data_feeder.py 20.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
Y
Yu Yang 已提交
18
import numpy
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
Y
Yu Yang 已提交
23

24
from .framework import Variable, default_main_program, _current_expected_place
C
chengduo 已提交
25
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
26 27 28
__all__ = ['DataFeeder']


S
sneaxiy 已提交
29
def convert_dtype(dtype):
P
pkpk 已提交
30
    if isinstance(dtype, core.VarDesc.VarType):
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
        if dtype == core.VarDesc.VarType.BOOL:
            return 'bool'
        elif dtype == core.VarDesc.VarType.FP16:
            return 'float16'
        elif dtype == core.VarDesc.VarType.FP32:
            return 'float32'
        elif dtype == core.VarDesc.VarType.FP64:
            return 'float64'
        elif dtype == core.VarDesc.VarType.INT8:
            return 'int8'
        elif dtype == core.VarDesc.VarType.INT16:
            return 'int16'
        elif dtype == core.VarDesc.VarType.INT32:
            return 'int32'
        elif dtype == core.VarDesc.VarType.INT64:
            return 'int64'
        elif dtype == core.VarDesc.VarType.UINT8:
            return 'uint8'
P
pkpk 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61
    else:
        if dtype in [
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
                'int32', 'int64', 'uint8', u'bool', u'float16', u'float32',
                u'float64', u'int8', u'int16', u'int32', u'int64', u'uint8'
        ]:
            # this code is a little bit dangerous, since error could happen
            # when casting no-asci code to str in python2.
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

62 63 64
    raise ValueError(
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
        "int32, int64, uint8]")
S
sneaxiy 已提交
65 66


Y
Yu Yang 已提交
67 68 69 70 71
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
72 73 74 75 76 77 78
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
79 80
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
81

S
sneaxiy 已提交
82
    def _reset(self):
Y
Yu Yang 已提交
83
        self.data = []
S
sneaxiy 已提交
84
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
85 86 87 88 89 90 91 92

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
93
            lod[0].append(len(data))
Y
Yu Yang 已提交
94
            for each_data in data:
K
Kexin Zhao 已提交
95
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
96

S
sneaxiy 已提交
97
    def _check_shape(self, shape):
S
sneaxiy 已提交
98 99 100 101 102 103
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
104
    def done(self):
105
        arr = numpy.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
106 107
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
108 109 110 111 112 113
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
114 115 116
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
117
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
118
        self._reset()
Y
Yu Yang 已提交
119 120 121
        return t


S
sneaxiy 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
160
class DataFeeder(object):
C
chengduoZH 已提交
161
    """
C
chengduoZH 已提交
162
    DataFeeder converts the data that returned by a reader into a data
163 164 165 166 167 168 169 170 171 172 173 174 175 176
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
177 178

    Raises:
179
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
180

181
    Example:
182 183 184 185 186 187
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
188
            place = fluid.CPUPlace()
189
            def reader():
190 191
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
192 193 194 195 196
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
197 198
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
199 200 201
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
202
            
203 204
            exe = fluid.Executor(place)
            exe.run(startup_program)
205 206 207 208 209 210 211 212 213 214
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
215
            print(outs)
216

C
chengduoZH 已提交
217 218
    """

F
fengjiayi 已提交
219
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
220 221 222 223
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
224 225
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
226
        for each_var in feed_list:
227
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
228
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
229 230 231 232 233
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
234
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
235 236 237 238

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
239
        """
240 241
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
242

243 244
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
245

246 247
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
248

249
        Example:
250 251
            ..  code-block:: python

252 253 254 255 256 257
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
258 259 260
                import paddle.fluid as fluid
                
                def reader(limit=5):
261 262
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
263
                
264 265 266
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
267 268
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
269 270 271 272
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
273
                print(result['data_3'])
274

C
chengduoZH 已提交
275
        """
Y
Yu Yang 已提交
276
        converter = []
277
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
278 279 280 281 282 283 284 285 286
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
287
            assert len(each_sample) == len(converter), (
288 289
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
290 291
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
292 293
                each_converter.feed(each_slot)
        ret_dict = {}
294 295
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
296 297
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
298 299

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
300
        """
301 302 303
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
        generator in the list will be fed into a seperate device.        
C
chengduoZH 已提交
304

305 306 307 308 309
        Parameters:
            iterable (list|tuple): list of user-defined python geneators. The element 
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
310

311 312 313
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
314

315 316
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
317

318
        Example:
319 320
            ..  code-block:: python

321
                import numpy as np
322
                import paddle.fluid as fluid
323

324 325 326 327 328
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
329 330 331 332

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

333
                z = fluid.layers.elementwise_add(x, y)
334

335
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
336
                place_num = 2
337 338 339 340 341
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
342

343 344 345 346
                # print sample feed_parallel r resultt
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
347

348 349 350
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
351

C
chengduoZH 已提交
352
        """
Y
yuyang18 已提交
353 354 355
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
356 357
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
358 359 360 361
            ]
        else:
            places = [
                core.CPUPlace()
362 363
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
364 365 366 367 368 369 370 371 372
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
373
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
374 375 376 377 378 379 380 381
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
382
            return len(_cuda_ids())
Y
yuyang18 已提交
383
        else:
C
chengduo 已提交
384
            return _cpu_num()
Y
yuyang18 已提交
385 386 387 388 389 390

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
391
        """
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
                A :code:`mini-batch` can be regarded as a python generator that returns batchs of input 
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
409
        Raises:
410
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
411

412
        Example:
413 414
            ..  code-block:: python

415
                import numpy as np
416 417
                import paddle
                import paddle.fluid as fluid
418
                import paddle.fluid.compiler as compiler
419
                
420 421 422 423
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
424

425 426
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
427
                
428 429
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
430
                
431
                # a simple network sample
432 433
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
434 435
                hidden = fluid.layers.fc(input=data, size=10)
                
436 437
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
438
                
439
                exe = fluid.Executor(places[0])
440
                exe.run(fluid.default_startup_program())
441
                compiled_prog = compiler.CompiledProgram(
442 443
                         fluid.default_main_program()).with_data_parallel(places=places)
                
444
                for i,data in enumerate(reader()):
445 446
                    # print data if you like
                    # print(i, data)
447
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
448 449
                    print(ret)

C
chengduoZH 已提交
450 451
        """

Y
yuyang18 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530


class NumpyToLoDTensorConverter(object):
    def __init__(self, place):
        self.place = place
        self.data = []
        self._reset()

    def _reset(self):
        self.data = []

    def feed(self, data):
        self.data.append(data)

    def done(self):
        arr = numpy.array(self.data)
        t = core.LoDTensor()
        t.set(arr, self.place)
        self._reset()
        return t


class ListTensorProvider(object):
    def __init__(self, generator, places):
        self.generator = generator
        self.converters = []
        self.places = []
        if places:
            if not isinstance(places, (list, tuple)):
                places = [places]
            assert len(
                places) == 1, "dygraph mode CAN NOT specify multiple places."
            for place in places:
                if isinstance(place, (core.CUDAPlace, core.CPUPlace)):
                    self.places.append(place)
                else:
                    raise ValueError(
                        "Please specify a valid place values such as core.CPUPlace or core.CUDAPlace"
                    )
        if len(self.places) == 0:
            self.places.append(_current_expected_place())

    def _readData(self, iterable, places):
        for place, each_sample in six.moves.zip(places, iterable):
            for item in each_sample:
                if len(self.converters) < len(item):
                    for i in item:
                        self.converters.append(NumpyToLoDTensorConverter(place))
                for each_converter, each_slot in six.moves.zip(self.converters,
                                                               item):
                    each_converter.feed(each_slot)
            yield [c.done() for c in self.converters]

    def __call__(self):
        item = []
        for batch in self.generator():
            item.append(batch)
            if len(item) == len(self.places):
                yield list(self._readData(item, self.places))
                item = []