data_feeder.py 23.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place, in_dygraph_mode, _in_eager_mode
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28
__all__ = ['DataFeeder']

L
Leo Chen 已提交
29 30 31
_PADDLE_DTYPE_2_NUMPY_DTYPE = {
    core.VarDesc.VarType.BOOL: 'bool',
    core.VarDesc.VarType.FP16: 'float16',
32
    core.VarDesc.VarType.BF16: 'uint16',
L
Leo Chen 已提交
33 34 35 36 37 38 39 40 41 42 43
    core.VarDesc.VarType.FP32: 'float32',
    core.VarDesc.VarType.FP64: 'float64',
    core.VarDesc.VarType.INT8: 'int8',
    core.VarDesc.VarType.INT16: 'int16',
    core.VarDesc.VarType.INT32: 'int32',
    core.VarDesc.VarType.INT64: 'int64',
    core.VarDesc.VarType.UINT8: 'uint8',
    core.VarDesc.VarType.COMPLEX64: 'complex64',
    core.VarDesc.VarType.COMPLEX128: 'complex128',
}

Y
Yu Yang 已提交
44

S
sneaxiy 已提交
45
def convert_dtype(dtype):
P
pkpk 已提交
46
    if isinstance(dtype, core.VarDesc.VarType):
L
Leo Chen 已提交
47 48
        if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
            return _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
49 50
    elif isinstance(dtype, type):
        if dtype in [
51 52 53
                np.bool, np.float16, np.uint16, np.float32, np.float64, np.int8,
                np.int16, np.int32, np.int64, np.uint8, np.complex64,
                np.complex128
54 55
        ]:
            return dtype.__name__
P
pkpk 已提交
56 57
    else:
        if dtype in [
58 59 60 61 62
                'bool', 'float16', 'uint16', 'float32', 'float64', 'int8',
                'int16', 'int32', 'int64', 'uint8', 'complex64', 'complex128',
                u'bool', u'float16', u'uint16', u'float32', u'float64', u'int8',
                u'int16', u'int32', u'int64', u'uint8', u'complex64',
                u'complex128'
P
pkpk 已提交
63 64
        ]:
            # this code is a little bit dangerous, since error could happen
65
            # when casting no-ascii code to str in python2.
P
pkpk 已提交
66 67 68 69
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)
70 71 72
        # NOTE(zhangbo): Now numpy does not support bfloat, and paddle use uint16 to represent bfloat16, and there binaries are consistent.
        if dtype in ['bfloat16']:
            return 'uint16'
P
pkpk 已提交
73

74
    raise TypeError(
75
        "dtype must be any of [bool, float16, uint16, float32, float64, int8, int16, "
76
        "int32, int64, uint8, complex64, complex128], but received %s" % dtype)
S
sneaxiy 已提交
77 78


79 80 81 82 83
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
84
    check_type(input, input_name, Variable, op_name, extra_message)
85 86 87 88
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
89 90 91 92 93 94 95 96 97
    # NOTE [ Why skip dynamic graph check ]:
    # 1. If the input type / dtype of a layer is wrong, it will be reported
    # directly on that line. User can easily print the relevant information
    # on which line. It is easier to debug, so there is no need to check
    # in dynamic graph mode.
    # 2. Performance considerations. Because these checks are executed at
    # each step in dynamic graph mode, it will bring a heavy performance burden.
    if in_dygraph_mode():
        return
98 99 100 101

    # NOTE: `in_declarative_mode` is used to determined whether this op is called under
    # @declarative in transformation from dygrah to static layer. We add VarBase in
    # expected_type to skip checking because varBase may be created and used in unusual way.
102
    from .dygraph.base import in_declarative_mode
103 104 105 106 107
    # Need a better design to be fix this.
    if in_declarative_mode():
        if not isinstance(expected_type, tuple):
            expected_type = (expected_type, )
        expected_type += (core.VarBase, )
108 109
        if core._in_eager_mode():
            expected_type += (core.eager.Tensor, )
110 111 112 113 114
    elif isinstance(input, core.VarBase):
        raise TypeError(
            "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
            "Because received '{}' in {} is a imperative Variable.".format(
                input_name, op_name))
115
    elif hasattr(core, "eager"):
116
        if isinstance(input, core.eager.Tensor):
117 118 119 120
            raise TypeError(
                "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
                "Because received '{}' in {} is a imperative Variable.".format(
                    input_name, op_name))
121 122 123 124 125 126 127 128 129 130 131
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
132 133 134
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
135 136 137 138
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
139 140 141 142 143 144
    if convert_dtype(input_dtype) in ['uint16'] and op_name not in [
            'reshape', 'lookup_table', 'scale'
    ]:
        warnings.warn(
            "The data type of '%s' in %s only support bfloat16 in OneDNN now. %s"
            % (input_name, op_name, extra_message))
145 146 147 148 149 150 151
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
def check_shape(shape,
                op_name,
                expected_shape_type=(list, tuple, Variable),
                expected_element_type=(int, Variable),
                expected_tensor_dtype=('int32', 'int64')):
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
    check_type(shape, 'shape', expected_shape_type, op_name)
    if expected_element_type is not None and not isinstance(shape, Variable):
        for item in shape:
            check_type(item, 'element of shape', expected_element_type, op_name)
            if expected_tensor_dtype is not None and isinstance(item, Variable):
                check_dtype(
                    item.dtype, 'element of shape', expected_tensor_dtype,
                    op_name,
                    'If element of shape is Tensor, its data type should be {}'.
                    format(', '.join(expected_tensor_dtype)))
    if expected_tensor_dtype is not None and isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', expected_tensor_dtype, op_name)


Y
Yu Yang 已提交
174 175 176 177 178
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
179 180 181 182 183 184 185
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
186 187
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
188

S
sneaxiy 已提交
189
    def _reset(self):
Y
Yu Yang 已提交
190
        self.data = []
S
sneaxiy 已提交
191
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
192 193 194 195 196 197 198 199

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
200
            lod[0].append(len(data))
Y
Yu Yang 已提交
201
            for each_data in data:
K
Kexin Zhao 已提交
202
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
203

S
sneaxiy 已提交
204
    def _check_shape(self, shape):
S
sneaxiy 已提交
205 206 207 208 209 210
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
211
    def done(self):
212
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
213 214
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
215 216 217 218 219 220
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
221 222 223
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
224
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
225
        self._reset()
Y
Yu Yang 已提交
226 227 228
        return t


S
sneaxiy 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
267
class DataFeeder(object):
C
chengduoZH 已提交
268
    """
269 270
    :api_attr: Static Graph
    
C
chengduoZH 已提交
271
    DataFeeder converts the data that returned by a reader into a data
272 273 274 275 276 277 278 279 280 281 282 283 284 285
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
286 287

    Raises:
288
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
289

290
    Example:
291 292 293 294 295 296
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
297
            place = fluid.CPUPlace()
298
            def reader():
299 300
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
301 302 303 304 305
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
306 307
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
308 309 310
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
311
            
312 313
            exe = fluid.Executor(place)
            exe.run(startup_program)
314 315 316 317 318 319 320 321 322 323
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
324
            print(outs)
325

C
chengduoZH 已提交
326 327
    """

F
fengjiayi 已提交
328
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
329 330 331 332
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
333 334
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
335
        for each_var in feed_list:
336
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
337
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
338 339 340 341 342
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
343
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
344 345 346 347

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
348
        """
349 350
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
351

352 353
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
354

355 356
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
357

358
        Example:
359 360
            ..  code-block:: python

361 362 363 364 365 366
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
367 368 369
                import paddle.fluid as fluid
                
                def reader(limit=5):
370 371
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
372
                
373 374 375
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
376 377
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
378 379 380 381
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
382
                print(result['data_3'])
383

C
chengduoZH 已提交
384
        """
Y
Yu Yang 已提交
385
        converter = []
386
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
387 388 389 390 391 392 393 394 395
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
396
            assert len(each_sample) == len(converter), (
397 398
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
399 400
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
401 402
                each_converter.feed(each_slot)
        ret_dict = {}
403 404
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
405 406
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
407 408

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
409
        """
410 411
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
412
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
413

414
        Parameters:
T
tianshuo78520a 已提交
415
            iterable (list|tuple): list of user-defined python generators. The element 
416 417 418
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
419

420 421 422
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
423

424 425
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
426

427
        Example:
428 429
            ..  code-block:: python

430
                import numpy as np
431
                import paddle.fluid as fluid
432

433 434 435 436 437
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
438 439 440 441

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

442
                z = fluid.layers.elementwise_add(x, y)
443

444
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
445
                place_num = 2
446 447 448 449 450
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
451

T
tianshuo78520a 已提交
452
                # print sample feed_parallel r result
453 454 455
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
456

457 458 459
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
460

C
chengduoZH 已提交
461
        """
Y
yuyang18 已提交
462 463 464
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
465 466
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
467 468 469 470
            ]
        else:
            places = [
                core.CPUPlace()
471 472
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
473 474 475 476 477 478 479 480 481
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
482
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
483 484 485 486 487 488 489 490
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
491
            return len(_cuda_ids())
Y
yuyang18 已提交
492
        else:
C
chengduo 已提交
493
            return _cpu_num()
Y
yuyang18 已提交
494 495 496 497 498 499

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
500
        """
501 502 503 504 505
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
506
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
507 508 509 510 511 512 513 514 515 516 517
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
518
        Raises:
519
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
520

521
        Example:
522 523
            ..  code-block:: python

524
                import numpy as np
525 526
                import paddle
                import paddle.fluid as fluid
527
                import paddle.fluid.compiler as compiler
528
                
529 530 531 532
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
533

534 535
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
536
                
537 538
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
539
                
540
                # a simple network sample
541 542
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
543 544
                hidden = fluid.layers.fc(input=data, size=10)
                
545 546
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
547
                
548
                exe = fluid.Executor(places[0])
549
                exe.run(fluid.default_startup_program())
550
                compiled_prog = compiler.CompiledProgram(
551 552
                         fluid.default_main_program()).with_data_parallel(places=places)
                
553
                for i,data in enumerate(reader()):
554 555
                    # print data if you like
                    # print(i, data)
556
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
557 558
                    print(ret)

C
chengduoZH 已提交
559 560
        """

Y
yuyang18 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__