data_feeder.py 22.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place, in_dygraph_mode
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28
__all__ = ['DataFeeder']

L
Leo Chen 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42
_PADDLE_DTYPE_2_NUMPY_DTYPE = {
    core.VarDesc.VarType.BOOL: 'bool',
    core.VarDesc.VarType.FP16: 'float16',
    core.VarDesc.VarType.FP32: 'float32',
    core.VarDesc.VarType.FP64: 'float64',
    core.VarDesc.VarType.INT8: 'int8',
    core.VarDesc.VarType.INT16: 'int16',
    core.VarDesc.VarType.INT32: 'int32',
    core.VarDesc.VarType.INT64: 'int64',
    core.VarDesc.VarType.UINT8: 'uint8',
    core.VarDesc.VarType.COMPLEX64: 'complex64',
    core.VarDesc.VarType.COMPLEX128: 'complex128',
}

Y
Yu Yang 已提交
43

S
sneaxiy 已提交
44
def convert_dtype(dtype):
P
pkpk 已提交
45
    if isinstance(dtype, core.VarDesc.VarType):
L
Leo Chen 已提交
46 47
        if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
            return _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
48 49 50
    elif isinstance(dtype, type):
        if dtype in [
                np.bool, np.float16, np.float32, np.float64, np.int8, np.int16,
51
                np.int32, np.int64, np.uint8, np.complex64, np.complex128
52 53
        ]:
            return dtype.__name__
P
pkpk 已提交
54 55 56
    else:
        if dtype in [
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
57 58 59
                'int32', 'int64', 'uint8', 'complex64', 'complex128', u'bool',
                u'float16', u'float32', u'float64', u'int8', u'int16', u'int32',
                u'int64', u'uint8', u'complex64', u'complex128'
P
pkpk 已提交
60 61
        ]:
            # this code is a little bit dangerous, since error could happen
62
            # when casting no-ascii code to str in python2.
P
pkpk 已提交
63 64 65 66 67
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

68
    raise TypeError(
69
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
70
        "int32, int64, uint8, complex64, complex128], but received %s" % dtype)
S
sneaxiy 已提交
71 72


73 74 75 76 77
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
78
    check_type(input, input_name, Variable, op_name, extra_message)
79 80 81 82
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
83 84 85 86 87 88 89 90 91
    # NOTE [ Why skip dynamic graph check ]:
    # 1. If the input type / dtype of a layer is wrong, it will be reported
    # directly on that line. User can easily print the relevant information
    # on which line. It is easier to debug, so there is no need to check
    # in dynamic graph mode.
    # 2. Performance considerations. Because these checks are executed at
    # each step in dynamic graph mode, it will bring a heavy performance burden.
    if in_dygraph_mode():
        return
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

    from .dygraph.dygraph_to_static.program_translator import in_declarative_mode
    # NOTE: `in_declarative_mode` is used to determined whether this op is called under
    # @declarative in transformation from dygrah to static layer. We add VarBase in
    # expected_type to skip checking because varBase may be created and used in unusual way.
    # Need a better design to be fix this.
    if in_declarative_mode():
        if not isinstance(expected_type, tuple):
            expected_type = (expected_type, )
        expected_type += (core.VarBase, )
    elif isinstance(input, core.VarBase):
        raise TypeError(
            "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
            "Because received '{}' in {} is a imperative Variable.".format(
                input_name, op_name))

108 109 110 111 112 113 114 115 116 117 118
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
119 120 121
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
122 123 124 125 126 127 128 129 130 131 132
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
def check_shape(shape,
                op_name,
                expected_shape_type=(list, tuple, Variable),
                expected_element_type=(int, Variable),
                expected_tensor_dtype=('int32', 'int64')):
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
    check_type(shape, 'shape', expected_shape_type, op_name)
    if expected_element_type is not None and not isinstance(shape, Variable):
        for item in shape:
            check_type(item, 'element of shape', expected_element_type, op_name)
            if expected_tensor_dtype is not None and isinstance(item, Variable):
                check_dtype(
                    item.dtype, 'element of shape', expected_tensor_dtype,
                    op_name,
                    'If element of shape is Tensor, its data type should be {}'.
                    format(', '.join(expected_tensor_dtype)))
    if expected_tensor_dtype is not None and isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', expected_tensor_dtype, op_name)


Y
Yu Yang 已提交
155 156 157 158 159
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
160 161 162 163 164 165 166
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
167 168
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
169

S
sneaxiy 已提交
170
    def _reset(self):
Y
Yu Yang 已提交
171
        self.data = []
S
sneaxiy 已提交
172
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
173 174 175 176 177 178 179 180

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
181
            lod[0].append(len(data))
Y
Yu Yang 已提交
182
            for each_data in data:
K
Kexin Zhao 已提交
183
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
184

S
sneaxiy 已提交
185
    def _check_shape(self, shape):
S
sneaxiy 已提交
186 187 188 189 190 191
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
192
    def done(self):
193
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
194 195
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
196 197 198 199 200 201
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
202 203 204
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
205
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
206
        self._reset()
Y
Yu Yang 已提交
207 208 209
        return t


S
sneaxiy 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
248
class DataFeeder(object):
C
chengduoZH 已提交
249
    """
250 251
    :api_attr: Static Graph
    
C
chengduoZH 已提交
252
    DataFeeder converts the data that returned by a reader into a data
253 254 255 256 257 258 259 260 261 262 263 264 265 266
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
267 268

    Raises:
269
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
270

271
    Example:
272 273 274 275 276 277
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
278
            place = fluid.CPUPlace()
279
            def reader():
280 281
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
282 283 284 285 286
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
287 288
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
289 290 291
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
292
            
293 294
            exe = fluid.Executor(place)
            exe.run(startup_program)
295 296 297 298 299 300 301 302 303 304
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
305
            print(outs)
306

C
chengduoZH 已提交
307 308
    """

F
fengjiayi 已提交
309
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
310 311 312 313
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
314 315
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
316
        for each_var in feed_list:
317
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
318
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
319 320 321 322 323
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
324
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
325 326 327 328

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
329
        """
330 331
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
332

333 334
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
335

336 337
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
338

339
        Example:
340 341
            ..  code-block:: python

342 343 344 345 346 347
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
348 349 350
                import paddle.fluid as fluid
                
                def reader(limit=5):
351 352
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
353
                
354 355 356
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
357 358
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
359 360 361 362
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
363
                print(result['data_3'])
364

C
chengduoZH 已提交
365
        """
Y
Yu Yang 已提交
366
        converter = []
367
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
368 369 370 371 372 373 374 375 376
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
377
            assert len(each_sample) == len(converter), (
378 379
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
380 381
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
382 383
                each_converter.feed(each_slot)
        ret_dict = {}
384 385
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
386 387
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
388 389

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
390
        """
391 392
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
393
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
394

395
        Parameters:
T
tianshuo78520a 已提交
396
            iterable (list|tuple): list of user-defined python generators. The element 
397 398 399
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
400

401 402 403
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
404

405 406
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
407

408
        Example:
409 410
            ..  code-block:: python

411
                import numpy as np
412
                import paddle.fluid as fluid
413

414 415 416 417 418
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
419 420 421 422

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

423
                z = fluid.layers.elementwise_add(x, y)
424

425
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
426
                place_num = 2
427 428 429 430 431
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
432

T
tianshuo78520a 已提交
433
                # print sample feed_parallel r result
434 435 436
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
437

438 439 440
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
441

C
chengduoZH 已提交
442
        """
Y
yuyang18 已提交
443 444 445
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
446 447
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
448 449 450 451
            ]
        else:
            places = [
                core.CPUPlace()
452 453
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
454 455 456 457 458 459 460 461 462
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
463
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
464 465 466 467 468 469 470 471
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
472
            return len(_cuda_ids())
Y
yuyang18 已提交
473
        else:
C
chengduo 已提交
474
            return _cpu_num()
Y
yuyang18 已提交
475 476 477 478 479 480

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
481
        """
482 483 484 485 486
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
487
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
488 489 490 491 492 493 494 495 496 497 498
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
499
        Raises:
500
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
501

502
        Example:
503 504
            ..  code-block:: python

505
                import numpy as np
506 507
                import paddle
                import paddle.fluid as fluid
508
                import paddle.fluid.compiler as compiler
509
                
510 511 512 513
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
514

515 516
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
517
                
518 519
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
520
                
521
                # a simple network sample
522 523
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
524 525
                hidden = fluid.layers.fc(input=data, size=10)
                
526 527
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
528
                
529
                exe = fluid.Executor(places[0])
530
                exe.run(fluid.default_startup_program())
531
                compiled_prog = compiler.CompiledProgram(
532 533
                         fluid.default_main_program()).with_data_parallel(places=places)
                
534
                for i,data in enumerate(reader()):
535 536
                    # print data if you like
                    # print(i, data)
537
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
538 539
                    print(ret)

C
chengduoZH 已提交
540 541
        """

Y
yuyang18 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__