data_feeder.py 20.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place, in_dygraph_mode
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28 29
__all__ = ['DataFeeder']


S
sneaxiy 已提交
30
def convert_dtype(dtype):
P
pkpk 已提交
31
    if isinstance(dtype, core.VarDesc.VarType):
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        if dtype == core.VarDesc.VarType.BOOL:
            return 'bool'
        elif dtype == core.VarDesc.VarType.FP16:
            return 'float16'
        elif dtype == core.VarDesc.VarType.FP32:
            return 'float32'
        elif dtype == core.VarDesc.VarType.FP64:
            return 'float64'
        elif dtype == core.VarDesc.VarType.INT8:
            return 'int8'
        elif dtype == core.VarDesc.VarType.INT16:
            return 'int16'
        elif dtype == core.VarDesc.VarType.INT32:
            return 'int32'
        elif dtype == core.VarDesc.VarType.INT64:
            return 'int64'
        elif dtype == core.VarDesc.VarType.UINT8:
            return 'uint8'
50 51 52 53 54 55
    elif isinstance(dtype, type):
        if dtype in [
                np.bool, np.float16, np.float32, np.float64, np.int8, np.int16,
                np.int32, np.int64, np.uint8
        ]:
            return dtype.__name__
P
pkpk 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
    else:
        if dtype in [
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
                'int32', 'int64', 'uint8', u'bool', u'float16', u'float32',
                u'float64', u'int8', u'int16', u'int32', u'int64', u'uint8'
        ]:
            # this code is a little bit dangerous, since error could happen
            # when casting no-asci code to str in python2.
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

69 70 71
    raise ValueError(
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
        "int32, int64, uint8]")
S
sneaxiy 已提交
72 73


74 75 76 77 78
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
79 80
    check_type(input, input_name, (Variable, core.VarBase), op_name,
               extra_message)
81 82 83 84
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
85 86 87 88 89 90 91 92 93
    # NOTE [ Why skip dynamic graph check ]:
    # 1. If the input type / dtype of a layer is wrong, it will be reported
    # directly on that line. User can easily print the relevant information
    # on which line. It is easier to debug, so there is no need to check
    # in dynamic graph mode.
    # 2. Performance considerations. Because these checks are executed at
    # each step in dynamic graph mode, it will bring a heavy performance burden.
    if in_dygraph_mode():
        return
94 95 96 97 98 99 100 101 102 103 104
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
105 106 107
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
108 109 110 111 112 113 114 115 116 117 118
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


Y
Yu Yang 已提交
119 120 121 122 123
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
124 125 126 127 128 129 130
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
131 132
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
133

S
sneaxiy 已提交
134
    def _reset(self):
Y
Yu Yang 已提交
135
        self.data = []
S
sneaxiy 已提交
136
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
137 138 139 140 141 142 143 144

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
145
            lod[0].append(len(data))
Y
Yu Yang 已提交
146
            for each_data in data:
K
Kexin Zhao 已提交
147
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
148

S
sneaxiy 已提交
149
    def _check_shape(self, shape):
S
sneaxiy 已提交
150 151 152 153 154 155
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
156
    def done(self):
157
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
158 159
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
160 161 162 163 164 165
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
166 167 168
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
169
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
170
        self._reset()
Y
Yu Yang 已提交
171 172 173
        return t


S
sneaxiy 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
212
class DataFeeder(object):
C
chengduoZH 已提交
213
    """
C
chengduoZH 已提交
214
    DataFeeder converts the data that returned by a reader into a data
215 216 217 218 219 220 221 222 223 224 225 226 227 228
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
229 230

    Raises:
231
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
232

233
    Example:
234 235 236 237 238 239
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
240
            place = fluid.CPUPlace()
241
            def reader():
242 243
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
244 245 246 247 248
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
249 250
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
251 252 253
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
254
            
255 256
            exe = fluid.Executor(place)
            exe.run(startup_program)
257 258 259 260 261 262 263 264 265 266
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
267
            print(outs)
268

C
chengduoZH 已提交
269 270
    """

F
fengjiayi 已提交
271
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
272 273 274 275
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
276 277
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
278
        for each_var in feed_list:
279
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
280
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
281 282 283 284 285
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
286
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
287 288 289 290

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
291
        """
292 293
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
294

295 296
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
297

298 299
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
300

301
        Example:
302 303
            ..  code-block:: python

304 305 306 307 308 309
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
310 311 312
                import paddle.fluid as fluid
                
                def reader(limit=5):
313 314
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
315
                
316 317 318
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
319 320
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
321 322 323 324
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
325
                print(result['data_3'])
326

C
chengduoZH 已提交
327
        """
Y
Yu Yang 已提交
328
        converter = []
329
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337 338
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
339
            assert len(each_sample) == len(converter), (
340 341
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
342 343
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
344 345
                each_converter.feed(each_slot)
        ret_dict = {}
346 347
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
348 349
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
350 351

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
352
        """
353 354
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
355
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
356

357
        Parameters:
T
tianshuo78520a 已提交
358
            iterable (list|tuple): list of user-defined python generators. The element 
359 360 361
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
362

363 364 365
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
366

367 368
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
369

370
        Example:
371 372
            ..  code-block:: python

373
                import numpy as np
374
                import paddle.fluid as fluid
375

376 377 378 379 380
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
381 382 383 384

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

385
                z = fluid.layers.elementwise_add(x, y)
386

387
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
388
                place_num = 2
389 390 391 392 393
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
394

T
tianshuo78520a 已提交
395
                # print sample feed_parallel r result
396 397 398
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
399

400 401 402
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
403

C
chengduoZH 已提交
404
        """
Y
yuyang18 已提交
405 406 407
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
408 409
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
410 411 412 413
            ]
        else:
            places = [
                core.CPUPlace()
414 415
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
416 417 418 419 420 421 422 423 424
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
425
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
426 427 428 429 430 431 432 433
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
434
            return len(_cuda_ids())
Y
yuyang18 已提交
435
        else:
C
chengduo 已提交
436
            return _cpu_num()
Y
yuyang18 已提交
437 438 439 440 441 442

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
443
        """
444 445 446 447 448
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
449
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
450 451 452 453 454 455 456 457 458 459 460
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
461
        Raises:
462
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
463

464
        Example:
465 466
            ..  code-block:: python

467
                import numpy as np
468 469
                import paddle
                import paddle.fluid as fluid
470
                import paddle.fluid.compiler as compiler
471
                
472 473 474 475
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
476

477 478
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
479
                
480 481
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
482
                
483
                # a simple network sample
484 485
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
486 487
                hidden = fluid.layers.fc(input=data, size=10)
                
488 489
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
490
                
491
                exe = fluid.Executor(places[0])
492
                exe.run(fluid.default_startup_program())
493
                compiled_prog = compiler.CompiledProgram(
494 495
                         fluid.default_main_program()).with_data_parallel(places=places)
                
496
                for i,data in enumerate(reader()):
497 498
                    # print data if you like
                    # print(i, data)
499
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
500 501
                    print(ret)

C
chengduoZH 已提交
502 503
        """

Y
yuyang18 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__