data_feeder.py 24.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

J
Jiabin Yang 已提交
25
from .framework import Variable, default_main_program, _current_expected_place, _non_static_mode, _in_eager_without_dygraph_check
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
27

Y
Yu Yang 已提交
28 29
__all__ = ['DataFeeder']

L
Leo Chen 已提交
30 31 32
_PADDLE_DTYPE_2_NUMPY_DTYPE = {
    core.VarDesc.VarType.BOOL: 'bool',
    core.VarDesc.VarType.FP16: 'float16',
33
    core.VarDesc.VarType.BF16: 'uint16',
L
Leo Chen 已提交
34 35 36 37 38 39 40 41 42 43 44
    core.VarDesc.VarType.FP32: 'float32',
    core.VarDesc.VarType.FP64: 'float64',
    core.VarDesc.VarType.INT8: 'int8',
    core.VarDesc.VarType.INT16: 'int16',
    core.VarDesc.VarType.INT32: 'int32',
    core.VarDesc.VarType.INT64: 'int64',
    core.VarDesc.VarType.UINT8: 'uint8',
    core.VarDesc.VarType.COMPLEX64: 'complex64',
    core.VarDesc.VarType.COMPLEX128: 'complex128',
}

Y
Yu Yang 已提交
45

S
sneaxiy 已提交
46
def convert_dtype(dtype):
P
pkpk 已提交
47
    if isinstance(dtype, core.VarDesc.VarType):
L
Leo Chen 已提交
48 49
        if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
            return _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
50 51
    elif isinstance(dtype, type):
        if dtype in [
52 53 54
                np.bool, np.float16, np.uint16, np.float32, np.float64, np.int8,
                np.int16, np.int32, np.int64, np.uint8, np.complex64,
                np.complex128
55 56
        ]:
            return dtype.__name__
P
pkpk 已提交
57 58
    else:
        if dtype in [
59 60 61 62 63
                'bool', 'float16', 'uint16', 'float32', 'float64', 'int8',
                'int16', 'int32', 'int64', 'uint8', 'complex64', 'complex128',
                u'bool', u'float16', u'uint16', u'float32', u'float64', u'int8',
                u'int16', u'int32', u'int64', u'uint8', u'complex64',
                u'complex128'
P
pkpk 已提交
64 65
        ]:
            # this code is a little bit dangerous, since error could happen
66
            # when casting no-ascii code to str in python2.
P
pkpk 已提交
67 68 69 70
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)
71 72 73
        # NOTE(zhangbo): Now numpy does not support bfloat, and paddle use uint16 to represent bfloat16, and there binaries are consistent.
        if dtype in ['bfloat16']:
            return 'uint16'
P
pkpk 已提交
74

75
    raise TypeError(
76
        "dtype must be any of [bool, float16, uint16, float32, float64, int8, int16, "
77
        "int32, int64, uint8, complex64, complex128], but received %s" % dtype)
S
sneaxiy 已提交
78 79


80 81 82 83 84
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
85
    check_type(input, input_name, Variable, op_name, extra_message)
86 87 88 89
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
90 91 92 93 94 95 96
    # NOTE [ Why skip dynamic graph check ]:
    # 1. If the input type / dtype of a layer is wrong, it will be reported
    # directly on that line. User can easily print the relevant information
    # on which line. It is easier to debug, so there is no need to check
    # in dynamic graph mode.
    # 2. Performance considerations. Because these checks are executed at
    # each step in dynamic graph mode, it will bring a heavy performance burden.
J
Jiabin Yang 已提交
97
    if _non_static_mode():
98
        return
99 100 101 102

    # NOTE: `in_declarative_mode` is used to determined whether this op is called under
    # @declarative in transformation from dygrah to static layer. We add VarBase in
    # expected_type to skip checking because varBase may be created and used in unusual way.
103
    from .dygraph.base import in_declarative_mode
104 105 106 107 108
    # Need a better design to be fix this.
    if in_declarative_mode():
        if not isinstance(expected_type, tuple):
            expected_type = (expected_type, )
        expected_type += (core.VarBase, )
J
Jiabin Yang 已提交
109
        if _in_eager_without_dygraph_check():
110
            expected_type += (core.eager.Tensor, )
111 112 113 114 115
    elif isinstance(input, core.VarBase):
        raise TypeError(
            "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
            "Because received '{}' in {} is a imperative Variable.".format(
                input_name, op_name))
116
    elif hasattr(core, "eager"):
117
        if isinstance(input, core.eager.Tensor):
118 119 120 121
            raise TypeError(
                "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
                "Because received '{}' in {} is a imperative Variable.".format(
                    input_name, op_name))
122 123 124 125 126 127 128 129 130 131 132
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
133
    # See NOTE [ Why skip dynamic graph check ]
J
Jiabin Yang 已提交
134
    if _non_static_mode():
135
        return
136 137 138 139
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
140 141 142 143 144 145
    if convert_dtype(input_dtype) in ['uint16'] and op_name not in [
            'reshape', 'lookup_table', 'scale'
    ]:
        warnings.warn(
            "The data type of '%s' in %s only support bfloat16 in OneDNN now. %s"
            % (input_name, op_name, extra_message))
146 147 148 149 150 151 152
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


153 154 155 156 157 158
def check_shape(shape,
                op_name,
                expected_shape_type=(list, tuple, Variable),
                expected_element_type=(int, Variable),
                expected_tensor_dtype=('int32', 'int64')):
    # See NOTE [ Why skip dynamic graph check ]
J
Jiabin Yang 已提交
159
    if _non_static_mode():
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        return
    check_type(shape, 'shape', expected_shape_type, op_name)
    if expected_element_type is not None and not isinstance(shape, Variable):
        for item in shape:
            check_type(item, 'element of shape', expected_element_type, op_name)
            if expected_tensor_dtype is not None and isinstance(item, Variable):
                check_dtype(
                    item.dtype, 'element of shape', expected_tensor_dtype,
                    op_name,
                    'If element of shape is Tensor, its data type should be {}'.
                    format(', '.join(expected_tensor_dtype)))
    if expected_tensor_dtype is not None and isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', expected_tensor_dtype, op_name)


Y
Yu Yang 已提交
175
class DataToLoDTensorConverter(object):
176

Y
Yu Yang 已提交
177 178 179 180
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
181 182 183 184 185 186 187
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
188 189
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
190

S
sneaxiy 已提交
191
    def _reset(self):
Y
Yu Yang 已提交
192
        self.data = []
S
sneaxiy 已提交
193
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
194 195 196 197 198 199 200 201

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
202
            lod[0].append(len(data))
Y
Yu Yang 已提交
203
            for each_data in data:
K
Kexin Zhao 已提交
204
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
205

S
sneaxiy 已提交
206
    def _check_shape(self, shape):
S
sneaxiy 已提交
207 208 209
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
210 211
                    "Shape not match. What is defined in data layer is {}, but receive {}"
                    .format(self.shape, shape))
S
sneaxiy 已提交
212

Y
Yu Yang 已提交
213
    def done(self):
214
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
215 216
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
217 218 219 220 221 222
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
223 224 225
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
226
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
227
        self._reset()
Y
Yu Yang 已提交
228 229 230
        return t


S
sneaxiy 已提交
231
class BatchedTensorProvider(object):
232

S
sneaxiy 已提交
233 234 235 236 237 238 239 240 241 242
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
243 244 245 246
                DataToLoDTensorConverter(place=self.place,
                                         lod_level=0,
                                         shape=var.shape,
                                         dtype=var.dtype))
S
sneaxiy 已提交
247 248 249 250 251 252 253

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
254 255
            for each_slot, each_converter in six.moves.zip(
                    each_sample, self.converters):
S
sneaxiy 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
269
class DataFeeder(object):
C
chengduoZH 已提交
270
    """
271 272
    :api_attr: Static Graph
    
C
chengduoZH 已提交
273
    DataFeeder converts the data that returned by a reader into a data
274 275 276 277 278 279 280 281 282 283 284 285 286 287
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
288 289

    Raises:
290
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
291

292
    Example:
293 294 295 296 297 298
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
299
            place = fluid.CPUPlace()
300
            def reader():
301 302
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
303 304 305 306 307
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
308 309
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
310 311 312
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
313
            
314 315
            exe = fluid.Executor(place)
            exe.run(startup_program)
316 317 318 319 320 321 322 323 324 325
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
326
            print(outs)
327

C
chengduoZH 已提交
328 329
    """

F
fengjiayi 已提交
330
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
331 332 333 334
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
335 336
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
337
        for each_var in feed_list:
338
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
339
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
340 341 342 343 344
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
345
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
346 347 348 349

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
350
        """
351 352
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
353

354 355
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
356

357 358
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
359

360
        Example:
361 362
            ..  code-block:: python

363 364 365 366 367 368
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
369 370 371
                import paddle.fluid as fluid
                
                def reader(limit=5):
372 373
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
374
                
375 376 377
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
378 379
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
380 381 382 383
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
384
                print(result['data_3'])
385

C
chengduoZH 已提交
386
        """
Y
Yu Yang 已提交
387
        converter = []
388 389 390
        for lod_level, shape, dtype in six.moves.zip(self.feed_lod_level,
                                                     self.feed_shapes,
                                                     self.feed_dtypes):
Y
Yu Yang 已提交
391
            converter.append(
392 393 394 395
                DataToLoDTensorConverter(place=self.place,
                                         lod_level=lod_level,
                                         shape=shape,
                                         dtype=dtype))
Y
Yu Yang 已提交
396 397

        for each_sample in iterable:
398
            assert len(each_sample) == len(converter), (
399 400
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
401 402
            for each_converter, each_slot in six.moves.zip(
                    converter, each_sample):
Y
Yu Yang 已提交
403 404
                each_converter.feed(each_slot)
        ret_dict = {}
405 406
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
407 408
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
409 410

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
411
        """
412 413
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
414
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
415

416
        Parameters:
T
tianshuo78520a 已提交
417
            iterable (list|tuple): list of user-defined python generators. The element 
418 419 420
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
421

422 423 424
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
425

426 427
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
428

429
        Example:
430 431
            ..  code-block:: python

432
                import numpy as np
433
                import paddle.fluid as fluid
434

435 436 437 438 439
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
440 441 442 443

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

444
                z = fluid.layers.elementwise_add(x, y)
445

446
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
447
                place_num = 2
448 449 450 451 452
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
453

T
tianshuo78520a 已提交
454
                # print sample feed_parallel r result
455 456 457
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
458

459 460 461
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
462

C
chengduoZH 已提交
463
        """
Y
yuyang18 已提交
464 465
        if isinstance(self.place, core.CUDAPlace):
            places = [
466
                core.CUDAPlace(i) for i in six.moves.xrange(
467
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
468 469 470
            ]
        else:
            places = [
471
                core.CPUPlace() for _ in six.moves.xrange(
472
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
473 474 475 476 477 478 479 480 481
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
482
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
483 484 485 486 487 488 489 490
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
491
            return len(_cuda_ids())
Y
yuyang18 已提交
492
        else:
C
chengduo 已提交
493
            return _cpu_num()
Y
yuyang18 已提交
494 495 496 497 498 499

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
500
        """
501 502 503 504 505
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
506
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
507 508 509 510 511 512 513 514 515 516 517
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
518
        Raises:
519
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
520

521
        Example:
522 523
            ..  code-block:: python

524
                import numpy as np
525 526
                import paddle
                import paddle.fluid as fluid
527
                import paddle.fluid.compiler as compiler
528
                
529 530 531 532
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
533

534 535
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
536
                
537 538
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
539
                
540
                # a simple network sample
541 542
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
543 544
                hidden = fluid.layers.fc(input=data, size=10)
                
545 546
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
547
                
548
                exe = fluid.Executor(places[0])
549
                exe.run(fluid.default_startup_program())
550
                compiled_prog = compiler.CompiledProgram(
551 552
                         fluid.default_main_program()).with_data_parallel(places=places)
                
553
                for i,data in enumerate(reader()):
554 555
                    # print data if you like
                    # print(i, data)
556
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
557 558
                    print(ret)

C
chengduoZH 已提交
559 560
        """

Y
yuyang18 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__