data_feeder.py 9.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15 16 17
from __future__ import print_function
import core
import numpy
C
chengduoZH 已提交
18
import os
Y
Yu Yang 已提交
19
import six.moves as six
Y
yuyang18 已提交
20
import multiprocessing
Y
Yu Yang 已提交
21

F
fengjiayi 已提交
22
from framework import Variable, default_main_program
Y
Yu Yang 已提交
23 24 25 26 27 28 29 30 31

__all__ = ['DataFeeder']


class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
32
        if dtype == core.VarDesc.VarType.FP32:
Y
Yu Yang 已提交
33
            self.dtype = 'float32'
34
        elif dtype == core.VarDesc.VarType.INT64:
Y
Yu Yang 已提交
35
            self.dtype = 'int64'
36
        elif dtype == core.VarDesc.VarType.FP64:
Y
Yu Yang 已提交
37
            self.dtype = 'float64'
38
        elif dtype == core.VarDesc.VarType.INT32:
Y
Yu Yang 已提交
39
            self.dtype = 'int32'
F
fengjiayi 已提交
40 41
        elif dtype == core.VarDesc.VarType.UINT8:
            self.dtype = 'uint8'
Y
Yu Yang 已提交
42 43
        else:
            raise ValueError("dtype must be any of [int32, float32, int64, "
F
fengjiayi 已提交
44
                             "float64, uint8]")
Y
Yu Yang 已提交
45 46 47 48 49

        self.data = []
        self.lod = []

        for i in six.range(lod_level):
50
            self.lod.append([])
Y
Yu Yang 已提交
51 52 53 54 55 56 57 58

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
59
            lod[0].append(len(data))
Y
Yu Yang 已提交
60
            for each_data in data:
K
Kexin Zhao 已提交
61
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
62 63 64 65 66 67

    def done(self):
        arr = numpy.array(self.data, dtype=self.dtype).reshape(self.shape)
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
68
            t.set_recursive_sequence_lengths(self.lod)
Y
Yu Yang 已提交
69 70 71 72
        return t


class DataFeeder(object):
C
chengduoZH 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    """
    DataFeeder converts the data that returned by paddle.reader into a
    data structure of Arguments which is defined in the API. The paddle.reader
    usually returns a list of mini-batch data entries. Each data entry in
    the list is one sample. Each sample is a list or a tuple with one feature
    or multiple features. DataFeeder converts this mini-batch data entries
    into Arguments in order to feed it to C++ interface.

    The simple usage shows below:

    ..  code-block:: python

        place = fluid.CPUPlace()
        data = fluid.layers.data(
            name='data', shape=[1], dtype='int64', lod_level=2)
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        feeder = fluid.DataFeeder([data, label], place)

        result = feeder.feed(
            [([[1, 2, 3], [4, 5]], [1]), ([[6, 7, 8, 9]], [1])])


    If you want to feed data into GPU side separately in advance when you
    use multi-GPU to train a model, you can use `decorate_reader` function.

    ..  code-block:: python

        place=fluid.CUDAPlace(0)
        feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
        reader = feeder.decorate_reader(
            paddle.batch(flowers.train(), batch_size=16))

    Args:
        feed_list(list): The Variables or Variables'name that will
            feed into model.
        place(Place): fluid.CPUPlace() or fluid.CUDAPlace(i).
        program(Program): The Program that will feed data into, if program
            is None, it will use default_main_program(). Default None.

    Raises:
        ValueError: If the some Variable is not in the Program.

    Examples:
        .. code-block:: python

            # ...
            place = fluid.CPUPlace()
            feed_list = [
                main_program.global_block().var(var_name) for var_name in feed_vars_name
            ]
            feeder = fluid.DataFeeder(feed_list, place)
            for data in reader():
                outs = exe.run(program=main_program,
                               feed=feeder.feed(data))
    """

F
fengjiayi 已提交
129
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
130 131 132 133
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
134 135
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
136
        for each_var in feed_list:
F
fengjiayi 已提交
137 138
            if isinstance(each_var, basestring):
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            shape = each_var.shape
            batch_size_dim = -1
            for i, s in enumerate(shape):
                if s < 0:
                    batch_size_dim = i
                    break
            if batch_size_dim == -1:
                raise ValueError("Variable {0} must has a batch size dimension",
                                 each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
            self.feed_shapes.append(shape)

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
158 159 160 161 162 163 164 165 166 167
        """
        According to feed_list and iterable converter the input data
        into a dictionary that can feed into Executor or ParallelExecutor.

        Args:
            iterable(list|tuple): the input data.

        Returns:
            dict: the result of conversion.
        """
Y
Yu Yang 已提交
168 169 170 171 172 173 174 175 176 177 178
        converter = []
        for lod_level, shape, dtype in six.zip(
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
179 180 181
            assert len(each_sample) == len(converter), (
                "The number of fields in data (%s) does not match " +
                "len(feed_list) (%s)") % (len(each_sample), len(converter))
Y
Yu Yang 已提交
182 183 184 185 186 187
            for each_converter, each_slot in six.zip(converter, each_sample):
                each_converter.feed(each_slot)
        ret_dict = {}
        for each_name, each_converter in six.zip(self.feed_names, converter):
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
188 189

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203
        """
        Takes multiple mini-batches. Each mini-batch will be feed on each
        device.

        Args:
            iterable(list|tuple): the input data.
            num_places(int): the number of places. Default None.

        Returns:
            dict: the result of conversion.

        Notes:
            The number of devices and number of mini-batches must be same.
        """
Y
yuyang18 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
                for i in six.xrange(self._get_number_of_places_(num_places))
            ]
        else:
            places = [
                core.CPUPlace()
                for _ in six.xrange(self._get_number_of_places_(num_places))
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
        for p, batch in six.zip(places, iterable):
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
            return core.get_cuda_device_count()
        else:
C
chengduoZH 已提交
233 234 235
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            return cpu_num
Y
yuyang18 已提交
236 237 238 239 240 241

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        """
        Converter the input data into a data that returned by reader into
        multiple mini-batches. Each mini-batch will be feed on each device.

        Args:
            reader(fun): the input data.
            multi_devices(bool): the number of places. Default None.
            num_places(int): the number of places. Default None.
            drop_last(bool): the number of places. Default None.

        Returns:
            dict: the result of conversion.

        Raises:
            ValueError: If drop_last is False and the data batch which cannot
            fit for devices.
        """

Y
yuyang18 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__