Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
10cee7ed
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
10cee7ed
编写于
6月 20, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add doc of fetch var
上级
74d1bf4a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
24 addition
and
21 deletion
+24
-21
python/paddle/fluid/data_feeder.py
python/paddle/fluid/data_feeder.py
+17
-18
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+7
-3
未找到文件。
python/paddle/fluid/data_feeder.py
浏览文件 @
10cee7ed
...
...
@@ -71,25 +71,21 @@ class DataToLoDTensorConverter(object):
class
DataFeeder
(
object
):
"""
DataFeeder converts the data that returned by
paddle.reader into
a
data structure of Arguments which is defined in the API. The paddle.
reader
DataFeeder converts the data that returned by
a reader into a dat
a
structure that can feed into Executor and ParallelExecutor. The
reader
usually returns a list of mini-batch data entries. Each data entry in
the list is one sample. Each sample is a list or a tuple with one feature
or multiple features. DataFeeder converts this mini-batch data entries
into Arguments in order to feed it to C++ interface.
the list is one sample. Each sample is a list or a tuple with one
feature or multiple features.
The simple usage shows below:
.. code-block:: python
place = fluid.CPUPlace()
data = fluid.layers.data(
name='data', shape=[1], dtype='int64', lod_level=2)
img = fluid.layers.data(name='image', shape=[1, 28, 28])
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder([data, label], place)
result = feeder.feed(
[([[1, 2, 3], [4, 5]], [1]), ([[6, 7, 8, 9]], [1])])
feeder = fluid.DataFeeder([img, label], fluid.CPUPlace())
result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])])
If you want to feed data into GPU side separately in advance when you
...
...
@@ -105,12 +101,15 @@ class DataFeeder(object):
Args:
feed_list(list): The Variables or Variables'name that will
feed into model.
place(Place): fluid.CPUPlace() or fluid.CUDAPlace(i).
place(Place): place indicates feed data into CPU or GPU, if you want to
feed data into GPU, please using `fluid.CUDAPlace(i)` (`i` represents
the GPU id), or if you want to feed data into CPU, please using
`fluid.CPUPlace()`.
program(Program): The Program that will feed data into, if program
is None, it will use default_main_program(). Default None.
Raises:
ValueError: If
the some Variable is not in the
Program.
ValueError: If
some Variable is not in this
Program.
Examples:
.. code-block:: python
...
...
@@ -119,7 +118,7 @@ class DataFeeder(object):
place = fluid.CPUPlace()
feed_list = [
main_program.global_block().var(var_name) for var_name in feed_vars_name
]
]
# feed_vars_name is a list of variables' name.
feeder = fluid.DataFeeder(feed_list, place)
for data in reader():
outs = exe.run(program=main_program,
...
...
@@ -156,8 +155,8 @@ class DataFeeder(object):
def
feed
(
self
,
iterable
):
"""
According to feed_list and iterable
converter the input data
into a dictionary that can feed into Executor or
ParallelExecutor.
According to feed_list and iterable
, converters the input into
a data structure that can feed into Executor and
ParallelExecutor.
Args:
iterable(list|tuple): the input data.
...
...
@@ -189,11 +188,11 @@ class DataFeeder(object):
def
feed_parallel
(
self
,
iterable
,
num_places
=
None
):
"""
Takes multiple mini-batches. Each mini-batch will be feed on each
device.
device
in advance
.
Args:
iterable(list|tuple): the input data.
num_places(int): the number of
pla
ces. Default None.
num_places(int): the number of
devi
ces. Default None.
Returns:
dict: the result of conversion.
...
...
python/paddle/fluid/executor.py
浏览文件 @
10cee7ed
...
...
@@ -135,14 +135,18 @@ def has_fetch_operators(block, fetch_targets, fetch_holder_name):
def
fetch_var
(
name
,
scope
=
None
,
return_numpy
=
True
):
"""
Fetch the value of the variable with the given name from the given scope
Fetch the value of the variable with the given name from the
given scope.
Args:
name(str): name of the variable. Typically, only persistable variables
can be found in the scope used for running the program.
scope(core.Scope|None): scope object. It should be the scope where
you pass to Executor.run() when running your program.
If None, global_scope() will be used.
return_numpy(bool): whether convert the tensor to numpy.ndarray
If None, global_scope() will be used. Default None.
return_numpy(bool): whether convert the tensor to numpy.ndarray.
Default True.
Returns:
LodTensor|numpy.ndarray
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录