nn.py 377.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
90
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
91 92 93 94 95
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
96
    'group_norm',
X
Xin Pan 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
110
    'roi_align',
X
Xin Pan 已提交
111 112 113 114
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
115
    'resize_nearest',
X
Xin Pan 已提交
116 117 118 119 120 121
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
122
    'selu',
X
Xin Pan 已提交
123 124 125
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
126
    'margin_rank_loss',
X
Xin Pan 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
170
    'space_to_depth',
W
whs 已提交
171
    'affine_grid',
S
sneaxiy 已提交
172
    'sequence_reverse',
173
    'affine_channel',
B
barrierye 已提交
174
    'similarity_focus',
M
minqiyang 已提交
175
    'hash',
D
dengkaipeng 已提交
176
    'grid_sampler',
G
gmcather 已提交
177 178
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
179
    'bilinear_tensor_product',
C
chengduo 已提交
180 181
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
182
    'lstm',
S
shippingwang 已提交
183
    'shuffle_channel',
S
sneaxiy 已提交
184
    'py_func',
185
    'psroi_pool',
H
heqiaozhi 已提交
186
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
187
    'huber_loss',
Z
zhaozhehao 已提交
188
    'tree_conv',
Y
Yu Yang 已提交
189 190
]

J
jerrywgz 已提交
191 192
kIgnoreIndex = -100

Y
Yu Yang 已提交
193 194 195 196 197 198 199

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
200
       is_test=False,
201
       name=None):
Y
Yu Yang 已提交
202
    """
203
    **Fully Connected Layer**
Y
Yu Yang 已提交
204

205 206 207 208 209 210 211 212
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
213
    to the output as well.
C
caoying03 已提交
214

C
caoying03 已提交
215
    This process can be formulated as follows:
216 217 218

    .. math::

219
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
220 221 222

    In the above equation:

C
caoying03 已提交
223 224 225 226
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
227
    * :math:`Act`: The activation function.
C
caoying03 已提交
228
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
229 230

    Args:
R
ranqiu 已提交
231 232 233 234 235 236 237 238 239 240
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
241
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
242 243 244 245
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
246 247
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
248
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
249
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
250
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
251

252
    Returns:
F
fengjiayi 已提交
253
        Variable: The transformation result.
254 255

    Raises:
C
caoying03 已提交
256
        ValueError: If rank of the input tensor is less than 2.
257 258 259 260

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
261
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
262
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
263
    """
C
caoying03 已提交
264

C
caoying03 已提交
265
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
266 267 268 269

    dtype = helper.input_dtype()

    mul_results = []
270 271
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
272 273 274
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
275

Y
Yu Yang 已提交
276
        w = helper.create_parameter(
277
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
278
        tmp = helper.create_variable_for_type_inference(dtype)
279
        helper.append_op(
280 281 282
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
283
            outputs={"Out": tmp},
M
mozga-intel 已提交
284 285
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
286 287 288 289
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
290
    else:
X
Xin Pan 已提交
291
        pre_bias = helper.create_variable_for_type_inference(dtype)
292
        helper.append_op(
293 294 295
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
296
            attrs={"use_mkldnn": False})
297 298 299 300
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
301 302


303 304 305
def embedding(input,
              size,
              is_sparse=False,
306
              is_distributed=False,
307 308 309
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
310
    """
311 312
    **Embedding Layer**

313
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
314 315
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
316 317 318

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
319 320

    Args:
321 322 323 324 325
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
326
        is_distributed(bool): Whether to run lookup table from remote parameter server.
327 328
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
329
            with zeros whenever lookup encounters it in :attr:`input`. If
330
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
331 332
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
333
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
334

335 336 337
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
338

339 340
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
341

C
chengduoZH 已提交
342
          dict_size = len(dataset.ids)
343
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
344
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
345 346 347
    """

    helper = LayerHelper('embedding', **locals())
348
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
349 350
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
351 352
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
353
    tmp = helper.create_variable_for_type_inference(dtype)
354 355
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
356 357 358 359 360
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
361 362 363
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
364
            'remote_prefetch': remote_prefetch,
365 366
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
367 368 369
    return tmp


W
wopeizl 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
386

W
wopeizl 已提交
387 388 389 390 391 392 393 394 395 396 397
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
398

W
wopeizl 已提交
399 400 401 402
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
403

W
wopeizl 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
490 491


P
phlrain 已提交
492 493 494 495 496 497
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
498
         dropout_prob=0.0,
P
phlrain 已提交
499 500 501 502 503
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
504
    """
P
phlrain 已提交
505
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
506 507

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
508
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
509 510
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
511
    .. math::
M
minqiyang 已提交
512 513 514 515 516 517 518

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
519
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
520 521 522 523

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
524 525

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
526 527 528 529 530 531
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
532 533 534
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
535
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
536

M
minqiyang 已提交
537
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
538 539 540 541 542
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
543
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
544 545 546 547 548
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
549
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
550 551
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
552 553
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
554 555 556 557 558 559
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
560
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
561

L
liuhongyu 已提交
562 563

    Returns:
M
minqiyang 已提交
564 565
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
566
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
567

H
haowang101779990 已提交
568 569 570 571
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
572
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
573 574
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
575
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
591
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
592 593 594 595 596 597
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
598 599 600
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
660 661 662 663 664 665 666 667 668 669
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
670
                  proj_activation='tanh',
671
                  dtype='float32',
X
xuezhong 已提交
672 673 674 675 676
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
677 678 679
    """
    **Dynamic LSTMP Layer**

680 681 682 683 684 685
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
686 687 688 689 690

    The formula is as follows:

    .. math::

691
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
692

693
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
694

695
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
696

697
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
698

699
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
700

701
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
702

703
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
704

Y
Yibing Liu 已提交
705 706 707 708 709 710
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
711
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
712
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
713
          bias vector).
Y
Yibing Liu 已提交
714 715 716
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
717
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
718
    * :math:`h`: The hidden state.
719
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
720 721
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
722
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
723
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
724
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
725 726
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
727 728 729 730

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
731

Y
Yibing Liu 已提交
732 733 734 735 736 737 738 739 740 741 742 743
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
744
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
745 746
                               hidden-hidden weight and projection weight.

747 748
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
749 750
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
751 752
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
753
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
754 755 756 757 758

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
759
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
760 761 762 763 764 765
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
766
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
767 768 769
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
770
                                - The shape is (1 x 7D).
C
chengduo 已提交
771 772 773 774 775

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
776 777 778 779 780 781 782 783 784
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
785
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
786 787
                              default "tanh".
        proj_activation(str): The activation for projection output.
788
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
789
                              default "tanh".
Y
Yibing Liu 已提交
790
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
791 792
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
793 794 795 796 797 798 799 800 801 802 803
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
804 805

    Returns:
806 807 808 809
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
810 811

    Examples:
812

Y
Yibing Liu 已提交
813 814
        .. code-block:: python

815 816 817 818
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
819
            hidden_dim, proj_dim = 512, 256
820
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
821
                                     act=None, bias_attr=None)
822 823 824
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
825 826 827 828
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
829
    """
830

C
chengduo 已提交
831
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
832
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
833
    size = size // 4
Y
Yibing Liu 已提交
834 835 836 837 838 839 840 841 842 843
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
844 845 846 847 848 849
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
865

X
xuezhong 已提交
866 867 868 869 870
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
871 872
    helper.append_op(
        type='lstmp',
873
        inputs=inputs,
Y
Yibing Liu 已提交
874 875 876 877 878 879 880 881 882
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
883 884
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
885 886 887 888 889 890 891 892 893
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
894 895 896 897 898 899 900
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
901 902
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
903
    """
904
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
905

906 907 908
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
909

G
guosheng 已提交
910 911 912 913 914 915 916 917 918
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
919

G
guosheng 已提交
920
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
921

Q
Qiao Longfei 已提交
922 923 924

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
925 926 927 928 929 930 931 932 933 934 935 936
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
937
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
938 939
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
940 941 942 943
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
944
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
945 946

    Args:
947 948
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
949
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
950
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
951 952
            is the hidden size.
        size(int): The dimension of the gru cell.
953
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
954 955
            hidden-hidden weight matrix. Note:

956
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
957
              :math:`D` is the hidden size.
958
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
959
              The first part are weights of the update gate and reset gate with
960
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
961
              candidate hidden state with shape :math:`(D \\times D)`.
962 963 964 965 966

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
967
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
968
            the bias in the update gate, reset gate and candidate calculations.
969 970 971
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
972 973
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
974
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
975 976 977
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
978
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
979
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
980 981 982 983
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
984 985

    Returns:
G
guosheng 已提交
986
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
987
            and sequence length is the same with the input.
988

G
guosheng 已提交
989
    Examples:
990

G
guosheng 已提交
991 992
        .. code-block:: python

993 994 995 996
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
997
            hidden_dim = 512
998
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
999
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1009
    batch_size = input.shape[0]
G
guosheng 已提交
1010
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1011
    if h_0:
G
guosheng 已提交
1012
        assert h_0.shape == (
Y
Yancey 已提交
1013 1014 1015
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1016

X
Xin Pan 已提交
1017 1018 1019 1020
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1034 1035
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1036 1037 1038 1039
        })
    return hidden


Y
Yu Yang 已提交
1040 1041 1042
def gru_unit(input,
             hidden,
             size,
1043 1044
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1045
             activation='tanh',
Q
Qiao Longfei 已提交
1046 1047
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1048
    """
1049 1050 1051
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1052
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1053
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1054

1055 1056
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1057

1058
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1059

1060
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1061

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1077 1078

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1079 1080 1081
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1082 1083
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1084 1085
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1086 1087 1088
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1089 1090 1091

    Args:
        input (Variable): The fc transformed input value of current step.
1092
        hidden (Variable): The hidden value of gru unit from previous step.
1093
        size (integer): The input dimension value.
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1108
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1109
            the bias in the update gate, reset gate and candidate calculations.
1110 1111 1112
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1113 1114
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1115 1116 1117 1118
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1119

1120 1121 1122 1123 1124 1125
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1126

1127
             # assuming we have x_t_data and prev_hidden of size=10
1128
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1129 1130
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1143
    size = size // 3
Y
Yu Yang 已提交
1144 1145

    # create weight
1146 1147
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1148

X
Xin Pan 已提交
1149 1150 1151
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1152
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1153
    # create bias
1154
    if helper.bias_attr:
Y
Yu Yang 已提交
1155 1156 1157
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1158
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1159 1160 1161

    helper.append_op(
        type='gru_unit',
1162
        inputs=inputs,
Y
Yu Yang 已提交
1163 1164 1165 1166 1167 1168
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1169 1170
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1171 1172 1173 1174 1175
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1176
@templatedoc()
1177
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1178 1179 1180 1181 1182 1183 1184
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1185
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1186 1187 1188 1189
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1190 1191 1192
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1193 1194

    """
Y
Yu Yang 已提交
1195 1196 1197 1198 1199 1200
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1201 1202 1203 1204 1205 1206 1207 1208
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1224 1225 1226 1227
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1228

W
wopeizl 已提交
1229 1230
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1231

W
wopeizl 已提交
1232
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1233

W
wopeizl 已提交
1234
        label(${label_type}): ${label_comment}
1235

W
wopeizl 已提交
1236 1237
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1238

W
wopeizl 已提交
1239 1240
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1241

W
wopeizl 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1252
                "Transition": transition,
W
wopeizl 已提交
1253 1254
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1255

W
wopeizl 已提交
1256
    return viterbi_path
Y
Yu Yang 已提交
1257 1258


Y
yi.wu 已提交
1259
@templatedoc()
F
fengjiayi 已提交
1260
def cos_sim(X, Y):
Y
Yu Yang 已提交
1261
    """
Y
yi.wu 已提交
1262 1263 1264
    ${comment}

    Args:
1265 1266
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1267

Y
yi.wu 已提交
1268
    Returns:
1269
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1270
    """
F
fengjiayi 已提交
1271
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1272 1273 1274
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1285 1286 1287 1288 1289
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1290
            dropout_implementation="downgrade_in_infer"):
1291 1292 1293 1294 1295
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1296
    training. The dropout operator randomly sets (according to the given dropout
1297 1298 1299
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1300 1301
    dropout op can be removed from the program to make the program more efficient.

1302
    Args:
1303 1304
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1305 1306 1307 1308 1309 1310 1311
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1312 1313
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1314
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1315 1316 1317 1318 1319 1320

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1321
                                        2. upscale_in_train, upscale the outcome at training time
1322

H
haowang101779990 已提交
1323 1324
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1325

H
haowang101779990 已提交
1326 1327
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1328

M
minqiyang 已提交
1329

1330
    Returns:
1331
        Variable: A tensor variable is the shape with `x`.
1332 1333

    Examples:
1334

1335 1336
        .. code-block:: python

1337 1338
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1339 1340
    """

F
fengjiayi 已提交
1341
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1342 1343 1344
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1345 1346 1347 1348

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1349 1350 1351 1352 1353
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1354 1355 1356 1357
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1358 1359
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1360
        })
1361 1362 1363
    return out


J
jerrywgz 已提交
1364
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1365
    """
Y
Yibing Liu 已提交
1366 1367
    **Cross Entropy Layer**

1368 1369 1370
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1371 1372

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1373
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1374

Y
Yibing Liu 已提交
1375
        .. math::
Y
yangyaming 已提交
1376

Y
Yibing Liu 已提交
1377 1378 1379
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1380 1381
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1382 1383 1384 1385 1386

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1387
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1388 1389 1390
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1391 1392
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1393
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1394

Y
Yibing Liu 已提交
1395
    Args:
Y
yangyaming 已提交
1396
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1397 1398 1399 1400
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1401
        label (Variable|list): the ground truth which is a 2-D tensor. When
1402 1403 1404 1405
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1406
        soft_label (bool): a flag indicating whether to
1407
                                           interpretate the given labels as soft
1408
                                           labels. Default: `False`.
M
minqiyang 已提交
1409 1410
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1411
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1412 1413 1414 1415 1416

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1417 1418 1419
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1420

H
haowang101779990 已提交
1421 1422
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1423

H
haowang101779990 已提交
1424 1425
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1426 1427 1428 1429 1430 1431

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1432
    """
F
fengjiayi 已提交
1433
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1434
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1435 1436 1437 1438 1439
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1440 1441
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1442 1443 1444
    return out


F
frankwhzhang 已提交
1445
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1446 1447 1448
    """
    Bayesian Personalized Ranking Loss Operator.

1449
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1450 1451 1452 1453 1454 1455
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1456 1457 1458 1459 1460 1461
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1462 1463
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1464 1465 1466
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1467 1468 1469
    Examples:
        .. code-block:: python

1470
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1471
    """
1472 1473 1474 1475 1476 1477

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1478
                'Label': [label]},
1479 1480 1481 1482
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1483
def square_error_cost(input, label):
Y
Yu Yang 已提交
1484
    """
1485 1486
    **Square error cost layer**

1487 1488
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1503 1504
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1505 1506

    Returns:
G
guosheng 已提交
1507
        Variable: The tensor variable storing the element-wise squared error \
1508
                  difference of input and label.
1509 1510 1511 1512 1513 1514 1515 1516

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1517
    """
F
fengjiayi 已提交
1518
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1519
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1520 1521 1522 1523 1524 1525
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1526
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1527
    helper.append_op(
F
fengjiayi 已提交
1528 1529
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1530 1531 1532
    return square_out


Y
yi.wu 已提交
1533
@templatedoc()
Y
Yu Yang 已提交
1534 1535 1536 1537
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1538
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1539
    """
Y
yi.wu 已提交
1540
    **Chunk Evaluator**
Y
yi.wu 已提交
1541

Y
yangyaming 已提交
1542
    This function computes and outputs the precision, recall and
1543
    F1-score of chunk detection.
Y
yi.wu 已提交
1544

M
minqiyang 已提交
1545
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1546
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1547 1548 1549 1550 1551 1552

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1553

Y
yi.wu 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1579

Y
yi.wu 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1604
    Args:
1605 1606 1607 1608 1609
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1610

Y
yi.wu 已提交
1611
    Returns:
Y
update  
yi.wu 已提交
1612 1613 1614
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1615

Y
yi.wu 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1628
    """
F
fengjiayi 已提交
1629
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1630 1631

    # prepare output
X
Xin Pan 已提交
1632 1633 1634 1635 1636 1637 1638
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1639 1640 1641 1642 1643 1644 1645 1646

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1647 1648 1649 1650
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1651 1652 1653
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1654 1655
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1656
        })
1657 1658
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1659 1660


1661
@templatedoc()
Y
Yu Yang 已提交
1662 1663 1664 1665 1666 1667 1668
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1669 1670
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1671 1672 1673 1674
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1675 1676 1677 1678 1679 1680 1681

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1695

1696 1697
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1698 1699 1700 1701 1702 1703 1704
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1705
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1716
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1717 1718 1719 1720 1721 1722
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1723
def sequence_softmax(input, use_cudnn=False, name=None):
1724 1725 1726
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1727
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1744 1745 1746
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1759 1760
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1761
    softmax_out = helper.create_variable_for_type_inference(dtype)
1762 1763 1764 1765 1766 1767 1768 1769
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1770
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1771
    """
1772
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1773
    has the same shape as the input.
Q
qiaolongfei 已提交
1774

1775 1776 1777 1778 1779 1780
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1781
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1782 1783 1784 1785 1786 1787 1788

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1789
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1790 1791 1792 1793 1794 1795 1796 1797

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1798 1799 1800
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1813 1814
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1815
    softmax_out = helper.create_variable_for_type_inference(dtype)
1816 1817 1818 1819 1820 1821 1822 1823
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1824 1825 1826
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1827 1828
           stride=1,
           padding=0,
1829
           dilation=1,
Y
Yu Yang 已提交
1830 1831 1832
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1833
           use_cudnn=True,
1834 1835
           act=None,
           name=None):
Y
Yu Yang 已提交
1836
    """
C
chengduoZH 已提交
1837
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1838 1839
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1840
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1841 1842 1843 1844 1845 1846 1847
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1848 1849 1850
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1851

1852
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1853

C
chengduoZH 已提交
1854 1855
    .. math::

C
refine  
chengduoZH 已提交
1856
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1857

T
tensor-tang 已提交
1858
    Where:
C
chengduoZH 已提交
1859

1860 1861 1862 1863 1864
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1865
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1866 1867 1868

    Example:

1869 1870
        - Input:

W
weixing02 已提交
1871
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1872

W
weixing02 已提交
1873
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1874

1875
        - Output:
T
tensor-tang 已提交
1876

W
weixing02 已提交
1877
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1878

C
chengduoZH 已提交
1879
        Where
1880 1881

        .. math::
C
chengduoZH 已提交
1882

W
weixing02 已提交
1883 1884
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1885 1886

    Args:
1887
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1888
        num_filters(int): The number of filter. It is as same as the output
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1906 1907 1908 1909 1910
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1911
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1912 1913 1914 1915 1916
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1917 1918
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1919 1920
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1921
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1922
            will be named automatically. Default: None
C
chengduoZH 已提交
1923 1924

    Returns:
G
guosheng 已提交
1925
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1926 1927
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1928
    Raises:
1929 1930
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1931

C
chengduoZH 已提交
1932 1933 1934
    Examples:
        .. code-block:: python

1935 1936
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1937 1938 1939
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1940
    assert param_attr is not False, "param_attr should not be False here."
1941
    l_type = 'conv2d'
X
xzl 已提交
1942 1943
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1944
        l_type = 'depthwise_conv2d'
1945 1946 1947 1948

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1949 1950 1951 1952 1953
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1954
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1955

C
chengduoZH 已提交
1956 1957 1958
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1959
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1960

C
chengduoZH 已提交
1961 1962
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1963 1964

    input_shape = input.shape
M
minqiyang 已提交
1965
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1966 1967

    def _get_default_param_initializer():
C
chengduo 已提交
1968 1969
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1970 1971 1972 1973 1974 1975 1976 1977
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1978
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1994
    helper.append_op(
1995
        type=l_type,
Y
Yu Yang 已提交
1996 1997 1998 1999 2000
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2001 2002 2003
        attrs={
            'strides': stride,
            'paddings': padding,
2004
            'dilations': dilation,
C
chengduoZH 已提交
2005
            'groups': groups,
2006
            'use_cudnn': use_cudnn,
2007
            'use_mkldnn': False,
2008
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2009
        })
Y
Yu Yang 已提交
2010 2011 2012 2013 2014 2015

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2033 2034 2035 2036 2037 2038
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2048 2049
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2050 2051 2052
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2053
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2079
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2080 2081
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2082
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2083 2084
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2085
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2086 2087
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2088
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2089 2090 2091 2092 2093 2094
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2105 2106
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2107 2108
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2109
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2110
            will be named automatically. Default: None.
C
chengduoZH 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2123 2124
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2125 2126 2127
    """

    l_type = 'conv3d'
C
chengduo 已提交
2128
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2139
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2153 2154 2155
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2156 2157 2158 2159 2160 2161 2162 2163
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2164
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2179
            'use_mkldnn': False
C
chengduoZH 已提交
2180 2181
        })

2182
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2183 2184 2185 2186

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2187
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2188
    """
Y
yangyaming 已提交
2189 2190 2191
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2203
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2204 2205 2206 2207 2208
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2209
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2210 2211 2212 2213 2214 2215 2216

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2217 2218
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2219

L
Luo Tao 已提交
2220 2221
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2222
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2223
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2224
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2225 2226 2227 2228 2229 2230 2231

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2232

Y
yangyaming 已提交
2233
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2234 2235 2236 2237 2238
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2239 2240
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2241
    """
F
fengjiayi 已提交
2242
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2243
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2244 2245
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2246 2247 2248 2249 2250 2251

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2252 2253
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2254

Y
yangyaming 已提交
2255 2256 2257 2258 2259
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2260 2261 2262
    return pool_out


C
add doc  
chengduoZH 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2282
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2283 2284 2285 2286 2287
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2288
def sequence_first_step(input):
L
Luo Tao 已提交
2289
    """
L
Luo Tao 已提交
2290
    This function gets the first step of sequence.
L
Luo Tao 已提交
2291 2292 2293 2294

    .. code-block:: text

       x is a 1-level LoDTensor:
2295
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2296 2297 2298 2299 2300
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2301
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2302
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2303

L
Luo Tao 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2313

Y
yangyaming 已提交
2314
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2315 2316 2317
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2318 2319 2320
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2321
def sequence_last_step(input):
L
Luo Tao 已提交
2322
    """
L
Luo Tao 已提交
2323
    This function gets the last step of sequence.
L
Luo Tao 已提交
2324 2325 2326 2327

    .. code-block:: text

       x is a 1-level LoDTensor:
2328
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2329 2330 2331 2332 2333
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2334
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2335
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2336

L
Luo Tao 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2346

Y
yangyaming 已提交
2347
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2348 2349 2350
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2351 2352 2353
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2354 2355 2356 2357
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2358
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2359 2360 2361 2362 2363
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2364

H
haowang101779990 已提交
2365
              - Case:
Y
Yibing Liu 已提交
2366

2367
            Given the input Variable **input**:
2368

2369 2370 2371
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2372

2373
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2374

2375
            the output Variable will be
2376

2377 2378 2379
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2380

M
minqiyang 已提交
2381
    Note:
H
haowang101779990 已提交
2382
          The first dimension size of **input**, **offset** and **length**
2383
          should be equal. The **offset** should start from 0.
2384

Y
Yibing Liu 已提交
2385
    Args:
2386
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2387
                         sequences.
Y
Yibing Liu 已提交
2388 2389 2390 2391 2392 2393
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2394
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2405
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2406 2407 2408 2409
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2410
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2425
@templatedoc()
Y
Yu Yang 已提交
2426
def pool2d(input,
C
chengduoZH 已提交
2427 2428
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2429 2430
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2431
           global_pooling=False,
C
chengduoZH 已提交
2432
           use_cudnn=True,
2433
           ceil_mode=False,
2434 2435
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2436
    """
F
fengjiayi 已提交
2437
    ${comment}
2438 2439

    Args:
2440 2441 2442
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2443
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2444
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2445 2446
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2447
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2448 2449 2450 2451 2452 2453
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2454 2455 2456
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2457
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2458
                        layer will be named automatically.
2459
        exclusive (bool): Whether to exclude padding points in average pooling
2460
                          mode, default is true
F
fengjiayi 已提交
2461

2462
    Returns:
F
fengjiayi 已提交
2463
        Variable: The pooling result.
F
fengjiayi 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2476
          pool2d = fluid.layers.pool2d(
2477 2478 2479 2480
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2481
                            global_pooling=False)
Y
Yu Yang 已提交
2482 2483 2484 2485 2486
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2487

C
chengduoZH 已提交
2488 2489 2490 2491 2492
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2493 2494 2495 2496
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2497 2498
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2499

C
Add doc  
chengduoZH 已提交
2500
    l_type = 'pool2d'
2501 2502

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2503
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2504
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2505 2506

    helper.append_op(
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2518 2519
            "use_mkldnn": False,
            "exclusive": exclusive,
2520 2521 2522 2523 2524
        })

    return pool_out


D
dengkaipeng 已提交
2525
@templatedoc()
2526 2527 2528 2529 2530 2531 2532 2533
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2534 2535
           name=None,
           exclusive=True):
2536
    """
2537
    ${comment}
2538 2539

    Args:
D
dengkaipeng 已提交
2540 2541 2542 2543 2544
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2545 2546 2547 2548 2549
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2550 2551 2552 2553 2554 2555 2556
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2557
        exclusive (bool): Whether to exclude padding points in average pooling
2558
                          mode, default is true
2559

2560
    Returns:
2561
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2575 2576 2577 2578 2579
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2580

C
chengduoZH 已提交
2581 2582 2583 2584 2585
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2586 2587 2588
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2589

C
chengduoZH 已提交
2590 2591
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2592

2593 2594
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2595
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2596
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2597 2598

    helper.append_op(
2599
        type=l_type,
Y
Yu Yang 已提交
2600 2601 2602 2603 2604 2605 2606
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2607
            "paddings": pool_padding,
2608
            "use_cudnn": use_cudnn,
2609
            "ceil_mode": ceil_mode,
2610 2611
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2612 2613 2614 2615 2616
        })

    return pool_out


2617 2618 2619 2620 2621 2622 2623
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2624 2625 2626 2627 2628 2629 2630
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2631

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2645 2646 2647 2648 2649 2650 2651 2652 2653

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2654 2655
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2670
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2671
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2672
          # of input data into m * n grids averagely and performs poolings in each
2673 2674
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2675
          #
2676 2677 2678 2679 2680 2681 2682 2683
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2684 2685
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2686
          pool_out = fluid.layers.adaptive_pool2d(
2687 2688
                            input=data,
                            pool_size=[3, 3],
2689
                            pool_type='avg')
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2700
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2726
    return (pool_out, mask) if require_index else pool_out
2727 2728 2729 2730 2731 2732 2733 2734 2735


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2736 2737 2738 2739 2740 2741 2742
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2761 2762 2763

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2764 2765 2766
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2767
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2768
            it must contain three integers, (Depth, Height, Width).
2769
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2770 2771
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2786 2787
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2788
          # of input data into l * m * n grids averagely and performs poolings in each
2789 2790
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2791
          #
2792 2793 2794 2795 2796 2797 2798 2799 2800
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2801
          #                 output[:, :, i, j, k] =
2802 2803
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2804 2805
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2806
          pool_out, mask = fluid.layers.adaptive_pool3d(
2807
                            input=data,
D
dengkaipeng 已提交
2808
                            pool_size=[3, 3, 3],
2809
                            pool_type='avg')
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2820
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2846
    return (pool_out, mask) if require_index else pool_out
2847 2848


Y
Yu Yang 已提交
2849 2850 2851 2852 2853 2854 2855
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2856
               data_layout='NCHW',
Y
Yang Yang 已提交
2857
               in_place=False,
2858 2859
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2860
               moving_variance_name=None,
2861
               do_model_average_for_mean_and_var=False,
2862 2863
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2864
    """
Q
qiaolongfei 已提交
2865 2866 2867 2868
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2869

Q
qiaolongfei 已提交
2870
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2871

Q
qiaolongfei 已提交
2872 2873
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2874 2875 2876
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2889

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2903
    Args:
Q
qiaolongfei 已提交
2904
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2905 2906 2907 2908
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2909 2910 2911 2912 2913 2914 2915 2916
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2917
        data_layout(string, default NCHW): NCHW|NHWC
2918
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2919 2920 2921 2922
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2923
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2924
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2925 2926 2927 2928 2929
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2930 2931

    Returns:
Q
qiaolongfei 已提交
2932
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2933 2934 2935 2936 2937 2938 2939

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2940
    """
C
chengduo 已提交
2941
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2942 2943 2944
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2945 2946 2947 2948
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2966 2967 2968
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2969 2970

    bias = helper.create_parameter(
2971
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2972 2973
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2974
        bias.stop_gradient = True
Y
Yu Yang 已提交
2975

2976 2977
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2978 2979 2980
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2981
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2982
        shape=param_shape,
W
Wu Yi 已提交
2983
        dtype=dtype)
2984 2985 2986 2987 2988 2989
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2990
            trainable=False,
W
wanghaoshuang 已提交
2991
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2992
        shape=param_shape,
W
Wu Yi 已提交
2993
        dtype=dtype)
2994
    variance.stop_gradient = True
Y
Yu Yang 已提交
2995 2996 2997 2998 2999 3000

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3001 3002 3003 3004
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3005

X
Xin Pan 已提交
3006 3007
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3025 3026 3027 3028
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3029
            "data_layout": data_layout,
X
Xin Pan 已提交
3030
            "use_mkldnn": False,
3031 3032
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3033
        })
Y
Yu Yang 已提交
3034 3035 3036 3037

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3165
@templatedoc()
G
guosheng 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3176
    ${comment}
G
guosheng 已提交
3177 3178 3179

    The formula is as follows:

Y
yuyang18 已提交
3180
    ..  math::
G
guosheng 已提交
3181 3182 3183 3184 3185 3186 3187

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3188 3189 3190 3191 3192 3193 3194 3195
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3196

G
guosheng 已提交
3197 3198
    Args:
        input(Variable): The input tensor variable.
3199
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3200
            normalization. Default True.
3201
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3202 3203
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3204
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3205
            Default 1.
3206
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3207
            division by zero. Default 1e-05.
G
guosheng 已提交
3208
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3209 3210
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3211 3212
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3213
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3214 3215
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3216
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3217
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3218
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3219 3220 3221
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3222 3223

    Returns:
Y
yuyang18 已提交
3224
        ${y_comment}
G
guosheng 已提交
3225 3226 3227

    Examples:

Y
yuyang18 已提交
3228 3229 3230
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3246
    if shift:
G
guosheng 已提交
3247 3248 3249 3250 3251 3252
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3253 3254 3255 3256 3257
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3285
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3333 3334
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
Dun 已提交
3335
    group_norm_out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3351 3352 3353 3354
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3355 3356 3357
                     padding=0,
                     stride=1,
                     dilation=1,
3358
                     groups=None,
C
caoying03 已提交
3359
                     param_attr=None,
3360
                     bias_attr=None,
C
chengduoZH 已提交
3361
                     use_cudnn=True,
3362
                     act=None,
C
caoying03 已提交
3363
                     name=None):
Y
Yu Yang 已提交
3364
    """
3365 3366 3367 3368 3369 3370 3371 3372
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3373 3374
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3375 3376 3377
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3378 3379 3380 3381 3382

    For each input :math:`X`, the equation is:

    .. math::

3383
        Out = \sigma (W \\ast X + b)
3384

3385
    Where:
3386 3387 3388

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3389 3390 3391 3392
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3393

3394 3395 3396 3397
    Example:

        - Input:

3398
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3399

3400
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3401 3402 3403

        - Output:

3404
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3405 3406

        Where
Y
Yu Yang 已提交
3407

3408 3409
        .. math::

3410 3411
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3412 3413
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3414 3415

    Args:
3416 3417 3418 3419
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3420 3421 3422 3423
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3452
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3453 3454 3455
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3456
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3457
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3458 3459

    Returns:
3460
        Variable: The tensor variable storing the convolution transpose result.
3461 3462

    Raises:
3463 3464
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3465 3466 3467 3468

    Examples:
       .. code-block:: python

3469 3470
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3471
    """
C
chengduo 已提交
3472
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3473 3474 3475 3476 3477 3478 3479 3480
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3481 3482 3483
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3484 3485 3486
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3487

C
chengduoZH 已提交
3488 3489
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3490

Y
Yu Yang 已提交
3491 3492 3493 3494 3495
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3496

Y
Yu Yang 已提交
3497 3498
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3499

C
chengduoZH 已提交
3500
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3501
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3502
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3503
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3504
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3505 3506 3507
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3508

3509 3510 3511 3512 3513 3514 3515
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3516
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3517
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3518

Y
Yu Yang 已提交
3519 3520 3521
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3522
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3523
    helper.append_op(
3524
        type=op_type,
Y
Yu Yang 已提交
3525 3526
        inputs={'Input': [input],
                'Filter': [img_filter]},
3527
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3528
        attrs={
3529
            'output_size': output_size,
3530 3531 3532 3533 3534
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3535 3536
        })

3537 3538 3539
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3540 3541


3542
def conv3d_transpose(input,
Y
Yu Yang 已提交
3543 3544 3545
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3546 3547 3548
                     padding=0,
                     stride=1,
                     dilation=1,
3549
                     groups=None,
C
caoying03 已提交
3550
                     param_attr=None,
3551
                     bias_attr=None,
C
chengduoZH 已提交
3552
                     use_cudnn=True,
3553
                     act=None,
C
caoying03 已提交
3554
                     name=None):
Y
Yu Yang 已提交
3555
    """
3556
    **Convlution3D transpose layer**
3557

3558
    The convolution3D transpose layer calculates the output based on the input,
3559
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3560 3561 3562 3563 3564 3565
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3566 3567 3568
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3569 3570 3571 3572 3573

    For each input :math:`X`, the equation is:

    .. math::

3574
        Out = \sigma (W \\ast X + b)
3575 3576 3577

    In the above equation:

3578 3579
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3580 3581 3582 3583
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3584

3585 3586 3587 3588
    Example:

        - Input:

3589
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3590

3591
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3592 3593 3594

        - Output:

3595
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3596 3597

        Where
Y
Yu Yang 已提交
3598

3599 3600
        .. math::

3601 3602 3603
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3604 3605

    Args:
3606
        input(Variable): The input image with [N, C, D, H, W] format.
3607 3608 3609
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3610
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3611 3612
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3613
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3614 3615 3616
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3617 3618
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3619
        stride(int|tuple): The stride size. If stride is a tuple, it must
3620 3621
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3622
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3623 3624 3625
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3626 3627 3628 3629 3630
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3640 3641
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3642 3643
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3644 3645
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3646 3647

    Returns:
3648
        Variable: The tensor variable storing the convolution transpose result.
3649 3650

    Raises:
3651 3652
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3653 3654 3655 3656

    Examples:
       .. code-block:: python

3657 3658
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3659
    """
C
chengduo 已提交
3660
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3661 3662
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3663
    if not isinstance(input, Variable):
3664
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3665 3666
    input_channel = input.shape[1]

3667 3668 3669
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3670

C
chengduoZH 已提交
3671 3672 3673
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3674 3675 3676 3677 3678 3679
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3680 3681 3682
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3683

3684
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3685
                         padding[0] - 1) // dilation[0] + 1
3686
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3687
                         padding[1] - 1) // dilation[1] + 1
3688
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3689
                         padding[2] - 1) // dilation[2] + 1
3690
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3691
    else:
3692 3693
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3694

3695
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3696
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3697 3698 3699
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3700
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3701
    helper.append_op(
3702
        type=l_type,
Y
Yu Yang 已提交
3703 3704
        inputs={'Input': [input],
                'Filter': [img_filter]},
3705
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3706 3707 3708 3709
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3710
            'groups': groups,
C
chengduoZH 已提交
3711 3712
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3713

3714 3715
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3716
    return out
Y
yangyaming 已提交
3717 3718


Y
yangyaming 已提交
3719
def sequence_expand(x, y, ref_level=-1, name=None):
3720
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3721 3722 3723 3724
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3725 3726 3727 3728 3729

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3730
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3731
                x.data = [[a], [b], [c], [d]]
3732 3733 3734
                x.dims = [4, 1]

            y is a LoDTensor:
3735 3736
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3737

Y
yangyaming 已提交
3738
            ref_level: 0
3739

Y
yangyaming 已提交
3740
            then output is a 1-level LoDTensor:
3741
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3742
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3743 3744 3745 3746
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3747
                x.data = [[a], [b], [c]]
3748 3749 3750
                x.dims = [3, 1]

            y is a LoDTensor:
3751
                y.lod = [[2, 0, 3]]
3752

Y
yangyaming 已提交
3753
            ref_level: -1
3754

Y
yangyaming 已提交
3755 3756 3757
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3758 3759 3760
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3761 3762
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3763
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3764
                        will be named automatically.
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3775
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3776
    """
Y
yangyaming 已提交
3777
    helper = LayerHelper('sequence_expand', input=x, **locals())
3778
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3779
    tmp = helper.create_variable_for_type_inference(dtype)
3780
    helper.append_op(
Y
yangyaming 已提交
3781 3782 3783 3784 3785
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3786
    return tmp
3787 3788


C
chengduo 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3845
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3846 3847 3848 3849 3850 3851 3852 3853
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3854
@templatedoc()
3855
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3856 3857 3858 3859 3860
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3861 3862 3863
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3864
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3865 3866 3867 3868
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3869 3870 3871
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3872

F
fengjiayi 已提交
3873
    Returns:
M
minqiyang 已提交
3874
        Variable: The padded sequence batch and the original lengths before
3875
                  padding. All sequences has the same length.
M
minqiyang 已提交
3876

F
fengjiayi 已提交
3877 3878 3879 3880 3881 3882 3883
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3884
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3885
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3886 3887 3888 3889 3890
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3891 3892
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3893 3894 3895 3896

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3897 3898 3899 3900 3901 3902
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3903 3904
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3905
        attrs={'padded_length': maxlen})
3906
    return out, length
F
fengjiayi 已提交
3907 3908


3909
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3910
    """
3911
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3912

3913 3914
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3915 3916 3917 3918 3919 3920 3921 3922 3923
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3924 3925 3926
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3927
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3928 3929 3930 3931 3932 3933

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3934
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3935 3936 3937 3938 3939 3940

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3941 3942
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3957
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3969 3970 3971 3972 3973 3974 3975
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
3976
                is_accumulated=True,
3977 3978
                name=None,
                return_parent_idx=False):
3979
    """
3980 3981
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3982 3983 3984

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3985 3986

    This layer does the search in beams for one time step. Specifically, it
3987 3988 3989
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4001 4002 4003 4004

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4005

4006
    Args:
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4030 4031
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4032 4033
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4034 4035 4036 4037
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4038

4039
    Returns:
4040 4041 4042 4043
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4044 4045 4046 4047

    Examples:
        .. code-block:: python

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4065
    helper = LayerHelper('beam_search', **locals())
4066 4067 4068 4069 4070 4071
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4072

X
Xin Pan 已提交
4073 4074 4075
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4076 4077 4078 4079 4080
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4081 4082 4083

    helper.append_op(
        type='beam_search',
4084
        inputs=inputs,
Q
Qiao Longfei 已提交
4085 4086 4087
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4088
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4089 4090 4091 4092 4093 4094
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4095
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4096
        })
4097 4098 4099 4100
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4101 4102


4103 4104 4105 4106 4107 4108 4109
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4110

4111 4112 4113 4114 4115 4116 4117 4118 4119
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4120

4121 4122 4123 4124 4125 4126
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4127

4128 4129
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4130

4131 4132 4133 4134 4135 4136
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4137 4138
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4154 4155 4156 4157
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4158
              param_attr=None,
C
caoying03 已提交
4159 4160
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4161 4162 4163 4164
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4165
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4166

4167
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4168

4169
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4170

4171
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4172 4173 4174

            h_t & = o_t tanh(c_t)

4175 4176 4177 4178 4179 4180
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4181 4182 4183

        .. math::

4184
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4185 4186 4187 4188 4189 4190 4191 4192

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4193
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4194 4195

    Args:
Y
yangyaming 已提交
4196 4197 4198 4199 4200 4201
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4202
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4215 4216
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4217 4218

    Returns:
Y
yangyaming 已提交
4219
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4220 4221

    Raises:
4222 4223 4224 4225
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4226 4227 4228 4229 4230 4231

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4232
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4233
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4234
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4251
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4252 4253 4254 4255
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4256 4257
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4258 4259 4260
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4261
    size = cell_t_prev.shape[1]
4262
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4263 4264
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4265
                param_attr=param_attr,
4266
                bias_attr=bias_attr)
Y
yangyaming 已提交
4267
    dtype = x_t.dtype
X
Xin Pan 已提交
4268 4269
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4279
    return h, c
G
guosheng 已提交
4280 4281


C
caoying03 已提交
4282
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4283
    """
Y
yangyaming 已提交
4284
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4285 4286 4287

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4288
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4289 4290
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4291 4292
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4293
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4294
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4295
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4296 4297
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4298 4299 4300

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4301

G
guosheng 已提交
4302 4303 4304 4305 4306 4307
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4308
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4309 4310 4311 4312
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4313 4314 4315 4316

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4317
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4318 4319 4320
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4321 4322
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4323
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4324 4325
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4326 4327 4328 4329 4330
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4331
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4332 4333 4334 4335
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4336 4337


C
caoying03 已提交
4338
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4339
    """
Y
Yibing Liu 已提交
4340
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4341 4342 4343

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4344 4345 4346
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4347
            must be in the range :math:`[-rank(input), rank(input))`. If
4348
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4349
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4350 4351
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4352
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4353
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4354
                       will be named automatically.
G
guosheng 已提交
4355 4356

    Returns:
Y
Yibing Liu 已提交
4357
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4358

G
guosheng 已提交
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4369 4370
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4371 4372 4373 4374 4375 4376 4377

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4378 4379
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4380
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4381 4382
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4383 4384 4385 4386 4387
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4388
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4389 4390 4391 4392
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4393 4394


C
caoying03 已提交
4395
def reduce_max(input, dim=None, keep_dim=False, name=None):
4396
    """
Y
yangyaming 已提交
4397
    Computes the maximum of tensor elements over the given dimension.
4398 4399 4400

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4401
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4402 4403 4404
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4405
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4406 4407
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4408
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4409 4410
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4411 4412 4413

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4414

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4426 4427 4428 4429 4430 4431 4432

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4433 4434
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4435
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4436 4437
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4438 4439 4440 4441 4442
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4443
            'dim': dim if dim != None else [0],
4444 4445 4446 4447 4448 4449
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4450
def reduce_min(input, dim=None, keep_dim=False, name=None):
4451
    """
Y
yangyaming 已提交
4452
    Computes the minimum of tensor elements over the given dimension.
4453 4454 4455

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4456
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4457 4458 4459
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4460
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4461 4462
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4463
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4464 4465
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4466 4467 4468

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4469

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4481 4482 4483 4484 4485 4486 4487

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4488 4489
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4490
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4491 4492
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4493 4494 4495 4496 4497
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4498
            'dim': dim if dim != None else [0],
4499 4500 4501 4502
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4503 4504


4505 4506 4507 4508 4509 4510
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4511
        dim (list|int|None): The dimensions along which the product is performed. If
4512 4513
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4514 4515
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4516 4517 4518
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4519
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4520
            layer will be named automatically.
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4535
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4536
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4537 4538 4539 4540 4541 4542 4543

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4544 4545
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4546
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4547 4548
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4549 4550 4551 4552 4553
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4554
            'dim': dim if dim != None else [0],
4555 4556 4557 4558 4559 4560
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4561
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4562
    """
C
caoying03 已提交
4563
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4564 4565 4566

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4567 4568 4569 4570 4571
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4572
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4573
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4574
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4575 4576
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4577 4578

    Returns:
D
dzhwinter 已提交
4579
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4589 4590
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4606
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4620 4621 4622 4623 4624 4625 4626 4627 4628


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4629
    .. math::
4630 4631

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4632 4633 4634 4635 4636

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4637
        x(Variable|list): The input tensor to l2_normalize layer.
4638
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4639 4640
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4641
        epsilon(float): The epsilon value is used to avoid division by zero, \
4642
            the defalut value is 1e-10.
4643
        name(str|None): A name for this layer(optional). If set None, the layer \
4644
            will be named automatically.
C
caoying03 已提交
4645 4646

    Returns:
4647
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4648 4649

    Examples:
4650

C
caoying03 已提交
4651 4652
        .. code-block:: python

4653 4654 4655 4656
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4657 4658
    """

F
fengjiayi 已提交
4659 4660
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4661 4662
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4663 4664
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4665
    helper.append_op(
4666 4667 4668 4669
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4670
        attrs={
4671 4672
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4673 4674
        })
    return out
4675 4676


S
sneaxiy 已提交
4677
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4678
    """
Y
ying 已提交
4679 4680 4681 4682
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4683

C
chengduoZH 已提交
4684
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4685
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4686

4687 4688 4689 4690 4691
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4692
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4693

C
chengduoZH 已提交
4694
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4695
      performs in the following way.
G
guosheng 已提交
4696

4697
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4698
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4699
        last two dimensions and a batched matrix multiply supporting broadcast
4700
        applies on the two tensors.
G
guosheng 已提交
4701

Y
ying 已提交
4702 4703
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4704
    removed after matrix multiplication.
G
guosheng 已提交
4705 4706 4707

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4708 4709 4710
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4711
        alpha (float): The scale of output. Default 1.0.
4712
        name(str|None): A name for this layer(optional). If set None, the layer
4713
            will be named automatically.
G
guosheng 已提交
4714 4715

    Returns:
4716
        Variable: The product Tensor variable.
G
guosheng 已提交
4717

G
guosheng 已提交
4718 4719 4720
    Examples:
        .. code-block:: python

4721
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4722 4723
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4724

4725 4726
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4727

4728 4729
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4730

4731 4732
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4733 4734 4735 4736

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4737 4738
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4739

Y
ying 已提交
4740
            # x: [M], y: [N]
4741
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4742
    """
Y
ying 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4755
            y_shape = y_shape + [1]
Y
ying 已提交
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4772
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4773
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4774
    helper.append_op(
4775 4776 4777 4778
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4779 4780 4781
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4782
            'alpha': float(alpha),
S
sneaxiy 已提交
4783
        })
4784
    return out
4785 4786


4787
def topk(input, k, name=None):
Q
qingqing01 已提交
4788 4789 4790 4791
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4792
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4793 4794 4795 4796 4797 4798
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4820 4821 4822
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4823
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4824
                 of input.
4825
        name(str|None): A name for this layer(optional). If set None, the layer
4826
                       will be named automatically.
F
fengjiayi 已提交
4827
                       Default: None
Q
qingqing01 已提交
4828 4829

    Returns:
4830 4831 4832
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4833
        within the last dimension of input.
Q
qingqing01 已提交
4834

F
fengjiayi 已提交
4835 4836
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4837 4838 4839 4840 4841 4842 4843

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4844 4845
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4846 4847 4848 4849 4850 4851
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4852 4853
    helper.append_op(
        type="top_k",
W
whs 已提交
4854
        inputs=inputs,
Q
qingqing01 已提交
4855 4856
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4857
        attrs=attrs)
Q
qingqing01 已提交
4858 4859 4860 4861 4862
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4863
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4864
    """
Y
ying 已提交
4865 4866 4867 4868 4869 4870 4871 4872 4873
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4874

Y
ying 已提交
4875
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4876

4877
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4878 4879
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4880
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4881

4882
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4883 4884
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4885

4886 4887 4888
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4889
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4890
                          the length of reference string.
4891
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4892
                                     calculating edit distance.
4893
        name (str): The name of this layer. It is optional.
4894

W
wanghaoshuang 已提交
4895
    Returns:
W
wanghaoshuang 已提交
4896
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4897 4898 4899 4900

    Examples:
        .. code-block:: python

T
tink2123 已提交
4901 4902
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4903
            cost = fluid.layers.edit_distance(input=x,label=y)
4904
    """
4905
    helper = LayerHelper("edit_distance", **locals())
4906

4907
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4908
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4909 4910
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4911 4912 4913 4914 4915

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4916
            attrs={"tokens": ignored_tokens})
4917 4918 4919 4920 4921
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4922
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4923
            attrs={"tokens": ignored_tokens})
4924 4925
        label = erased_label

4926
    # edit distance op
X
Xin Pan 已提交
4927 4928
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4929 4930 4931 4932
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4933 4934
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4935 4936
        attrs={"normalized": normalized})

4937
    return edit_distance_out, sequence_num
4938 4939 4940 4941 4942


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4943

Y
ying 已提交
4944 4945 4946 4947
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4965
        input.lod = [[4, 4]]
M
minqiyang 已提交
4966

W
whs 已提交
4967
        Computation:
4968

W
whs 已提交
4969 4970 4971 4972 4973 4974
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4975 4976 4977 4978 4979

        output.data = [[2],
                       [1],
                       [3]]

4980
        output.lod = [[2, 1]]
4981

W
whs 已提交
4982

4983 4984
    Args:

Y
ying 已提交
4985 4986 4987 4988 4989 4990 4991 4992 4993
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4994
        name (str): The name of this layer. It is optional.
4995 4996

    Returns:
H
haowang101779990 已提交
4997 4998 4999
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5000
                  LoD [[]] and dims [1, 1].
5001 5002 5003 5004 5005

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5006

5007
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5008
    """
5009
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5010
    _, topk_indices = topk(input, k=1)
5011 5012

    # ctc align op
X
Xin Pan 已提交
5013
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5014 5015 5016
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5017
        outputs={"Output": [ctc_out]},
5018 5019
        attrs={"merge_repeated": True,
               "blank": blank})
5020
    return ctc_out
5021 5022


W
Wu Yi 已提交
5023
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5024
    """
5025 5026
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5027
    to compute Connectionist Temporal Classification (CTC) loss.
5028 5029
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5030 5031 5032
    input tensor.

    Args:
5033
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5034 5035 5036 5037
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5038
       label (Variable): The ground truth of variable-length sequence,
5039 5040 5041
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5042 5043
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5044 5045 5046
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5047
         follewed by a mean_op.
W
Wu Yi 已提交
5048
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5049 5050

    Returns:
5051 5052
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5053 5054

    Examples:
5055

W
wanghaoshuang 已提交
5056
        .. code-block:: python
5057

5058 5059 5060
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5061 5062

    """
F
fengjiayi 已提交
5063
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5064 5065
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5066 5067 5068 5069 5070 5071
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5072 5073 5074 5075 5076
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5077
    return loss_out
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5093 5094 5095
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5096 5097 5098 5099 5100
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5101

5102
            out.lod  = [[0, 1, 3]]
5103 5104 5105 5106

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5107 5108 5109 5110 5111 5112 5113
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5114 5115 5116

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5117 5118

    Returns:
5119

5120 5121 5122 5123 5124
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5125
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5126
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5127 5128
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5129
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5130 5131 5132 5133 5134 5135
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5136 5137


5138 5139 5140 5141
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5142 5143 5144 5145 5146 5147
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5148
        num_neg_samples=None,
5149 5150 5151
        name=None,
        sampler="uniform",
        custom_dist=None,
5152 5153
        seed=0,
        is_sparse=False):
5154 5155 5156 5157 5158 5159 5160
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5161 5162
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5163
            sample is 1.0.
C
chengduo 已提交
5164 5165 5166 5167 5168 5169 5170 5171 5172
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5173
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5174 5175
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5176 5177 5178
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5179
        custom_dist (float[]): A float[] with size=num_total_classes.
5180 5181 5182 5183
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5184
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5185

5186
    Returns:
Y
Yibing Liu 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5214 5215 5216 5217 5218 5219 5220 5221 5222

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5223

5224
    """
Y
Yang Yu 已提交
5225 5226 5227
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5228 5229

    dim = input.shape[1]
Y
Yang Yu 已提交
5230 5231 5232 5233 5234 5235
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5236
    inputs = {}
C
chengduo 已提交
5237 5238 5239 5240 5241 5242 5243
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5244 5245 5246
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5247

5248 5249 5250 5251
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5252 5253 5254 5255 5256 5257 5258

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5259 5260 5261 5262 5263 5264 5265 5266 5267
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5268
            if normal_prob - 1.0 > 0:
5269
                bigs.append((i, normal_prob))
5270
            elif 1.0 - normal_prob > 0:
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5286
            if big_left - 1.0 > 0:
5287
                bigs.append((big_idx, big_left))
5288
            elif 1.0 - big_left > 0:
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5318 5319 5320 5321
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5322 5323 5324 5325 5326
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5327 5328 5329 5330
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5331

Y
Yang Yu 已提交
5332 5333
    attrs = {
        'num_total_classes': int(num_total_classes),
5334 5335
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5336
        'sampler': sampler,
5337 5338
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5339
    }
Y
Yang Yu 已提交
5340 5341 5342

    helper.append_op(
        type='nce',
C
chengduo 已提交
5343
        inputs=inputs,
Y
Yang Yu 已提交
5344 5345 5346 5347 5348 5349
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5350
    return cost / (num_neg_samples + 1)
5351 5352


C
chengduo 已提交
5353 5354
def hsigmoid(input,
             label,
5355
             num_classes,
C
chengduo 已提交
5356 5357
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5358
             name=None,
5359 5360 5361
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5362
             is_sparse=False):
W
weixing02 已提交
5363 5364
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5365
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5366
    complete binary tree, or you can use is_custom to pass your own tree to
5367
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5368 5369 5370 5371 5372 5373
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5374
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5375
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5376

5377 5378
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5379 5380 5381 5382
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5383
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5384
       related to the same batch of inputs.
5385

W
weixing02 已提交
5386
    Args:
M
minqiyang 已提交
5387
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5388 5389 5390 5391
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5392 5393
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5394
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5406
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5407
            it should be in leaf -> root order
M
minqiyang 已提交
5408 5409 5410
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5411
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5412
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5413
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5414
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5415
             of W and input will be sparse.
W
weixing02 已提交
5416 5417

    Returns:
J
JiabinYang 已提交
5418
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5419 5420 5421 5422 5423

    Examples:

        .. code-block:: python

G
guosheng 已提交
5424 5425 5426
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5427 5428 5429 5430
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5431 5432
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5433
    dim = input.shape[1]
5434
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5435 5436 5437
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5438 5439 5440 5441
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5442 5443
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5444 5445 5446
    else:
        pass

J
JiabinYang 已提交
5447
    weights = None
5448 5449 5450 5451
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5452
    if not is_custom:
J
JiabinYang 已提交
5453 5454 5455 5456 5457 5458 5459 5460
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5461
            shape=[num_classes, dim],
J
JiabinYang 已提交
5462 5463
            is_bias=False,
            dtype=input.dtype)
5464 5465 5466
    inputs = {
        "X": input,
        "W": weights,
5467
        "PathTable": path_table,
5468
        "PathCode": path_code,
5469 5470
        "Label": label
    }
W
weixing02 已提交
5471
    if helper.bias_attr:
5472
        if not is_custom:
J
JiabinYang 已提交
5473 5474
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5475
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5476 5477 5478 5479 5480 5481
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5482
                shape=[num_classes, 1],
J
JiabinYang 已提交
5483 5484 5485
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5486 5487
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5488
        inputs=inputs,
W
weixing02 已提交
5489
        outputs={"Out": out,
5490 5491 5492 5493 5494 5495 5496
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5497 5498 5499
    return out


Y
fix ci.  
ying 已提交
5500
def transpose(x, perm, name=None):
Y
ying 已提交
5501 5502 5503 5504 5505 5506 5507
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5508 5509 5510
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5511 5512 5513 5514 5515 5516 5517

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5518
            # use append_batch_size=False to avoid prepending extra
5519
            # batch size in shape
5520
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5521
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5522
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5523 5524
    """

Y
fix ci.  
ying 已提交
5525
    if len(perm) != len(x.shape):
Y
ying 已提交
5526 5527 5528
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5529 5530 5531 5532 5533 5534
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5535 5536

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5537 5538
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5539
    helper.append_op(
5540
        type='transpose2',
Y
fix ci.  
ying 已提交
5541
        inputs={'X': [x]},
5542 5543
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5544 5545
        attrs={'axis': perm})
    return out
5546 5547


5548 5549 5550 5551 5552 5553 5554
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5555
    """
5556 5557 5558 5559 5560 5561 5562
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5591 5592 5593 5594 5595 5596 5597 5598 5599
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5600 5601 5602
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5603 5604 5605 5606 5607
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5635 5636 5637
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5650
            output.dims = {8, 8}
5651

5652
            output.lod = [[4, 4]]
5653

T
Tink_Y 已提交
5654
    Examples:
5655 5656 5657

        .. code-block:: python

5658 5659
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5660 5661

    """
W
wanghaoshuang 已提交
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5672 5673 5674 5675 5676 5677 5678
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5679
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5680
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5681
    helper.append_op(
5682
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5683
    return out
5684 5685


Y
yuyang18 已提交
5686
@templatedoc()
5687
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5688 5689
    """
    ${comment}
5690 5691

    Args:
Y
yuyang18 已提交
5692
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5693 5694
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5695 5696 5697 5698 5699
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5700
        ${out_comment}.
5701 5702

    Examples:
Y
yuyang18 已提交
5703 5704 5705 5706
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5707 5708 5709 5710 5711 5712
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5713
    out = helper.create_variable_for_type_inference(dtype)
5714 5715 5716 5717 5718
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5719
    return helper.append_activation(out)
5720 5721


Y
yuyang18 已提交
5722
@templatedoc()
5723 5724
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5725 5726 5727 5728 5729 5730 5731
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5732 5733

    Args:
Y
yuyang18 已提交
5734 5735
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5736 5737

    Returns:
Y
yuyang18 已提交
5738
        ${out_comment}.
5739 5740
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5741 5742 5743 5744 5745

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5746
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5747 5748 5749 5750 5751 5752
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5753 5754


5755 5756 5757
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5758
                               ignore_index=kIgnoreIndex,
5759 5760
                               numeric_stable_mode=False,
                               return_softmax=False):
5761 5762
    """
    **Softmax With Cross Entropy Operator.**
5763

5764 5765 5766 5767
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5768

5769 5770 5771
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5772

5773 5774 5775
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5776

5777
    The equation is as follows:
5778

5779
    1) Hard label (one-hot label, so every sample has exactly one class)
5780

5781 5782 5783 5784
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5785

5786 5787 5788
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5789

5790 5791 5792 5793
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5794 5795 5796
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5797

H
haowang101779990 已提交
5798
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5799

H
haowang101779990 已提交
5800
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5801

H
haowang101779990 已提交
5802
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5803 5804 5805

    and then cross entropy loss is calculated by softmax and label.

5806 5807 5808 5809 5810 5811 5812 5813
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5814 5815
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5816
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5817 5818 5819
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5820 5821 5822
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5823
                                    stable algorithm. Default: False
5824
        return_softmax (bool): A flag indicating whether to return the softmax
5825
                               along with the cross entropy loss. Default: False
5826

5827
    Returns:
H
haowang101779990 已提交
5828 5829 5830 5831 5832
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5833 5834 5835 5836 5837 5838 5839

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5840 5841
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5842 5843
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5844 5845
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5846 5847 5848 5849 5850 5851
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5852 5853 5854 5855 5856
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5857 5858 5859 5860

    if return_softmax:
        return loss, softmax

5861 5862 5863
    return loss


5864 5865 5866
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
5867
                                       num_true=1,
5868
                                       remove_accidental_hits=True,
X
xuezhong 已提交
5869 5870 5871
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
5872
                                       seed=0):
X
xuezhong 已提交
5873 5874 5875 5876 5877
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
5878
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
5879 5880 5881 5882 5883 5884 5885 5886
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
5887
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
5888 5889 5890 5891 5892 5893 5894 5895
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
5896
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
5908
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
5909 5910 5911 5912 5913
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
5914
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
5915
            logits.
X
xuezhong 已提交
5916 5917 5918 5919 5920
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
5921 5922 5923
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
5944 5945
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
5946 5947 5948 5949 5950

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
5951
            'Labels': label,
X
xuezhong 已提交
5952 5953
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
5954 5955 5956 5957
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
5958
            'SampledLabels': sampled_label,
X
xuezhong 已提交
5959 5960 5961
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
5962
            'use_customized_samples': use_customized_samples,
5963
            'uniq': True,
X
xuezhong 已提交
5964 5965 5966 5967
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
5968 5969
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
5970 5971 5972 5973 5974 5975
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

5976 5977
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
5978
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
5979
                'Label': sampled_softlabel},
X
xuezhong 已提交
5980 5981 5982
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
5983
            'soft_label': True,
X
xuezhong 已提交
5984 5985 5986
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
5987
    return loss / num_true
X
xuezhong 已提交
5988 5989


5990 5991
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5992 5993
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5994
    For each instance, it computes the smooth L1 loss element by element first
5995
    and then sums all the losses. So the shape of ouput Variable is
5996
    [batch_size, 1].
5997

5998 5999
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6000
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6001
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6002
            L1 loss op with same shape as :attr:`x`.
6003
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6004 6005
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6006
            by this tensor element by element.
6007
        outside_weight (Variable|None): A tensor with rank at least 2. This
6008 6009
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6010
            element by element.
6011
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6012 6013
           scalar with default value 1.0.

6014
    Returns:
6015
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6016 6017 6018 6019 6020

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6021 6022
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6023
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6024
            out = fluid.layers.smooth_l1(x=fc, y=label)
6025
    """
6026

6027
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6028 6029
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6042 6043 6044 6045


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6046
    This layer creates the one-hot representations for input indices.
6047 6048

    Args:
Y
Yibing Liu 已提交
6049 6050
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6051 6052

    Returns:
Y
Yibing Liu 已提交
6053
        Variable: The one-hot representations of input.
6054 6055

    Examples:
C
caoying03 已提交
6056
        .. code-block:: python
6057

Y
Yibing Liu 已提交
6058 6059
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6060 6061
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6062
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6063 6064 6065 6066 6067 6068
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
6069 6070


Y
Yu Yang 已提交
6071
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6072
    """
Y
yi.wu 已提交
6073 6074 6075
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6076 6077 6078 6079 6080 6081

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6082 6083
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6084 6085 6086 6087 6088 6089

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6090 6091
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6092 6093
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6094 6095 6096 6097 6098
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6099
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6100
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6101 6102
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6103
            outputs={'Out': [counter]},
M
minqiyang 已提交
6104 6105
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6106 6107 6108
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6109 6110


6111
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6112
    """
C
caoying03 已提交
6113 6114
    Gives a new shape to the input Tensor without changing its data.

6115 6116 6117 6118 6119
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6120

6121
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6122

6123 6124 6125 6126
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6127
    2. 0 means the actual dimension value is going to be copied from the
6128 6129 6130 6131
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6132 6133

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6134
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6135
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6136

6137
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6138 6139
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6140 6141
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6142
    dimensions.
C
caoying03 已提交
6143

6144
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6145 6146 6147 6148
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6149 6150

    Args:
6151
        x(variable): The input tensor.
C
caoying03 已提交
6152 6153
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6154 6155 6156 6157 6158
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6159 6160
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6161 6162 6163
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6164
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6165
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6166

6167
    Returns:
G
guosheng 已提交
6168 6169 6170 6171
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6172

X
Xin Pan 已提交
6173 6174 6175
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6176 6177
    Examples:
        .. code-block:: python
G
guosheng 已提交
6178

6179
            data = fluid.layers.data(
6180
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6181
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6182
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6183 6184 6185
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6186
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6187 6188 6189 6190 6191
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6192

6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6208
    helper = LayerHelper("reshape2", **locals())
6209 6210
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6211
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6212
    helper.append_op(
6213
        type="reshape2",
X
Xin Pan 已提交
6214
        inputs=inputs,
D
dzhwinter 已提交
6215
        attrs={"shape": shape},
6216 6217
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6218

D
dzhwinter 已提交
6219
    return helper.append_activation(out)
6220

6221

6222
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6223
    """
M
minqiyang 已提交
6224 6225 6226
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6227
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6228

H
haowang101779990 已提交
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6250

Y
Yibing Liu 已提交
6251
    Args:
6252
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6253
        axes (list): List of integers, indicating the dimensions to be squeezed.
6254
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6255 6256 6257 6258 6259 6260 6261 6262

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6263
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6264 6265
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6266 6267
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6268
    helper.append_op(
6269
        type="squeeze2",
6270
        inputs={"X": input},
Y
Yibing Liu 已提交
6271
        attrs={"axes": axes},
6272 6273
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6274

6275 6276 6277
    return out


6278
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6279
    """
M
minqiyang 已提交
6280 6281 6282
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6283

M
minqiyang 已提交
6284
    For example:
H
haowang101779990 已提交
6285 6286 6287

    .. code-block:: text

M
minqiyang 已提交
6288
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6289
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6290

Y
Yibing Liu 已提交
6291
    Args:
6292
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6293
        axes (list): List of integers, indicating the dimensions to be inserted.
6294
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6295 6296 6297 6298 6299 6300 6301 6302

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6303
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6304 6305
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6306 6307
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6308
    helper.append_op(
6309
        type="unsqueeze2",
6310
        inputs={"X": input},
Y
Yibing Liu 已提交
6311
        attrs={"axes": axes},
6312 6313
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6314

6315 6316
    return out

6317

Y
yangyaming 已提交
6318
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6319
    """
Y
Yibing Liu 已提交
6320
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6321 6322 6323 6324
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6325
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6326 6327 6328 6329 6330 6331

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6332
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6333 6334 6335
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6336
            target_lod: [4, 2]
Y
yangyaming 已提交
6337 6338

            then we get a 1-level LoDTensor:
6339
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6340 6341 6342 6343 6344 6345
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6346
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6347 6348 6349 6350
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6351
                y.data = [[2, 4]]
Y
yangyaming 已提交
6352 6353 6354
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6355
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6356 6357 6358 6359 6360 6361
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6362
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6363 6364 6365 6366
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6367
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6368 6369 6370 6371
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6372
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6373 6374 6375 6376 6377
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6378
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6379
                           from :attr:`y`.
Y
yangyaming 已提交
6380
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6381
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6382 6383

    Returns:
Y
Yibing Liu 已提交
6384
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6385 6386

    Raises:
Y
Yibing Liu 已提交
6387
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6388 6389 6390 6391 6392 6393 6394 6395 6396

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6397
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6423
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6452 6453
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6466 6467 6468
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6482 6483 6484 6485


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6486
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6487
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6488

G
guosheng 已提交
6489 6490 6491 6492
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6515
                         The length of :attr:paddings must be
G
guosheng 已提交
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6526

G
guosheng 已提交
6527 6528 6529 6530 6531 6532
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6533
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6534 6535 6536 6537 6538 6539 6540
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6541 6542


C
chengduo 已提交
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6574 6575
		And
            pad_value = -1,
C
chengduo 已提交
6576

T
Tink_Y 已提交
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6612
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6613 6614 6615 6616 6617 6618 6619 6620 6621
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6622 6623 6624 6625 6626 6627 6628
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6629 6630
    called label-smoothing regularization (LSR).

6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6654
                              be :math:`(1, class\_num)`.
6655 6656
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6657
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6677
    smooth_label = helper.create_variable_for_type_inference(dtype)
6678 6679 6680 6681 6682 6683 6684
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6685 6686


W
wopeizl 已提交
6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6723 6724


J
jerrywgz 已提交
6725 6726 6727 6728 6729 6730
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6731 6732
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6749 6750 6751
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6752 6753 6754 6755 6756 6757
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6758
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6799 6800
        .. code-block:: python

W
whs 已提交
6801 6802 6803 6804
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6805
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6806 6807 6808 6809 6810 6811
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6812 6813


6814 6815 6816 6817
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6818
                 resample='BILINEAR',
6819 6820
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6821
                 align_mode=1):
6822
    """
Q
qiaolongfei 已提交
6823
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6824

6825
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6826 6827 6828
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6829

6830
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6831

6832
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6833

6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6844
    Align_corners and align_mode are optinal parameters,the calculation method 
6845 6846 6847 6848
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6849
      For scale:
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6862
      if:
6863 6864 6865 6866 6867 6868 6869 6870
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6871
      else:
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})

      Bilinear interpolation:

T
tink2123 已提交
6882
      if:
6883 6884 6885 6886 6887 6888 6889 6890 6891
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6892
      else:
6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
       
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



6908
    Args:
6909
        input (Variable): The input tensor of image resize layer,
6910 6911
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6912
        out_shape(list|tuple|Variable|None): Output shape of image resize
6913 6914
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6915
        scale(float|None): The multiplier for the input height or width.
6916 6917 6918
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6919 6920
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6921
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6922
                       currently.
6923
                       Default: 'BILINEAR'
6924 6925 6926
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6927
                                :attr:`out_shape` and :attr:`scale` specifying
6928 6929 6930 6931 6932 6933 6934
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6935 6936
                                constructing stage.
                                Default: None
6937 6938 6939 6940
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6941
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6942 6943
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
6944 6945

    Returns:
Q
update  
qiaolongfei 已提交
6946 6947
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6948

6949 6950 6951
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6952
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6953 6954 6955
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
6956 6957
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
6958

6959 6960 6961
    Examples:
        .. code-block:: python

6962
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6963
    """
6964 6965 6966 6967
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6968 6969
    if resample not in resample_methods:
        raise ValueError(
6970
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6971
        )
6972
    resample_type = resample_methods[resample]
6973 6974 6975 6976 6977 6978

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6979
    if out_shape is None and scale is None:
6980
        raise ValueError("One of out_shape and scale must not be None.")
6981
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6982
    dtype = helper.input_dtype()
6983 6984 6985 6986

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6987 6988 6989
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6990
    if out_shape is not None:
6991 6992 6993 6994
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6995
            inputs['OutSize'] = out_shape
6996 6997 6998 6999 7000 7001 7002 7003
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7004 7005 7006 7007
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7008 7009 7010 7011 7012
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7013
    out = helper.create_variable_for_type_inference(dtype)
7014
    helper.append_op(
7015
        type='{}_interp'.format(resample_type),
7016
        inputs=inputs,
7017
        outputs={"Out": out},
7018 7019 7020 7021 7022 7023 7024
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7025
    return out
F
stash  
fengjiayi 已提交
7026 7027


7028
@templatedoc(op_type="bilinear_interp")
7029 7030 7031 7032
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7033 7034
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7035
                    align_mode=1):
7036
    """
7037 7038
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7039 7040
    in priority order.

7041 7042 7043 7044
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7045 7046
    again in the other direction.

7047
    For details of bilinear interpolation, please refer to Wikipedia:
7048
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7049

T
tink2123 已提交
7050
    Align_corners and align_mode are optinal parameters,the calculation 
7051 7052 7053
    method of interpolation can be selected by them.


T
tink2123 已提交
7054
    Align_corners and align_mode are optinal parameters,the calculation method 
7055 7056 7057 7058
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
7059
      For scale:
7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)     

    Bilinear interpolation:

T
tink2123 已提交
7071
      if:
7072 7073 7074 7075 7076 7077 7078 7079 7080
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
7081 7082
      else:

7083 7084 7085 7086 7087 7088 7089 7090
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}



Y
yuyang18 已提交
7091 7092 7093 7094
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7095

Y
yuyang18 已提交
7096 7097 7098 7099 7100
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7101 7102 7103
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7104
                                :attr:`out_shape` and :attr:`scale` specifying
7105 7106 7107 7108 7109 7110 7111
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7112 7113
                                constructing stage.
                                Default: None
7114 7115
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7116 7117 7118

    Returns:
        ${out_comment}.
7119 7120 7121 7122 7123

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7124 7125
    """

7126 7127
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7128 7129


7130
@templatedoc(op_type="nearest_interp")
7131 7132 7133 7134
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7135 7136
                   actual_shape=None,
                   align_corners=True):
7137
    """
7138
    Resize input by performing nearest neighbor interpolation in both the
7139 7140
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
7141 7142
    out_shape and scale in priority order.

7143 7144
    Example:

T
tink2123 已提交
7145
      For scale:
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
7158
      if:
7159 7160 7161 7162 7163 7164 7165 7166
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
7167
      else:
7168 7169 7170 7171 7172 7173 7174 7175 7176
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})


7177
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7178
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7179 7180 7181 7182 7183

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7184

Y
yuyang18 已提交
7185 7186 7187 7188 7189
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7190 7191 7192
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7193
                                :attr:`out_shape` and :attr:`scale` specifying
7194 7195 7196 7197 7198 7199 7200
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7201 7202
                                constructing stage.
                                Default: None
7203
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7204 7205 7206

    Returns:
        ${out_comment}.
7207 7208 7209 7210 7211

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7212 7213
    """

7214 7215
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7216 7217 7218 7219


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7220 7221 7222
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7223 7224 7225 7226 7227 7228 7229
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7230
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7231

7232
    Returns:
Q
update  
qiaolongfei 已提交
7233
        Variable: The output is a 4-D tensor of the shape
7234
        (num_batches, channls, out_h, out_w).
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7245 7246 7247
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7248 7249 7250
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7251 7252
def gather(input, index):
    """
Q
qiaolongfei 已提交
7253 7254
    **Gather Layer**

7255
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7256 7257 7258 7259
    of X indexed by `index` and concatenate them together.

    .. math::

7260
        Out = X[Index]
W
whs 已提交
7261 7262 7263 7264 7265 7266 7267


    .. code-block:: text


                Given:

7268 7269
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7270 7271 7272 7273 7274 7275 7276 7277 7278 7279
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7280
        input (Variable): The source input with rank>=1.
W
whs 已提交
7281 7282 7283 7284 7285 7286
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7287

W
whs 已提交
7288 7289 7290 7291 7292 7293
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7294
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7295 7296 7297 7298 7299 7300 7301 7302
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7334
    out = helper.create_variable_for_type_inference(dtype)
7335 7336 7337 7338 7339 7340 7341 7342 7343
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7344 7345 7346 7347 7348 7349 7350 7351 7352
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7353

Q
Qingsheng Li 已提交
7354
    Given the following input:
H
haowang101779990 已提交
7355

Q
Qingsheng Li 已提交
7356
    .. code-block:: text
H
haowang101779990 已提交
7357

Q
Qingsheng Li 已提交
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7370

Q
Qingsheng Li 已提交
7371
    .. code-block:: text
H
haowang101779990 已提交
7372

Q
Qingsheng Li 已提交
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7388
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7399
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7400 7401 7402 7403 7404 7405 7406 7407 7408
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7422

7423 7424 7425
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7426
    """
F
stash  
fengjiayi 已提交
7427
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7428
    dtype = x.dtype
X
Xin Pan 已提交
7429
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7430
    if seed is None:
7431
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7432
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7433
    if isinstance(seed, int):
F
fengjiayi 已提交
7434 7435 7436 7437 7438
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7439 7440 7441 7442
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7443
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7444 7445
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7446 7447
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7448
    return out
W
whs 已提交
7449 7450


7451
def log(x, name=None):
W
wanghaoshuang 已提交
7452 7453 7454 7455 7456
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7457
        Out = \\ln(x)
W
wanghaoshuang 已提交
7458 7459

    Args:
7460
        x (Variable): Input tensor.
7461 7462
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7463 7464 7465 7466 7467 7468 7469 7470

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7471
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7472 7473
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7474
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7475
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7476
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7477 7478 7479
    return out


7480
def relu(x, name=None):
W
wanghaoshuang 已提交
7481 7482
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7483
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7484 7485 7486 7487
    the tensor elementwise.

    .. math::

7488
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7489 7490

    Args:
7491
        x (Variable): The input tensor.
7492 7493
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7494 7495 7496 7497 7498 7499 7500 7501

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7502
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7503 7504
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7505
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7506
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7507 7508
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7509
    return out
7510 7511


C
chengduo 已提交
7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7553 7554 7555
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7556 7557 7558 7559
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7560
    .. math::
7561

H
haowang101779990 已提交
7562
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7563

7564
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7565 7566 7567 7568 7569
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7570
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7571
                           Its shape should be the same as input.
7572
        num_classes (int): The possible number of labels.
W
whs 已提交
7573 7574

    Returns:
M
minqiyang 已提交
7575 7576
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7577
                     Three variables:
M
minqiyang 已提交
7578

H
haowang101779990 已提交
7579 7580 7581
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7582 7583 7584 7585

    Examples:

        .. code-block:: python
7586

W
whs 已提交
7587 7588 7589 7590
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7591 7592 7593
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7594 7595
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7596 7597
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7598
        outputs={
W
whs 已提交
7599 7600 7601
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7602 7603 7604
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7673
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7674 7675 7676 7677 7678

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7679
            isinstance(shape, Variable)):
7680 7681 7682 7683 7684
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7685
    out = helper.create_variable_for_type_inference(x.dtype)
7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7703 7704


W
whs 已提交
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7722

W
whs 已提交
7723
              out_shape = [2, 3, 5, 5]
7724

W
whs 已提交
7725
          Step 1:
7726

W
whs 已提交
7727 7728 7729
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7730

W
whs 已提交
7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7776
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7777
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7790

W
whs 已提交
7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7802
            isinstance(out_shape, Variable)):
W
whs 已提交
7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7824 7825
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7826

7827 7828
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7829
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7830 7831 7832
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7833

7834 7835
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7836

H
haowang101779990 已提交
7837 7838
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7839 7840
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7841

H
haowang101779990 已提交
7842 7843 7844 7845 7846 7847 7848 7849
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7850 7851 7852

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7887
    out = helper.create_variable_for_type_inference("float32")
7888 7889 7890 7891 7892 7893 7894 7895

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7896 7897


M
minqiyang 已提交
7898 7899
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7900
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7901
    which compares left score and right score passed in.
M
minqiyang 已提交
7902
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7903 7904 7905

    .. math::

H
haowang101779990 已提交
7906
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7907 7908

    Args:
M
minqiyang 已提交
7909
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7910 7911
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7912
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7913 7914
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7915

M
minqiyang 已提交
7916
    Returns:
M
minqiyang 已提交
7917
       Variable: The ranking loss.
H
haowang101779990 已提交
7918

M
minqiyang 已提交
7919
    Raises:
M
minqiyang 已提交
7920
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7921

M
minqiyang 已提交
7922
    Examples:
H
haowang101779990 已提交
7923

M
minqiyang 已提交
7924
        .. code-block:: python
H
haowang101779990 已提交
7925

M
minqiyang 已提交
7926 7927 7928 7929 7930
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7931
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7932 7933 7934 7935 7936 7937
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7938 7939
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7963
        .. code-block:: text
W
whs 已提交
7964

T
Tink_Y 已提交
7965
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7966

T
Tink_Y 已提交
7967 7968
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7969

T
Tink_Y 已提交
7970
	      Case 0:
M
minqiyang 已提交
7971

T
Tink_Y 已提交
7972 7973 7974
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7975

T
Tink_Y 已提交
7976 7977 7978
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7979

T
Tink_Y 已提交
7980
	      Case 1:
M
minqiyang 已提交
7981

T
Tink_Y 已提交
7982 7983
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7984

T
Tink_Y 已提交
7985 7986 7987
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7988

T
Tink_Y 已提交
7989
	      Case 2:
M
minqiyang 已提交
7990

T
Tink_Y 已提交
7991 7992
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7993

T
Tink_Y 已提交
7994 7995 7996
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7997 7998


W
whs 已提交
7999 8000
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8001
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8025
    out = helper.create_variable_for_type_inference(dtype)
8026 8027 8028 8029 8030 8031 8032 8033 8034
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8035
    helper.append_op(
8036
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8037 8038 8039 8040

    return out


8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8053 8054 8055 8056 8057

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8058 8059
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8060 8061
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8062
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8083 8084 8085 8086 8087

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8088 8089
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8090 8091
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8092
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8113 8114 8115 8116 8117

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8118 8119
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8120 8121
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8122
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8144 8145 8146 8147 8148

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8149
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8150
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8151 8152
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8153
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8176 8177 8178 8179 8180

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8181 8182
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8183 8184
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8185
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8207 8208 8209 8210 8211

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8212 8213
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8214 8215
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8216
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8217 8218 8219 8220 8221 8222 8223 8224
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8225 8226 8227 8228
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8229 8230
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8231 8232 8233

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8234
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8235
          weight (alpha).
J
jerrywgz 已提交
8236
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8237 8238 8239
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8240
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8241
          will be named automatically.
J
jerrywgz 已提交
8242 8243 8244 8245 8246 8247 8248 8249

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8250
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8264
        attr=helper.param_attr,
J
jerrywgz 已提交
8265 8266 8267 8268
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8269
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8270 8271 8272 8273 8274 8275 8276 8277 8278
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8279 8280 8281 8282 8283 8284 8285 8286 8287 8288
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8289
    Returns:
8290
        output(${out_type}): ${out_comment}
8291 8292 8293

    Examples:

8294
    .. code-block:: python
8295

H
haowang101779990 已提交
8296 8297
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8298 8299
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8300
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8319
    Returns:
8320
        output(${out_type}): ${out_comment}
8321 8322 8323 8324 8325

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8326 8327
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8328 8329
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8330
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8348
    Returns:
8349
        output(${out_type}): ${out_comment}
8350 8351 8352 8353 8354

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8355 8356
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8357 8358
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8359
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8360 8361 8362 8363 8364 8365 8366 8367
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8368 8369 8370 8371
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8372

H
haowang101779990 已提交
8373
    For Example:
M
minqiyang 已提交
8374

H
haowang101779990 已提交
8375
    .. code-block:: text
8376

H
haowang101779990 已提交
8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8398 8399 8400

    Args:
        x (Variable): A tensor of rank >= axis.
8401 8402
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8403 8404 8405 8406 8407 8408 8409 8410
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8411 8412 8413
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8414 8415 8416 8417
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8418
        ValueError: If axis is not in range [0, rank(x)].
8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8435 8436
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8437
    helper.append_op(
8438
        type='flatten2',
8439
        inputs={"X": x},
8440 8441
        outputs={'Out': out,
                 'XShape': x_shape},
8442 8443
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8444 8445


C
chenweihang 已提交
8446
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8447
    """
C
chenweihang 已提交
8448
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8449
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8450 8451
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8452

H
haowang101779990 已提交
8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8470 8471

    Args:
C
chenweihang 已提交
8472 8473 8474
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8486 8487
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8488 8489 8490 8491 8492 8493
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8494
    return out
8495

8496

S
sneaxiy 已提交
8497 8498 8499 8500 8501 8502 8503 8504 8505
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8506

S
sneaxiy 已提交
8507
    .. math::
8508

S
sneaxiy 已提交
8509 8510 8511
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8512
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8513 8514 8515 8516
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8517 8518 8519
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8520 8521
    Returns:
        Variable: The output sequence mask.
8522

S
sneaxiy 已提交
8523 8524
    """

Q
qingqing01 已提交
8525
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8526
    if name is None:
X
Xin Pan 已提交
8527
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8528
    else:
X
Xin Pan 已提交
8529
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8530

Q
qingqing01 已提交
8531 8532 8533
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8534 8535
        outputs={'Y': out},
        attrs={
8536
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8537 8538 8539
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8540 8541


X
Xin Pan 已提交
8542
def stack(x, axis=0):
S
sneaxiy 已提交
8543 8544 8545 8546
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8547 8548 8549 8550 8551 8552 8553

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8554
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8555
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8556

C
chengduozh 已提交
8557 8558
    For Example:

C
chengduozh 已提交
8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8597
    Args:
8598
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8599
        axis (int|None): The axis along which all inputs are stacked.
8600

S
sneaxiy 已提交
8601 8602
    Returns:
        Variable: The stacked variable.
8603

S
sneaxiy 已提交
8604 8605
    """

X
Xin Pan 已提交
8606 8607 8608 8609 8610 8611
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8612
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8613
    helper.append_op(
S
sneaxiy 已提交
8614 8615
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8616

X
Xin Pan 已提交
8617
    return out
D
dzhwinter 已提交
8618 8619 8620 8621 8622 8623 8624


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8625

D
dzhwinter 已提交
8626 8627 8628
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8629
    raised.
D
dzhwinter 已提交
8630 8631

    Args:
M
minqiyang 已提交
8632
        x (Variable): Input variable.
D
dzhwinter 已提交
8633 8634
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8635

D
dzhwinter 已提交
8636 8637
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8638

D
dzhwinter 已提交
8639 8640 8641 8642 8643 8644 8645 8646 8647 8648
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8649
    for _ in range(num):
X
Xin Pan 已提交
8650
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8651 8652 8653 8654 8655 8656 8657 8658

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8671

W
whs 已提交
8672 8673 8674 8675
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8676

W
whs 已提交
8677
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8678

W
whs 已提交
8679
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8680

W
whs 已提交
8681 8682 8683 8684
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8685

W
whs 已提交
8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8702
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8703 8704 8705 8706 8707 8708
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8709 8710


G
fix  
gongweibao 已提交
8711 8712 8713
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8714
@templatedoc()
G
fix  
gongweibao 已提交
8715 8716 8717 8718 8719 8720 8721 8722 8723
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8724
    ${comment}
G
fix  
gongweibao 已提交
8725 8726

    Args:
G
gongweibao 已提交
8727 8728 8729
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8730
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8731 8732 8733
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8734 8735
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8736
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8737

8738 8739 8740 8741 8742
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8743 8744 8745
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8746
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8763 8764


G
gongweibao 已提交
8765
@templatedoc()
X
Xin Pan 已提交
8766
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8767
    """
G
gongweibao 已提交
8768
    ${comment}
G
fix  
gongweibao 已提交
8769 8770

    Args:
G
gongweibao 已提交
8771 8772 8773 8774
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8775 8776 8777
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8778
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8779

8780 8781 8782 8783
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8784 8785 8786
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8787
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8788 8789 8790 8791 8792 8793 8794 8795 8796 8797
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8798
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8799 8800 8801 8802 8803
        })

    return out


G
gongweibao 已提交
8804
@templatedoc()
G
fix  
gongweibao 已提交
8805
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8806
    """
G
gongweibao 已提交
8807
    ${comment}
G
fix  
gongweibao 已提交
8808 8809

    Args:
G
gongweibao 已提交
8810 8811 8812 8813
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8814
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8815 8816

    Returns:
G
gongweibao 已提交
8817
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8818

8819 8820 8821 8822 8823 8824 8825 8826 8827 8828
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8829 8830 8831
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8832
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8844
@templatedoc()
G
fix  
gongweibao 已提交
8845 8846 8847 8848 8849 8850 8851 8852 8853
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8854
    ${comment}
G
fix  
gongweibao 已提交
8855 8856

    Args:
G
gongweibao 已提交
8857 8858
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8859
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8860 8861 8862 8863
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8864
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8865 8866

    Returns:
G
gongweibao 已提交
8867
        out (Variable): ${out_comment}
8868 8869 8870 8871 8872 8873 8874 8875

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8876 8877 8878
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8879
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8898
@templatedoc()
X
Xin Pan 已提交
8899
def sum(x):
G
fix  
gongweibao 已提交
8900
    """
G
gongweibao 已提交
8901
    ${comment}
G
fix  
gongweibao 已提交
8902 8903

    Args:
G
gongweibao 已提交
8904
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8905 8906

    Returns:
G
gongweibao 已提交
8907
        out (Variable): ${out_comment}
8908 8909 8910 8911 8912 8913

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8914 8915 8916
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8917 8918
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8919 8920 8921 8922
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8923
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8924 8925 8926 8927

    return out


G
gongweibao 已提交
8928
@templatedoc()
G
fix  
gongweibao 已提交
8929 8930
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8931
    ${comment}
G
fix  
gongweibao 已提交
8932 8933

    Args:
G
gongweibao 已提交
8934 8935 8936 8937
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8938 8939

    Returns:
G
gongweibao 已提交
8940
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8941

8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8953 8954 8955
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8956 8957
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
8971 8972
    **Shape Layer**

C
fix doc  
chengduozh 已提交
8973
    Get the shape of the input.
G
fix  
gongweibao 已提交
8974 8975

    Args:
C
chengduozh 已提交
8976
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
8977 8978

    Returns:
C
fix doc  
chengduozh 已提交
8979
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
8980

8981 8982 8983 8984 8985 8986
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8987 8988 8989
    """

    helper = LayerHelper('shape', **locals())
8990
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8991
    helper.append_op(
G
fix  
gongweibao 已提交
8992
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8993 8994

    return out
G
merge  
gongweibao 已提交
8995 8996


S
sneaxiy 已提交
8997 8998 8999 9000 9001 9002 9003 9004
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9005 9006
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9007
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9008 9009 9010
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9011

S
sneaxiy 已提交
9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9023
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9024 9025 9026 9027 9028 9029 9030 9031
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9032
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9033
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9034 9035 9036 9037 9038 9039

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9040
    if name is None:
X
Xin Pan 已提交
9041
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9042 9043 9044
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9045 9046 9047 9048 9049 9050 9051 9052 9053 9054

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9055
    return helper.append_activation(out)
S
sneaxiy 已提交
9056 9057


X
Xin Pan 已提交
9058
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9059 9060 9061
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9062
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9063 9064 9065
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9066
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9067 9068 9069
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9070
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9071 9072 9073
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9074
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9075 9076 9077
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9078
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9079 9080 9081
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9082
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9094 9095
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9096
        ])
M
minqiyang 已提交
9097 9098


9099
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9100 9101
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9102 9103
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9104 9105 9106

    if out is None:
        if name is None:
X
Xin Pan 已提交
9107
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9123
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9135 9136 9137 9138 9139 9140 9141 9142 9143

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9144 9145 9146 9147 9148 9149 9150
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9151
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9163 9164 9165 9166 9167 9168 9169 9170 9171

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9172 9173 9174 9175 9176 9177 9178
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9179
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9191 9192 9193 9194 9195 9196 9197 9198 9199

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9200 9201 9202 9203 9204 9205 9206
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9207
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9208 9209 9210 9211 9212 9213 9214 9215 9216 9217
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9218 9219 9220 9221 9222 9223 9224

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9225 9226 9227 9228
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9244 9245 9246 9247 9248 9249 9250

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9251 9252 9253 9254 9255
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9256 9257 9258 9259
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9283 9284 9285 9286 9287 9288 9289

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9290 9291 9292 9293 9294
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9295 9296 9297 9298
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9299 9300 9301 9302 9303 9304 9305 9306

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9325
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9326 9327 9328 9329 9330 9331 9332 9333 9334 9335
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9378
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9379 9380 9381 9382 9383 9384 9385 9386 9387
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9388 9389
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9390 9391 9392 9393 9394 9395
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9396 9397 9398
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9399 9400
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9401 9402 9403 9404 9405 9406
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9407
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9408
        name(basestring|None): Name of the output.
9409 9410
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9411 9412 9413

    Returns:
        out(${out_type}): ${out_comment}
9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9428 9429 9430 9431 9432
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9433
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9434 9435 9436 9437 9438 9439 9440 9441
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9442 9443
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9464
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9465 9466 9467 9468 9469 9470 9471 9472 9473 9474
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9475 9476


J
JiabinYang 已提交
9477
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9478
    """
J
JiabinYang 已提交
9479
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9480 9481 9482

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9483
    The attr blocksize indicates the input block size.
9484 9485

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9486
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9487 9488

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9489
    (but keeping all data)
J
JiabinYang 已提交
9490

J
JiabinYang 已提交
9491
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9492
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9493 9494 9495 9496 9497
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9498
    Args:
J
JiabinYang 已提交
9499
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9500
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9501 9502

    Returns:
J
JiabinYang 已提交
9503
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9504 9505

    Raises:
J
JiabinYang 已提交
9506
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9507 9508 9509 9510 9511 9512

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9513
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9514
                x=data, blocksize=2)
J
JiabinYang 已提交
9515 9516
    """

J
JiabinYang 已提交
9517
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9518

J
JiabinYang 已提交
9519 9520
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9521 9522

    if name is None:
J
JiabinYang 已提交
9523 9524
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9525 9526 9527 9528 9529
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9530
        type="space_to_depth",
J
JiabinYang 已提交
9531
        inputs={"X": x},
J
JiabinYang 已提交
9532
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9533
        outputs={"Out": out})
J
JiabinYang 已提交
9534 9535
    return out

J
JiabinYang 已提交
9536

S
sneaxiy 已提交
9537 9538
@templatedoc()
def sequence_reverse(x, name=None):
9539
    """
S
sneaxiy 已提交
9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9551
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9552 9553 9554 9555 9556 9557 9558 9559 9560 9561
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9562 9563


9564 9565 9566 9567 9568 9569
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9570

9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9590
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9603 9604


B
barrierye 已提交
9605
def similarity_focus(input, axis, indexes, name=None):
9606
    """
B
barrierye 已提交
9607
    SimilarityFocus Operator
B
barrierye 已提交
9608 9609

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9610

9611 9612 9613
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9614
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9615 9616 9617 9618 9619 9620 9621
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9622
       each index.
B
barrierye 已提交
9623 9624 9625 9626
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9676
    Args:
9677
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9678
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9679
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9680
            1, 2 or 3.
B
barrierye 已提交
9681
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9682 9683

    Returns:
H
haowang101779990 已提交
9684 9685
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9686

B
barrierye 已提交
9687 9688
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9689

B
barrierye 已提交
9690
            data = fluid.layers.data(
B
barrierye 已提交
9691 9692
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9693

B
barrierye 已提交
9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9706 9707 9708 9709 9710
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9711 9712 9713 9714 9715 9716 9717
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9718 9719


M
minqiyang 已提交
9720 9721
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9722 9723
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9724 9725
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9764
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9765
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9766 9767 9768 9769 9770 9771

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9772

M
minqiyang 已提交
9773 9774 9775
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9776 9777
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9778 9779
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9780 9781 9782 9783 9784 9785 9786
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9787 9788


D
dengkaipeng 已提交
9789
@templatedoc()
9790 9791
def grid_sampler(x, grid, name=None):
    """
9792
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9793
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9794 9795 9796 9797
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9798
    interpolation value of 4 nearest corner points.
9799

H
haowang101779990 已提交
9800
    .. code-block:: text
9801

H
haowang101779990 已提交
9802 9803
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9804

H
haowang101779990 已提交
9805 9806
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9807

H
haowang101779990 已提交
9808 9809 9810
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9811

H
haowang101779990 已提交
9812 9813 9814 9815 9816 9817 9818 9819 9820
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9821

H
haowang101779990 已提交
9822 9823 9824 9825
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9826

H
haowang101779990 已提交
9827 9828 9829 9830
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9831

H
haowang101779990 已提交
9832 9833 9834 9835
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9836

H
haowang101779990 已提交
9837 9838
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9839 9840

    Args:
9841 9842 9843
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9844 9845

    Returns:
H
haowang101779990 已提交
9846
        Variable: Output of shape [N, C, H, W] data samples input X
9847 9848
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9849 9850 9851 9852 9853 9854 9855 9856
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9857

D
dengkaipeng 已提交
9858 9859 9860 9861 9862 9863 9864 9865 9866
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9867
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9868 9869
    ipts = {'X': x, 'Grid': grid}

9870
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9871 9872 9873
    return out


G
gmcather 已提交
9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9940
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9962 9963 9964 9965
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9966
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9967 9968
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9969
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9970 9971

    .. math::
H
haowang101779990 已提交
9972 9973 9974
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9975 9976

    Where:
H
haowang101779990 已提交
9977 9978
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9993

G
gmcather 已提交
9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10010 10011 10012 10013 10014 10015 10016 10017 10018 10019


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10020
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10021

Q
Qiao Longfei 已提交
10022
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10023 10024 10025
    For example:

    .. math::
H
haowang101779990 已提交
10026
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10027

Q
Qiao Longfei 已提交
10028
    In this formula:
10029 10030
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10031
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10032
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10033 10034 10035
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10036 10037
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10038 10039 10040
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10041
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10042
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10043
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10044 10045 10046 10047
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10048
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10049 10050 10051 10052

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10053
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10054 10055
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10056
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10057 10058 10059 10060

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10061
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10102 10103


S
shippingwang 已提交
10104
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10105 10106
    """
    **Shuffle Channel Operator**
10107

S
shippingwang 已提交
10108 10109 10110 10111 10112 10113
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10114
    
S
shippingwang 已提交
10115
    .. code-block:: text
10116

S
shippingwang 已提交
10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10145
    Args: 
S
shippingwang 已提交
10146 10147
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10148 10149

    Returns:
S
shippingwang 已提交
10150 10151
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10152 10153

    Raises:
S
shippingwang 已提交
10154
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10155 10156 10157

    Examples:
        .. code-block:: python
10158 10159

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10160
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10161 10162 10163
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10164
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10165 10166 10167 10168 10169 10170 10171 10172 10173

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10174
    return out
S
Add  
shippingwang 已提交
10175 10176


S
sneaxiy 已提交
10177
class PyFuncRegistry(object):
S
sneaxiy 已提交
10178 10179 10180
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10181
        if func is None or not callable(func):
S
sneaxiy 已提交
10182 10183 10184
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10185
        # find named args using reflection
S
sneaxiy 已提交
10186 10187 10188 10189 10190 10191 10192
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10193 10194 10195
        '''
        Why record self here?

M
minqiyang 已提交
10196 10197
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10198
           to find the registered function corresponding
M
minqiyang 已提交
10199
           to :code:`idx`.
S
sneaxiy 已提交
10200

M
minqiyang 已提交
10201 10202
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10203
           whose reference count is 1 would cause
M
minqiyang 已提交
10204
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10205 10206
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10207
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10222 10223 10224 10225 10226 10227 10228 10229 10230
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10231

S
sneaxiy 已提交
10232 10233
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10234 10235

        ret = []
S
sneaxiy 已提交
10236 10237 10238
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10239 10240
                continue

S
sneaxiy 已提交
10241 10242
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10243

S
sneaxiy 已提交
10244 10245 10246
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10247

S
sneaxiy 已提交
10248
        return tuple(ret)
S
sneaxiy 已提交
10249 10250


S
sneaxiy 已提交
10251 10252 10253 10254
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10255

S
sneaxiy 已提交
10256 10257 10258 10259 10260 10261 10262 10263
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10264
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10265

S
sneaxiy 已提交
10266 10267
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10268 10269 10270 10271
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10272
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10273
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10274 10275
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10276 10277 10278 10279 10280
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10281
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10282
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10283
                                       None means no backward. Default None.
S
sneaxiy 已提交
10284
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10285
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10286 10287
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10288
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10289 10290 10291

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10292 10293

    Examples:
M
minqiyang 已提交
10294

S
sneaxiy 已提交
10295 10296 10297 10298 10299
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10300
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10301 10302
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10303
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10304 10305 10306
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10307
        >>>
S
sneaxiy 已提交
10308 10309 10310 10311 10312
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10313
        >>>     print(x)
S
sneaxiy 已提交
10314 10315 10316 10317 10318 10319
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10320
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10321 10322
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10323 10324
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10325 10326 10327 10328 10329 10330 10331 10332
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10333
    """
S
sneaxiy 已提交
10334
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10335 10336 10337
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10338
        x = [x]
S
sneaxiy 已提交
10339 10340
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10341

S
sneaxiy 已提交
10342 10343 10344
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10345
        out_list = [out]
S
sneaxiy 已提交
10346
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10347
        out_list = out
S
sneaxiy 已提交
10348 10349 10350
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10351

S
sneaxiy 已提交
10352 10353
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10354
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10355 10356

    for each_out in out_list:
S
sneaxiy 已提交
10357 10358
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10359 10360
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10361

S
sneaxiy 已提交
10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10377 10378 10379 10380

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10381 10382
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10383 10384 10385
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10386
        })
S
sneaxiy 已提交
10387
    return out
S
sneaxiy 已提交
10388 10389 10390


# For debug usage
S
sneaxiy 已提交
10391 10392 10393 10394
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10447

M
minqiyang 已提交
10448

M
minqiyang 已提交
10449
def huber_loss(input, label, delta):
10450
    """
M
minqiyang 已提交
10451 10452 10453
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10454 10455 10456 10457

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10458
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10459 10460 10461 10462

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10463
        huber\_loss = 0.5 * (label - input) * (label - input)
10464 10465 10466 10467 10468 10469 10470


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10471
        delta (float): The parameter of huber loss, which controls
10472 10473 10474
                       the range of outliers

    Returns:
M
minqiyang 已提交
10475
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10476 10477 10478 10479 10480

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10481
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10482
    """
M
minqiyang 已提交
10483
    helper = LayerHelper('huber_loss', **locals())
10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)