data_feeder.py 21.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place, in_dygraph_mode
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28 29
__all__ = ['DataFeeder']


S
sneaxiy 已提交
30
def convert_dtype(dtype):
P
pkpk 已提交
31
    if isinstance(dtype, core.VarDesc.VarType):
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        if dtype == core.VarDesc.VarType.BOOL:
            return 'bool'
        elif dtype == core.VarDesc.VarType.FP16:
            return 'float16'
        elif dtype == core.VarDesc.VarType.FP32:
            return 'float32'
        elif dtype == core.VarDesc.VarType.FP64:
            return 'float64'
        elif dtype == core.VarDesc.VarType.INT8:
            return 'int8'
        elif dtype == core.VarDesc.VarType.INT16:
            return 'int16'
        elif dtype == core.VarDesc.VarType.INT32:
            return 'int32'
        elif dtype == core.VarDesc.VarType.INT64:
            return 'int64'
        elif dtype == core.VarDesc.VarType.UINT8:
            return 'uint8'
50 51 52
    elif isinstance(dtype, type):
        if dtype in [
                np.bool, np.float16, np.float32, np.float64, np.int8, np.int16,
53
                np.int32, np.int64, np.uint8, np.complex64, np.complex128
54 55
        ]:
            return dtype.__name__
P
pkpk 已提交
56 57 58
    else:
        if dtype in [
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
59 60 61
                'int32', 'int64', 'uint8', 'complex64', 'complex128', u'bool',
                u'float16', u'float32', u'float64', u'int8', u'int16', u'int32',
                u'int64', u'uint8', u'complex64', u'complex128'
P
pkpk 已提交
62 63
        ]:
            # this code is a little bit dangerous, since error could happen
64
            # when casting no-ascii code to str in python2.
P
pkpk 已提交
65 66 67 68 69
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

70
    raise TypeError(
71
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
72
        "int32, int64, uint8, complex64, complex128], but received %s" % dtype)
S
sneaxiy 已提交
73 74


75 76 77 78 79
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
80
    check_type(input, input_name, Variable, op_name, extra_message)
81 82 83 84
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
85 86 87 88 89 90 91 92 93
    # NOTE [ Why skip dynamic graph check ]:
    # 1. If the input type / dtype of a layer is wrong, it will be reported
    # directly on that line. User can easily print the relevant information
    # on which line. It is easier to debug, so there is no need to check
    # in dynamic graph mode.
    # 2. Performance considerations. Because these checks are executed at
    # each step in dynamic graph mode, it will bring a heavy performance burden.
    if in_dygraph_mode():
        return
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    from .dygraph.dygraph_to_static.program_translator import in_declarative_mode
    # NOTE: `in_declarative_mode` is used to determined whether this op is called under
    # @declarative in transformation from dygrah to static layer. We add VarBase in
    # expected_type to skip checking because varBase may be created and used in unusual way.
    # Need a better design to be fix this.
    if in_declarative_mode():
        if not isinstance(expected_type, tuple):
            expected_type = (expected_type, )
        expected_type += (core.VarBase, )
    elif isinstance(input, core.VarBase):
        raise TypeError(
            "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
            "Because received '{}' in {} is a imperative Variable.".format(
                input_name, op_name))

110 111 112 113 114 115 116 117 118 119 120
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
121 122 123
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
124 125 126 127 128 129 130 131 132 133 134
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


Y
Yu Yang 已提交
135 136 137 138 139
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
140 141 142 143 144 145 146
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
147 148
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
149

S
sneaxiy 已提交
150
    def _reset(self):
Y
Yu Yang 已提交
151
        self.data = []
S
sneaxiy 已提交
152
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
153 154 155 156 157 158 159 160

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
161
            lod[0].append(len(data))
Y
Yu Yang 已提交
162
            for each_data in data:
K
Kexin Zhao 已提交
163
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
164

S
sneaxiy 已提交
165
    def _check_shape(self, shape):
S
sneaxiy 已提交
166 167 168 169 170 171
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
172
    def done(self):
173
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
174 175
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
176 177 178 179 180 181
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
182 183 184
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
185
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
186
        self._reset()
Y
Yu Yang 已提交
187 188 189
        return t


S
sneaxiy 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
228
class DataFeeder(object):
C
chengduoZH 已提交
229
    """
230 231
    :api_attr: Static Graph
    
C
chengduoZH 已提交
232
    DataFeeder converts the data that returned by a reader into a data
233 234 235 236 237 238 239 240 241 242 243 244 245 246
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
247 248

    Raises:
249
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
250

251
    Example:
252 253 254 255 256 257
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
258
            place = fluid.CPUPlace()
259
            def reader():
260 261
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
262 263 264 265 266
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
267 268
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
269 270 271
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
272
            
273 274
            exe = fluid.Executor(place)
            exe.run(startup_program)
275 276 277 278 279 280 281 282 283 284
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
285
            print(outs)
286

C
chengduoZH 已提交
287 288
    """

F
fengjiayi 已提交
289
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
290 291 292 293
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
294 295
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
296
        for each_var in feed_list:
297
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
298
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
299 300 301 302 303
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
304
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
305 306 307 308

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
309
        """
310 311
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
312

313 314
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
315

316 317
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
318

319
        Example:
320 321
            ..  code-block:: python

322 323 324 325 326 327
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
328 329 330
                import paddle.fluid as fluid
                
                def reader(limit=5):
331 332
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
333
                
334 335 336
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
337 338
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
339 340 341 342
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
343
                print(result['data_3'])
344

C
chengduoZH 已提交
345
        """
Y
Yu Yang 已提交
346
        converter = []
347
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
348 349 350 351 352 353 354 355 356
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
357
            assert len(each_sample) == len(converter), (
358 359
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
360 361
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
362 363
                each_converter.feed(each_slot)
        ret_dict = {}
364 365
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
366 367
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
368 369

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
370
        """
371 372
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
373
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
374

375
        Parameters:
T
tianshuo78520a 已提交
376
            iterable (list|tuple): list of user-defined python generators. The element 
377 378 379
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
380

381 382 383
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
384

385 386
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
387

388
        Example:
389 390
            ..  code-block:: python

391
                import numpy as np
392
                import paddle.fluid as fluid
393

394 395 396 397 398
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
399 400 401 402

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

403
                z = fluid.layers.elementwise_add(x, y)
404

405
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
406
                place_num = 2
407 408 409 410 411
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
412

T
tianshuo78520a 已提交
413
                # print sample feed_parallel r result
414 415 416
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
417

418 419 420
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
421

C
chengduoZH 已提交
422
        """
Y
yuyang18 已提交
423 424 425
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
426 427
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
428 429 430 431
            ]
        else:
            places = [
                core.CPUPlace()
432 433
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
434 435 436 437 438 439 440 441 442
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
443
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
444 445 446 447 448 449 450 451
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
452
            return len(_cuda_ids())
Y
yuyang18 已提交
453
        else:
C
chengduo 已提交
454
            return _cpu_num()
Y
yuyang18 已提交
455 456 457 458 459 460

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
461
        """
462 463 464 465 466
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
467
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
468 469 470 471 472 473 474 475 476 477 478
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
479
        Raises:
480
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
481

482
        Example:
483 484
            ..  code-block:: python

485
                import numpy as np
486 487
                import paddle
                import paddle.fluid as fluid
488
                import paddle.fluid.compiler as compiler
489
                
490 491 492 493
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
494

495 496
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
497
                
498 499
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
500
                
501
                # a simple network sample
502 503
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
504 505
                hidden = fluid.layers.fc(input=data, size=10)
                
506 507
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
508
                
509
                exe = fluid.Executor(places[0])
510
                exe.run(fluid.default_startup_program())
511
                compiled_prog = compiler.CompiledProgram(
512 513
                         fluid.default_main_program()).with_data_parallel(places=places)
                
514
                for i,data in enumerate(reader()):
515 516
                    # print data if you like
                    # print(i, data)
517
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
518 519
                    print(ret)

C
chengduoZH 已提交
520 521
        """

Y
yuyang18 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__