data_feeder.py 23.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place, in_dygraph_mode
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28 29
__all__ = ['DataFeeder']


S
sneaxiy 已提交
30
def convert_dtype(dtype):
P
pkpk 已提交
31
    if isinstance(dtype, core.VarDesc.VarType):
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        if dtype == core.VarDesc.VarType.BOOL:
            return 'bool'
        elif dtype == core.VarDesc.VarType.FP16:
            return 'float16'
        elif dtype == core.VarDesc.VarType.FP32:
            return 'float32'
        elif dtype == core.VarDesc.VarType.FP64:
            return 'float64'
        elif dtype == core.VarDesc.VarType.INT8:
            return 'int8'
        elif dtype == core.VarDesc.VarType.INT16:
            return 'int16'
        elif dtype == core.VarDesc.VarType.INT32:
            return 'int32'
        elif dtype == core.VarDesc.VarType.INT64:
            return 'int64'
        elif dtype == core.VarDesc.VarType.UINT8:
            return 'uint8'
50 51 52 53
        elif dtype == core.VarDesc.VarType.COMPLEX64:
            return 'complex64'
        elif dtype == core.VarDesc.VarType.COMPLEX128:
            return 'complex128'
54 55 56
    elif isinstance(dtype, type):
        if dtype in [
                np.bool, np.float16, np.float32, np.float64, np.int8, np.int16,
57
                np.int32, np.int64, np.uint8, np.complex64, np.complex128
58 59
        ]:
            return dtype.__name__
P
pkpk 已提交
60 61 62
    else:
        if dtype in [
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
63 64 65
                'int32', 'int64', 'uint8', 'complex64', 'complex128', u'bool',
                u'float16', u'float32', u'float64', u'int8', u'int16', u'int32',
                u'int64', u'uint8', u'complex64', u'complex128'
P
pkpk 已提交
66 67
        ]:
            # this code is a little bit dangerous, since error could happen
68
            # when casting no-ascii code to str in python2.
P
pkpk 已提交
69 70 71 72 73
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

74
    raise TypeError(
75
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
76
        "int32, int64, uint8, complex64, complex128], but received %s" % dtype)
S
sneaxiy 已提交
77 78


79 80 81 82 83
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
84
    check_type(input, input_name, Variable, op_name, extra_message)
85 86 87 88
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
89 90 91 92 93 94 95 96 97
    # NOTE [ Why skip dynamic graph check ]:
    # 1. If the input type / dtype of a layer is wrong, it will be reported
    # directly on that line. User can easily print the relevant information
    # on which line. It is easier to debug, so there is no need to check
    # in dynamic graph mode.
    # 2. Performance considerations. Because these checks are executed at
    # each step in dynamic graph mode, it will bring a heavy performance burden.
    if in_dygraph_mode():
        return
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

    from .dygraph.dygraph_to_static.program_translator import in_declarative_mode
    # NOTE: `in_declarative_mode` is used to determined whether this op is called under
    # @declarative in transformation from dygrah to static layer. We add VarBase in
    # expected_type to skip checking because varBase may be created and used in unusual way.
    # Need a better design to be fix this.
    if in_declarative_mode():
        if not isinstance(expected_type, tuple):
            expected_type = (expected_type, )
        expected_type += (core.VarBase, )
    elif isinstance(input, core.VarBase):
        raise TypeError(
            "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
            "Because received '{}' in {} is a imperative Variable.".format(
                input_name, op_name))

114 115 116 117 118 119 120 121 122 123 124
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
125 126 127
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
128 129 130 131 132 133 134 135 136 137 138
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
def check_shape(shape,
                op_name,
                expected_shape_type=(list, tuple, Variable),
                expected_element_type=(int, Variable),
                expected_tensor_dtype=('int32', 'int64')):
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
    check_type(shape, 'shape', expected_shape_type, op_name)
    if expected_element_type is not None and not isinstance(shape, Variable):
        for item in shape:
            check_type(item, 'element of shape', expected_element_type, op_name)
            if expected_tensor_dtype is not None and isinstance(item, Variable):
                check_dtype(
                    item.dtype, 'element of shape', expected_tensor_dtype,
                    op_name,
                    'If element of shape is Tensor, its data type should be {}'.
                    format(', '.join(expected_tensor_dtype)))
    if expected_tensor_dtype is not None and isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', expected_tensor_dtype, op_name)


Y
Yu Yang 已提交
161 162 163 164 165
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
166 167 168 169 170 171 172
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
173 174
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
175

S
sneaxiy 已提交
176
    def _reset(self):
Y
Yu Yang 已提交
177
        self.data = []
S
sneaxiy 已提交
178
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
179 180 181 182 183 184 185 186

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
187
            lod[0].append(len(data))
Y
Yu Yang 已提交
188
            for each_data in data:
K
Kexin Zhao 已提交
189
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
190

S
sneaxiy 已提交
191
    def _check_shape(self, shape):
S
sneaxiy 已提交
192 193 194 195 196 197
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
198
    def done(self):
199
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
200 201
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
202 203 204 205 206 207
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
208 209 210
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
211
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
212
        self._reset()
Y
Yu Yang 已提交
213 214 215
        return t


S
sneaxiy 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
254
class DataFeeder(object):
C
chengduoZH 已提交
255
    """
256 257
    :api_attr: Static Graph
    
C
chengduoZH 已提交
258
    DataFeeder converts the data that returned by a reader into a data
259 260 261 262 263 264 265 266 267 268 269 270 271 272
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
273 274

    Raises:
275
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
276

277
    Example:
278 279 280 281 282 283
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
284
            place = fluid.CPUPlace()
285
            def reader():
286 287
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
288 289 290 291 292
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
293 294
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
295 296 297
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
298
            
299 300
            exe = fluid.Executor(place)
            exe.run(startup_program)
301 302 303 304 305 306 307 308 309 310
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
311
            print(outs)
312

C
chengduoZH 已提交
313 314
    """

F
fengjiayi 已提交
315
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
316 317 318 319
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
320 321
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
322
        for each_var in feed_list:
323
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
324
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
325 326 327 328 329
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
330
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
331 332 333 334

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
335
        """
336 337
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
338

339 340
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
341

342 343
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
344

345
        Example:
346 347
            ..  code-block:: python

348 349 350 351 352 353
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
354 355 356
                import paddle.fluid as fluid
                
                def reader(limit=5):
357 358
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
359
                
360 361 362
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
363 364
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
365 366 367 368
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
369
                print(result['data_3'])
370

C
chengduoZH 已提交
371
        """
Y
Yu Yang 已提交
372
        converter = []
373
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
374 375 376 377 378 379 380 381 382
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
383
            assert len(each_sample) == len(converter), (
384 385
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
386 387
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
388 389
                each_converter.feed(each_slot)
        ret_dict = {}
390 391
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
392 393
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
394 395

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
396
        """
397 398
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
399
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
400

401
        Parameters:
T
tianshuo78520a 已提交
402
            iterable (list|tuple): list of user-defined python generators. The element 
403 404 405
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
406

407 408 409
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
410

411 412
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
413

414
        Example:
415 416
            ..  code-block:: python

417
                import numpy as np
418
                import paddle.fluid as fluid
419

420 421 422 423 424
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
425 426 427 428

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

429
                z = fluid.layers.elementwise_add(x, y)
430

431
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
432
                place_num = 2
433 434 435 436 437
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
438

T
tianshuo78520a 已提交
439
                # print sample feed_parallel r result
440 441 442
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
443

444 445 446
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
447

C
chengduoZH 已提交
448
        """
Y
yuyang18 已提交
449 450 451
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
452 453
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
454 455 456 457
            ]
        else:
            places = [
                core.CPUPlace()
458 459
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
460 461 462 463 464 465 466 467 468
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
469
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
470 471 472 473 474 475 476 477
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
478
            return len(_cuda_ids())
Y
yuyang18 已提交
479
        else:
C
chengduo 已提交
480
            return _cpu_num()
Y
yuyang18 已提交
481 482 483 484 485 486

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
487
        """
488 489 490 491 492
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
493
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
494 495 496 497 498 499 500 501 502 503 504
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
505
        Raises:
506
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
507

508
        Example:
509 510
            ..  code-block:: python

511
                import numpy as np
512 513
                import paddle
                import paddle.fluid as fluid
514
                import paddle.fluid.compiler as compiler
515
                
516 517 518 519
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
520

521 522
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
523
                
524 525
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
526
                
527
                # a simple network sample
528 529
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
530 531
                hidden = fluid.layers.fc(input=data, size=10)
                
532 533
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
534
                
535
                exe = fluid.Executor(places[0])
536
                exe.run(fluid.default_startup_program())
537
                compiled_prog = compiler.CompiledProgram(
538 539
                         fluid.default_main_program()).with_data_parallel(places=places)
                
540
                for i,data in enumerate(reader()):
541 542
                    # print data if you like
                    # print(i, data)
543
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
544 545
                    print(ret)

C
chengduoZH 已提交
546 547
        """

Y
yuyang18 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__