1212 1213 1214 1215 1216
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
1217 1218

    if in_dygraph_mode():
L
Ligoml 已提交
1219 1220 1221
        outs_cast = (
            x
            if dtype is None
1222
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
L
Ligoml 已提交
1223
        )
1224
        return _C_ops.softmax_(outs_cast, axis)
1225 1226

    if _in_legacy_dygraph():
L
Ligoml 已提交
1227 1228 1229
        outs_cast = (
            x
            if dtype is None
1230
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
L
Ligoml 已提交
1231 1232 1233 1234
        )
        return _legacy_C_ops.softmax_(
            outs_cast, 'axis', axis, 'use_cudnn', use_cudnn
        )
1235 1236


1237
def softplus(x, beta=1, threshold=20, name=None):
1238
    r"""
1239 1240 1241 1242
    softplus activation

    .. math::

1243 1244
        softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
1245

1246
    Parameters:
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1259 1260 1261
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1262

1263 1264
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1265
    """
W
Wang Bojun 已提交
1266 1267

    if in_dygraph_mode():
1268
        return _C_ops.softplus(x, beta, threshold)
W
Wang Bojun 已提交
1269 1270

    if _in_legacy_dygraph():
1271
        return _legacy_C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1272

L
Ligoml 已提交
1273 1274 1275
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softplus'
    )
1276 1277
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
1278 1279 1280 1281 1282 1283
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta, 'threshold': threshold},
    )
1284 1285 1286 1287
    return out


def softshrink(x, threshold=0.5, name=None):
1288
    r"""
1289 1290 1291 1292
    softshrink activation

    .. math::

1293 1294 1295 1296 1297 1298 1299 1300
        softshrink(x)= 
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1301

1302
    Parameters:
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1314 1315 1316
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1317

1318 1319
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1320
    """
1321 1322 1323
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
L
Ligoml 已提交
1324 1325 1326
                threshold
            )
        )
1327

1328
    if in_dygraph_mode():
1329
        return _C_ops.soft_shrink(x, threshold)
1330
    if _in_legacy_dygraph():
1331
        return _legacy_C_ops.softshrink(x, 'lambda', threshold)
1332

L
Ligoml 已提交
1333 1334 1335
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softshrink'
    )
1336 1337
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
1338 1339 1340 1341 1342 1343
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold},
    )
1344 1345 1346 1347
    return out


def softsign(x, name=None):
1348
    r"""
1349 1350 1351 1352
    softsign activation

    .. math::

1353
        softsign(x) = \frac{x}{1 + |x|}
1354

1355
    Parameters:
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1366 1367 1368
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1369

1370 1371
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1372
    """
1373
    if in_dygraph_mode():
W
wanghuancoder 已提交
1374
        return _C_ops.softsign(x)
1375 1376
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1377

L
Ligoml 已提交
1378 1379 1380
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softsign'
    )
1381 1382 1383 1384 1385 1386
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1387
def swish(x, name=None):
1388
    r"""
1389 1390 1391 1392
    swish activation.

    .. math::

1393
        swish(x) = \frac{x}{1 + e^{-x}}
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """
1413
    if in_dygraph_mode():
1414
        return _C_ops.swish(x, 1.0)
1415
    if _in_legacy_dygraph():
1416
        return _legacy_C_ops.swish(x, 'beta', 1.0)
1417 1418 1419 1420

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
1421 1422 1423
    helper.append_op(
        type='swish', inputs={'X': x}, outputs={'Out': out}, attrs={'beta': 1.0}
    )
1424 1425 1426
    return out


1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1454
            x = paddle.to_tensor([-5., 0., 5.])
1455 1456
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1457
    if in_dygraph_mode():
1458
        return _C_ops.mish(x, 20)
1459
    if _in_legacy_dygraph():
1460
        return _legacy_C_ops.mish(x)
1461 1462 1463 1464 1465 1466 1467 1468

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1469 1470 1471 1472 1473 1474
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1475
        tanhshrink(x) = x - tanh(x)
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1488 1489 1490
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1491

1492 1493
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1494
    """
H
hong 已提交
1495
    if in_dygraph_mode():
1496
        return _C_ops.tanh_shrink(x)
H
hong 已提交
1497 1498

    if _in_legacy_dygraph():
1499
        return _legacy_C_ops.tanh_shrink(x)
1500

L
Ligoml 已提交
1501 1502 1503
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'tanhshrink'
    )
1504 1505 1506 1507 1508 1509
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1510
def thresholded_relu(x, threshold=1.0, name=None):
1511
    r"""
1512 1513 1514 1515
    thresholded relu activation.

    .. math::

1516 1517 1518 1519 1520 1521 1522 1523
        thresholded\_relu(x) = 
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

H
hong 已提交
1545
    if in_dygraph_mode():
1546
        return _C_ops.thresholded_relu(x, threshold)
H
hong 已提交
1547 1548

    if _in_legacy_dygraph():
1549
        return _legacy_C_ops.thresholded_relu(x, 'threshold', threshold)
1550

L
Ligoml 已提交
1551 1552 1553
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'thresholded_relu'
    )
1554 1555
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
1556 1557 1558 1559 1560 1561
    helper.append_op(
        type='thresholded_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
1562 1563 1564
    return out


1565
def log_softmax(x, axis=-1, dtype=None, name=None):
1566
    r"""
1567 1568
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1569 1570 1571

    .. math::

1572 1573 1574 1575
        \begin{aligned} 
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1576 1577

    Parameters:
1578 1579 1580 1581 1582 1583 1584
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1585
            to ``dtype`` before the operation is performed. This is useful for
1586 1587 1588 1589 1590
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1591

1592
    Returns:
1593 1594
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1595 1596 1597 1598

    Examples:
        .. code-block:: python

1599 1600 1601
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1602 1603 1604 1605 1606 1607
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1620 1621 1622

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1623

H
hong 已提交
1624
    if in_dygraph_mode():
1625
        if dtype is not None:
1626 1627
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1628

H
hong 已提交
1629 1630
    if _in_legacy_dygraph():
        if dtype is not None:
1631 1632
            x = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.log_softmax(x, 'axis', axis)
H
hong 已提交
1633

1634
    if dtype is None:
L
Ligoml 已提交
1635 1636 1637
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_softmax'
        )
1638
    else:
1639
        check_dtype(
L
Ligoml 已提交
1640 1641 1642 1643 1644 1645
            dtype,
            'dtype',
            ['float32', 'float64'],
            'log_softmax',
            'If dtype is not None, it only support float32 or float64.',
        )
1646

1647
    helper = LayerHelper("log_softmax", **locals())
1648
    out_cast = x
1649
    if dtype is not None:
1650
        out_cast = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
1651 1652 1653 1654 1655 1656
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
        )
1657

1658
    out = helper.create_variable_for_type_inference(out_cast.dtype)
L
Ligoml 已提交
1659 1660 1661 1662 1663 1664
    helper.append_op(
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis},
    )
1665

1666
    return out
F
Feiyu Chan 已提交
1667 1668 1669 1670


def glu(x, axis=-1, name=None):
    r"""
L
Ligoml 已提交
1671
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
L
Ligoml 已提交
1682 1683 1684
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1685 1686 1687
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
1688

F
Feiyu Chan 已提交
1689
    Returns:
L
Ligoml 已提交
1690
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1691
        halved.
L
Ligoml 已提交
1692

F
Feiyu Chan 已提交
1693 1694
    Examples:
        .. code-block:: python
L
Ligoml 已提交
1695

F
Feiyu Chan 已提交
1696 1697
            import paddle
            from paddle.nn import functional as F
L
Ligoml 已提交
1698

F
Feiyu Chan 已提交
1699 1700 1701 1702 1703 1704 1705
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
L
Ligoml 已提交
1706

F
Feiyu Chan 已提交
1707
    """
L
Ligoml 已提交
1708 1709 1710
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
F
Feiyu Chan 已提交
1711 1712 1713 1714
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
L
Ligoml 已提交
1740 1741
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1742 1743 1744
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
L
Ligoml 已提交
1745 1746
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1747
            in autograd. Default is False.
L
Ligoml 已提交
1748
        axis (int, optional): The axis along will be calculated softmax value.
1749 1750 1751
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
1752

1753
    Returns:
L
Ligoml 已提交
1754 1755
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1756
        probability distributions that sum to 1 across ``axis``.
L
Ligoml 已提交
1757

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
L
Ligoml 已提交
1773

1774
    """
H
hong 已提交
1775
    if in_dygraph_mode():
1776
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1777

Z
zhiboniu 已提交
1778
    if in_dynamic_mode():
L
Ligoml 已提交
1779 1780 1781
        return _legacy_C_ops.gumbel_softmax(
            x, 'temperature', temperature, 'hard', hard, 'axis', axis
        )
1782 1783 1784 1785

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
1786 1787 1788 1789 1790 1791
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1792
    return out