data_feeder.py 20.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28 29
__all__ = ['DataFeeder']


S
sneaxiy 已提交
30
def convert_dtype(dtype):
P
pkpk 已提交
31
    if isinstance(dtype, core.VarDesc.VarType):
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        if dtype == core.VarDesc.VarType.BOOL:
            return 'bool'
        elif dtype == core.VarDesc.VarType.FP16:
            return 'float16'
        elif dtype == core.VarDesc.VarType.FP32:
            return 'float32'
        elif dtype == core.VarDesc.VarType.FP64:
            return 'float64'
        elif dtype == core.VarDesc.VarType.INT8:
            return 'int8'
        elif dtype == core.VarDesc.VarType.INT16:
            return 'int16'
        elif dtype == core.VarDesc.VarType.INT32:
            return 'int32'
        elif dtype == core.VarDesc.VarType.INT64:
            return 'int64'
        elif dtype == core.VarDesc.VarType.UINT8:
            return 'uint8'
50 51 52 53 54 55
    elif isinstance(dtype, type):
        if dtype in [
                np.bool, np.float16, np.float32, np.float64, np.int8, np.int16,
                np.int32, np.int64, np.uint8
        ]:
            return dtype.__name__
P
pkpk 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
    else:
        if dtype in [
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
                'int32', 'int64', 'uint8', u'bool', u'float16', u'float32',
                u'float64', u'int8', u'int16', u'int32', u'int64', u'uint8'
        ]:
            # this code is a little bit dangerous, since error could happen
            # when casting no-asci code to str in python2.
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

69 70 71
    raise ValueError(
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
        "int32, int64, uint8]")
S
sneaxiy 已提交
72 73


74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
def check_type_and_dtype(input,
                         input_name,
                         expected_type,
                         expected_dtype,
                         op_name,
                         extra_message=''):
    check_type(input, input_name, expected_type, op_name, extra_message)
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


Y
Yu Yang 已提交
107 108 109 110 111
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
112 113 114 115 116 117 118
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
119 120
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
121

S
sneaxiy 已提交
122
    def _reset(self):
Y
Yu Yang 已提交
123
        self.data = []
S
sneaxiy 已提交
124
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
125 126 127 128 129 130 131 132

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
133
            lod[0].append(len(data))
Y
Yu Yang 已提交
134
            for each_data in data:
K
Kexin Zhao 已提交
135
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
136

S
sneaxiy 已提交
137
    def _check_shape(self, shape):
S
sneaxiy 已提交
138 139 140 141 142 143
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
144
    def done(self):
145
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
146 147
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
148 149 150 151 152 153
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
154 155 156
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
157
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
158
        self._reset()
Y
Yu Yang 已提交
159 160 161
        return t


S
sneaxiy 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
200
class DataFeeder(object):
C
chengduoZH 已提交
201
    """
C
chengduoZH 已提交
202
    DataFeeder converts the data that returned by a reader into a data
203 204 205 206 207 208 209 210 211 212 213 214 215 216
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
217 218

    Raises:
219
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
220

221
    Example:
222 223 224 225 226 227
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
228
            place = fluid.CPUPlace()
229
            def reader():
230 231
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
232 233 234 235 236
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
237 238
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
239 240 241
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
242
            
243 244
            exe = fluid.Executor(place)
            exe.run(startup_program)
245 246 247 248 249 250 251 252 253 254
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
255
            print(outs)
256

C
chengduoZH 已提交
257 258
    """

F
fengjiayi 已提交
259
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
260 261 262 263
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
264 265
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
266
        for each_var in feed_list:
267
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
268
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
269 270 271 272 273
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
274
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
275 276 277 278

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
279
        """
280 281
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
282

283 284
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
285

286 287
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
288

289
        Example:
290 291
            ..  code-block:: python

292 293 294 295 296 297
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
298 299 300
                import paddle.fluid as fluid
                
                def reader(limit=5):
301 302
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
303
                
304 305 306
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
307 308
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
309 310 311 312
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
313
                print(result['data_3'])
314

C
chengduoZH 已提交
315
        """
Y
Yu Yang 已提交
316
        converter = []
317
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
318 319 320 321 322 323 324 325 326
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
327
            assert len(each_sample) == len(converter), (
328 329
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
330 331
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
332 333
                each_converter.feed(each_slot)
        ret_dict = {}
334 335
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
336 337
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
338 339

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
340
        """
341 342 343
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
        generator in the list will be fed into a seperate device.        
C
chengduoZH 已提交
344

345 346 347 348 349
        Parameters:
            iterable (list|tuple): list of user-defined python geneators. The element 
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
350

351 352 353
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
354

355 356
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
357

358
        Example:
359 360
            ..  code-block:: python

361
                import numpy as np
362
                import paddle.fluid as fluid
363

364 365 366 367 368
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
369 370 371 372

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

373
                z = fluid.layers.elementwise_add(x, y)
374

375
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
376
                place_num = 2
377 378 379 380 381
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
382

383 384 385 386
                # print sample feed_parallel r resultt
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
387

388 389 390
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
391

C
chengduoZH 已提交
392
        """
Y
yuyang18 已提交
393 394 395
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
396 397
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
398 399 400 401
            ]
        else:
            places = [
                core.CPUPlace()
402 403
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
404 405 406 407 408 409 410 411 412
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
413
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
414 415 416 417 418 419 420 421
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
422
            return len(_cuda_ids())
Y
yuyang18 已提交
423
        else:
C
chengduo 已提交
424
            return _cpu_num()
Y
yuyang18 已提交
425 426 427 428 429 430

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
431
        """
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
                A :code:`mini-batch` can be regarded as a python generator that returns batchs of input 
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
449
        Raises:
450
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
451

452
        Example:
453 454
            ..  code-block:: python

455
                import numpy as np
456 457
                import paddle
                import paddle.fluid as fluid
458
                import paddle.fluid.compiler as compiler
459
                
460 461 462 463
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
464

465 466
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
467
                
468 469
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
470
                
471
                # a simple network sample
472 473
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
474 475
                hidden = fluid.layers.fc(input=data, size=10)
                
476 477
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
478
                
479
                exe = fluid.Executor(places[0])
480
                exe.run(fluid.default_startup_program())
481
                compiled_prog = compiler.CompiledProgram(
482 483
                         fluid.default_main_program()).with_data_parallel(places=places)
                
484
                for i,data in enumerate(reader()):
485 486
                    # print data if you like
                    # print(i, data)
487
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
488 489
                    print(ret)

C
chengduoZH 已提交
490 491
        """

Y
yuyang18 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__