data_feeder.py 20.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
Y
Yu Yang 已提交
18
import numpy
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
Y
Yu Yang 已提交
23

24
from .framework import Variable, default_main_program, _current_expected_place
C
chengduo 已提交
25
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
26 27 28
__all__ = ['DataFeeder']


S
sneaxiy 已提交
29
def convert_dtype(dtype):
30 31 32 33 34 35 36 37 38 39 40 41 42
    if isinstance(dtype, str):
        if dtype in [
                'float32', 'int64', 'float64', 'float16', 'int32', 'uint8',
                'bool'
        ]:
            return dtype
        else:
            raise ValueError(
                "dtype must be any of [bool, int32, float32, int64, "
                "float64, uint8]")
    elif dtype == core.VarDesc.VarType.BOOL:
        return 'bool'
    elif dtype == core.VarDesc.VarType.FP32:
S
sneaxiy 已提交
43 44 45 46 47 48 49 50 51 52 53 54
        return 'float32'
    elif dtype == core.VarDesc.VarType.INT64:
        return 'int64'
    elif dtype == core.VarDesc.VarType.FP64:
        return 'float64'
    elif dtype == core.VarDesc.VarType.FP16:
        return 'float16'
    elif dtype == core.VarDesc.VarType.INT32:
        return 'int32'
    elif dtype == core.VarDesc.VarType.UINT8:
        return 'uint8'
    else:
55
        raise ValueError("dtype must be any of [bool,int32, float32, int64, "
S
sneaxiy 已提交
56 57 58
                         "float64, uint8]")


Y
Yu Yang 已提交
59 60 61 62 63
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
64 65 66 67 68 69 70
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
71 72
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
73

S
sneaxiy 已提交
74
    def _reset(self):
Y
Yu Yang 已提交
75
        self.data = []
S
sneaxiy 已提交
76
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
77 78 79 80 81 82 83 84

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
85
            lod[0].append(len(data))
Y
Yu Yang 已提交
86
            for each_data in data:
K
Kexin Zhao 已提交
87
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
88

S
sneaxiy 已提交
89
    def _check_shape(self, shape):
S
sneaxiy 已提交
90 91 92 93 94 95
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
96
    def done(self):
97
        arr = numpy.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
98 99
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
100 101 102 103 104 105
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
106 107 108
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
109
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
110
        self._reset()
Y
Yu Yang 已提交
111 112 113
        return t


S
sneaxiy 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
152
class DataFeeder(object):
C
chengduoZH 已提交
153
    """
C
chengduoZH 已提交
154
    DataFeeder converts the data that returned by a reader into a data
155 156 157 158 159 160 161 162 163 164 165 166 167 168
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
169 170

    Raises:
171
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
172

173
    Example:
174 175
        ..  code-block:: python

C
chengduoZH 已提交
176

177 178 179 180
            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
181
            place = fluid.CPUPlace()
182
            def reader():
183 184
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
185 186 187 188 189
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
190 191
                data_1 = fluid.layers.data(name='data_1', shape=[-1, 2, 2])
                data_2 = fluid.layers.data(name='data_2', shape=[-1, 1, 3])
192 193 194
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
195
            
196 197
            exe = fluid.Executor(place)
            exe.run(startup_program)
198 199 200 201 202 203 204 205 206 207 208 209
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
            print(outs)            

210

C
chengduoZH 已提交
211 212
    """

F
fengjiayi 已提交
213
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
214 215 216 217
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
218 219
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
220
        for each_var in feed_list:
221
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
222
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
223 224 225 226 227
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
228
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
229 230 231 232

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
233
        """
234 235
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
236

237 238
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
239

240 241
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
242

243
        Example:
244 245
            ..  code-block:: python

246 247 248 249 250 251
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
252 253 254
                import paddle.fluid as fluid
                
                def reader(limit=5):
255 256
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
257
                
258
                data_1 = fluid.layers.data(name='data_1', shape=[2, 1, 3])
259
                data_2 = fluid.layers.data(name='data_2', shape=[1], dtype='int64')
260
                data_3 = fluid.layers.data(name='data_3', shape=[3, 3], dtype='float32')
261 262
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
263 264 265 266 267 268 269
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
                print(result['data_3'])                

    
C
chengduoZH 已提交
270
        """
Y
Yu Yang 已提交
271
        converter = []
272
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
273 274 275 276 277 278 279 280 281
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
282
            assert len(each_sample) == len(converter), (
283 284
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
285 286
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
287 288
                each_converter.feed(each_slot)
        ret_dict = {}
289 290
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
291 292
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
293 294

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
295
        """
296 297 298
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
        generator in the list will be fed into a seperate device.        
C
chengduoZH 已提交
299

300 301 302 303 304
        Parameters:
            iterable (list|tuple): list of user-defined python geneators. The element 
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
305

306 307 308
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
309

310 311
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
312

313
        Example:
314 315
            ..  code-block:: python

316 317
                
                import numpy as np
318 319
                import paddle.fluid as fluid
                
320 321 322 323 324
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
325
                
326 327
                x = fluid.layers.data(name='x', shape=[-1, 2, 2])
                y = fluid.layers.data(name='y', shape=[-1, 2, 2], dtype='float32')
328
                
329
                z = fluid.layers.elementwise_add(x, y)
330 331
                
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
332
                place_num = 2
333 334 335 336 337
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
338 339 340 341 342 343 344 345 346 347 348
                
                # print sample feed_parallel r resultt
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
                
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
    
   
C
chengduoZH 已提交
349
        """
Y
yuyang18 已提交
350 351 352
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
353 354
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
355 356 357 358
            ]
        else:
            places = [
                core.CPUPlace()
359 360
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
361 362 363 364 365 366 367 368 369
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
370
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
371 372 373 374 375 376 377 378
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
379
            return len(_cuda_ids())
Y
yuyang18 已提交
380
        else:
C
chengduo 已提交
381
            return _cpu_num()
Y
yuyang18 已提交
382 383 384 385 386 387

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
388
        """
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
                A :code:`mini-batch` can be regarded as a python generator that returns batchs of input 
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
406
        Raises:
407
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
408

409
        Example:
410 411
            ..  code-block:: python

412
                import numpy as np
413 414
                import paddle
                import paddle.fluid as fluid
415
                import paddle.fluid.compiler as compiler
416
                
417 418 419 420 421 422 423
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
                    
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
424
                
425 426
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
427
                
428 429 430
                # a simple network sample
                data = fluid.layers.data(name='data', shape=[-1, 4, 4], dtype='float32')
                label = fluid.layers.data(name='label', shape=[-1, 1], dtype='int64')
431 432
                hidden = fluid.layers.fc(input=data, size=10)
                
433 434
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
435
                
436
                exe = fluid.Executor(places[0])
437
                exe.run(fluid.default_startup_program())
438
                compiled_prog = compiler.CompiledProgram(
439 440
                         fluid.default_main_program()).with_data_parallel(places=places)
                
441
                for i,data in enumerate(reader()):
442 443
                    # print data if you like
                    # print(i, data)
444
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
445 446
                    print(ret)

C
chengduoZH 已提交
447 448
        """

Y
yuyang18 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527


class NumpyToLoDTensorConverter(object):
    def __init__(self, place):
        self.place = place
        self.data = []
        self._reset()

    def _reset(self):
        self.data = []

    def feed(self, data):
        self.data.append(data)

    def done(self):
        arr = numpy.array(self.data)
        t = core.LoDTensor()
        t.set(arr, self.place)
        self._reset()
        return t


class ListTensorProvider(object):
    def __init__(self, generator, places):
        self.generator = generator
        self.converters = []
        self.places = []
        if places:
            if not isinstance(places, (list, tuple)):
                places = [places]
            assert len(
                places) == 1, "dygraph mode CAN NOT specify multiple places."
            for place in places:
                if isinstance(place, (core.CUDAPlace, core.CPUPlace)):
                    self.places.append(place)
                else:
                    raise ValueError(
                        "Please specify a valid place values such as core.CPUPlace or core.CUDAPlace"
                    )
        if len(self.places) == 0:
            self.places.append(_current_expected_place())

    def _readData(self, iterable, places):
        for place, each_sample in six.moves.zip(places, iterable):
            for item in each_sample:
                if len(self.converters) < len(item):
                    for i in item:
                        self.converters.append(NumpyToLoDTensorConverter(place))
                for each_converter, each_slot in six.moves.zip(self.converters,
                                                               item):
                    each_converter.feed(each_slot)
            yield [c.done() for c in self.converters]

    def __call__(self):
        item = []
        for batch in self.generator():
            item.append(batch)
            if len(item) == len(self.places):
                yield list(self._readData(item, self.places))
                item = []