data_feeder.py 23.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place, in_dygraph_mode, _in_eager_mode
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28
__all__ = ['DataFeeder']

L
Leo Chen 已提交
29 30 31
_PADDLE_DTYPE_2_NUMPY_DTYPE = {
    core.VarDesc.VarType.BOOL: 'bool',
    core.VarDesc.VarType.FP16: 'float16',
32
    core.VarDesc.VarType.BF16: 'uint16',
L
Leo Chen 已提交
33 34 35 36 37 38 39 40 41 42 43
    core.VarDesc.VarType.FP32: 'float32',
    core.VarDesc.VarType.FP64: 'float64',
    core.VarDesc.VarType.INT8: 'int8',
    core.VarDesc.VarType.INT16: 'int16',
    core.VarDesc.VarType.INT32: 'int32',
    core.VarDesc.VarType.INT64: 'int64',
    core.VarDesc.VarType.UINT8: 'uint8',
    core.VarDesc.VarType.COMPLEX64: 'complex64',
    core.VarDesc.VarType.COMPLEX128: 'complex128',
}

Y
Yu Yang 已提交
44

S
sneaxiy 已提交
45
def convert_dtype(dtype):
P
pkpk 已提交
46
    if isinstance(dtype, core.VarDesc.VarType):
L
Leo Chen 已提交
47 48
        if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
            return _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
49 50
    elif isinstance(dtype, type):
        if dtype in [
51 52 53
                np.bool, np.float16, np.uint16, np.float32, np.float64, np.int8,
                np.int16, np.int32, np.int64, np.uint8, np.complex64,
                np.complex128
54 55
        ]:
            return dtype.__name__
P
pkpk 已提交
56 57
    else:
        if dtype in [
58 59 60 61 62
                'bool', 'float16', 'uint16', 'float32', 'float64', 'int8',
                'int16', 'int32', 'int64', 'uint8', 'complex64', 'complex128',
                u'bool', u'float16', u'uint16', u'float32', u'float64', u'int8',
                u'int16', u'int32', u'int64', u'uint8', u'complex64',
                u'complex128'
P
pkpk 已提交
63 64
        ]:
            # this code is a little bit dangerous, since error could happen
65
            # when casting no-ascii code to str in python2.
P
pkpk 已提交
66 67 68 69 70
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

71
    raise TypeError(
72
        "dtype must be any of [bool, float16, uint16, float32, float64, int8, int16, "
73
        "int32, int64, uint8, complex64, complex128], but received %s" % dtype)
S
sneaxiy 已提交
74 75


76 77 78 79 80
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
81
    check_type(input, input_name, Variable, op_name, extra_message)
82 83 84 85
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
86 87 88 89 90 91 92 93 94
    # NOTE [ Why skip dynamic graph check ]:
    # 1. If the input type / dtype of a layer is wrong, it will be reported
    # directly on that line. User can easily print the relevant information
    # on which line. It is easier to debug, so there is no need to check
    # in dynamic graph mode.
    # 2. Performance considerations. Because these checks are executed at
    # each step in dynamic graph mode, it will bring a heavy performance burden.
    if in_dygraph_mode():
        return
95 96 97 98

    # NOTE: `in_declarative_mode` is used to determined whether this op is called under
    # @declarative in transformation from dygrah to static layer. We add VarBase in
    # expected_type to skip checking because varBase may be created and used in unusual way.
99
    from .dygraph.base import in_declarative_mode
100 101 102 103 104
    # Need a better design to be fix this.
    if in_declarative_mode():
        if not isinstance(expected_type, tuple):
            expected_type = (expected_type, )
        expected_type += (core.VarBase, )
105 106
        #  TODO(jiabin): uncomment it when we support declarative mode in eager
        # if _in_eager_mode():
107
        #     expected_type += (core.eager.Tensor, )
108 109 110 111 112
    elif isinstance(input, core.VarBase):
        raise TypeError(
            "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
            "Because received '{}' in {} is a imperative Variable.".format(
                input_name, op_name))
113
    elif hasattr(core, "eager"):
114
        if isinstance(input, core.eager.Tensor):
115 116 117 118
            raise TypeError(
                "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
                "Because received '{}' in {} is a imperative Variable.".format(
                    input_name, op_name))
119 120 121 122 123 124 125 126 127 128 129
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
130 131 132
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
133 134 135 136
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
137 138 139 140 141 142
    if convert_dtype(input_dtype) in ['uint16'] and op_name not in [
            'reshape', 'lookup_table', 'scale'
    ]:
        warnings.warn(
            "The data type of '%s' in %s only support bfloat16 in OneDNN now. %s"
            % (input_name, op_name, extra_message))
143 144 145 146 147 148 149
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
def check_shape(shape,
                op_name,
                expected_shape_type=(list, tuple, Variable),
                expected_element_type=(int, Variable),
                expected_tensor_dtype=('int32', 'int64')):
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
    check_type(shape, 'shape', expected_shape_type, op_name)
    if expected_element_type is not None and not isinstance(shape, Variable):
        for item in shape:
            check_type(item, 'element of shape', expected_element_type, op_name)
            if expected_tensor_dtype is not None and isinstance(item, Variable):
                check_dtype(
                    item.dtype, 'element of shape', expected_tensor_dtype,
                    op_name,
                    'If element of shape is Tensor, its data type should be {}'.
                    format(', '.join(expected_tensor_dtype)))
    if expected_tensor_dtype is not None and isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', expected_tensor_dtype, op_name)


Y
Yu Yang 已提交
172 173 174 175 176
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
177 178 179 180 181 182 183
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
184 185
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
186

S
sneaxiy 已提交
187
    def _reset(self):
Y
Yu Yang 已提交
188
        self.data = []
S
sneaxiy 已提交
189
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
190 191 192 193 194 195 196 197

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
198
            lod[0].append(len(data))
Y
Yu Yang 已提交
199
            for each_data in data:
K
Kexin Zhao 已提交
200
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
201

S
sneaxiy 已提交
202
    def _check_shape(self, shape):
S
sneaxiy 已提交
203 204 205 206 207 208
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
209
    def done(self):
210
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
211 212
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
213 214 215 216 217 218
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
219 220 221
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
222
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
223
        self._reset()
Y
Yu Yang 已提交
224 225 226
        return t


S
sneaxiy 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
265
class DataFeeder(object):
C
chengduoZH 已提交
266
    """
267 268
    :api_attr: Static Graph
    
C
chengduoZH 已提交
269
    DataFeeder converts the data that returned by a reader into a data
270 271 272 273 274 275 276 277 278 279 280 281 282 283
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
284 285

    Raises:
286
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
287

288
    Example:
289 290 291 292 293 294
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
295
            place = fluid.CPUPlace()
296
            def reader():
297 298
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
299 300 301 302 303
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
304 305
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
306 307 308
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
309
            
310 311
            exe = fluid.Executor(place)
            exe.run(startup_program)
312 313 314 315 316 317 318 319 320 321
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
322
            print(outs)
323

C
chengduoZH 已提交
324 325
    """

F
fengjiayi 已提交
326
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
327 328 329 330
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
331 332
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
333
        for each_var in feed_list:
334
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
335
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
336 337 338 339 340
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
341
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
342 343 344 345

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
346
        """
347 348
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
349

350 351
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
352

353 354
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
355

356
        Example:
357 358
            ..  code-block:: python

359 360 361 362 363 364
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
365 366 367
                import paddle.fluid as fluid
                
                def reader(limit=5):
368 369
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
370
                
371 372 373
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
374 375
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
376 377 378 379
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
380
                print(result['data_3'])
381

C
chengduoZH 已提交
382
        """
Y
Yu Yang 已提交
383
        converter = []
384
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
385 386 387 388 389 390 391 392 393
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
394
            assert len(each_sample) == len(converter), (
395 396
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
397 398
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
399 400
                each_converter.feed(each_slot)
        ret_dict = {}
401 402
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
403 404
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
405 406

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
407
        """
408 409
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
410
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
411

412
        Parameters:
T
tianshuo78520a 已提交
413
            iterable (list|tuple): list of user-defined python generators. The element 
414 415 416
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
417

418 419 420
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
421

422 423
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
424

425
        Example:
426 427
            ..  code-block:: python

428
                import numpy as np
429
                import paddle.fluid as fluid
430

431 432 433 434 435
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
436 437 438 439

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

440
                z = fluid.layers.elementwise_add(x, y)
441

442
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
443
                place_num = 2
444 445 446 447 448
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
449

T
tianshuo78520a 已提交
450
                # print sample feed_parallel r result
451 452 453
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
454

455 456 457
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
458

C
chengduoZH 已提交
459
        """
Y
yuyang18 已提交
460 461 462
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
463 464
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
465 466 467 468
            ]
        else:
            places = [
                core.CPUPlace()
469 470
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
471 472 473 474 475 476 477 478 479
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
480
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
481 482 483 484 485 486 487 488
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
489
            return len(_cuda_ids())
Y
yuyang18 已提交
490
        else:
C
chengduo 已提交
491
            return _cpu_num()
Y
yuyang18 已提交
492 493 494 495 496 497

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
498
        """
499 500 501 502 503
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
504
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
505 506 507 508 509 510 511 512 513 514 515
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
516
        Raises:
517
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
518

519
        Example:
520 521
            ..  code-block:: python

522
                import numpy as np
523 524
                import paddle
                import paddle.fluid as fluid
525
                import paddle.fluid.compiler as compiler
526
                
527 528 529 530
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
531

532 533
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
534
                
535 536
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
537
                
538
                # a simple network sample
539 540
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
541 542
                hidden = fluid.layers.fc(input=data, size=10)
                
543 544
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
545
                
546
                exe = fluid.Executor(places[0])
547
                exe.run(fluid.default_startup_program())
548
                compiled_prog = compiler.CompiledProgram(
549 550
                         fluid.default_main_program()).with_data_parallel(places=places)
                
551
                for i,data in enumerate(reader()):
552 553
                    # print data if you like
                    # print(i, data)
554
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
555 556
                    print(ret)

C
chengduoZH 已提交
557 558
        """

Y
yuyang18 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__