random.py 44.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define random functions
S
silingtong123 已提交
16

17 18
import paddle
from paddle import _C_ops, _legacy_C_ops
19
from paddle.common_ops_import import Variable
20
from paddle.fluid.framework import _current_expected_place, in_dygraph_mode
21

22 23 24
from ..fluid.data_feeder import (
    check_dtype,
    check_shape,
25 26
    check_type,
    check_variable_and_dtype,
27
)
28 29 30 31 32
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
33
)
S
silingtong123 已提交
34

35 36
__all__ = []

S
silingtong123 已提交
37

L
Leo Chen 已提交
38
def bernoulli(x, name=None):
39
    r"""
L
Leo Chen 已提交
40

41
    For each element :math:`x_i` in input ``x``, take a sample from the Bernoulli distribution, also called two-point distribution, with success probability :math:`x_i`. The Bernoulli distribution with success probability :math:`x_i` is a discrete probability distribution with probability mass function
L
Leo Chen 已提交
42

43
    .. math::
44 45
        p(y)=\begin{cases}
            x_i,&y=1\\
46 47
            1-x_i,&y=0
        \end{cases}.
L
Leo Chen 已提交
48 49

    Args:
50 51 52
        x (Tensor): The input Tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

53
    Returns:
54
        Tensor: A Tensor filled samples from Bernoulli distribution, whose shape and dtype are same as ``x``.
L
Leo Chen 已提交
55 56 57 58

    Examples:
        .. code-block:: python

59
            import paddle
L
Leo Chen 已提交
60

L
Leo Chen 已提交
61
            paddle.set_device('cpu')  # on CPU device
62
            paddle.seed(100)
L
Leo Chen 已提交
63

64
            x = paddle.rand([2,3])
L
Leo Chen 已提交
65 66 67
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
68

69
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
70 71 72
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
73 74 75

    """

H
hong 已提交
76
    if in_dygraph_mode():
77
        return _C_ops.bernoulli(x)
78 79 80 81 82 83 84 85 86 87 88 89
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )  # maybe set out to int32 ?
        helper.append_op(
            type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={}
        )
        out.stop_gradient = True
        return out
L
Leo Chen 已提交
90 91


92
def poisson(x, name=None):
93
    r"""
94
    Returns a tensor filled with random number from a Poisson Distribution.
95 96 97

    .. math::

98
        out_i \sim Poisson (lambda = x_i)
99 100

    Args:
101
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type
102 103 104 105
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
106
    Returns:
107 108 109 110 111 112
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
113
            paddle.set_device('cpu')
114
            paddle.seed(100)
115 116 117

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
118 119
            #[[2., 5., 0.],
            # [5., 1., 3.]]
120 121

    """
H
hong 已提交
122
    if in_dygraph_mode():
123
        return _C_ops.poisson(x)
124 125
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")
126

127 128 129 130 131 132
        helper = LayerHelper("poisson", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='poisson', inputs={'X': x}, outputs={'Out': out}, attrs={}
        )
        return out
133 134


P
pangyoki 已提交
135 136
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
137
    Returns a Tensor filled with random values sampled from a Multinomical
P
pangyoki 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

157 158
            import paddle

C
cnn 已提交
159
            paddle.seed(100) # on CPU device
160
            x = paddle.rand([2,4])
161
            print(x)
162 163 164
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
165
            paddle.seed(200) # on CPU device
166
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
167
            print(out1)
168 169 170 171 172 173 174
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
175
            paddle.seed(300) # on CPU device
176
            out3 = paddle.multinomial(x, num_samples=3)
177
            print(out3)
178 179
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
180 181 182

    """

183
    assert (
184
        not core.is_compiled_with_rocm()
185
    ), "multinomial op is not supported on ROCM yet."
186

H
hong 已提交
187
    if in_dygraph_mode():
188
        return _C_ops.multinomial(x, num_samples, replacement)
189
    else:
190 191 192
        check_variable_and_dtype(
            x, "x", ["uint16", "float16", "float32", "float64"], "multinomial"
        )
H
hong 已提交
193

194 195 196
        helper = LayerHelper("multinomial", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_('int64')
197
        )
198 199 200 201 202 203 204 205
        helper.append_op(
            type='multinomial',
            inputs={"X": x},
            outputs={'Out': out},
            attrs={'num_samples': num_samples, 'replacement': replacement},
        )
        out.stop_gradient = True
        return out
P
pangyoki 已提交
206 207


208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
def uniform_random_batch_size_like(
    input,
    shape,
    dtype='float32',
    input_dim_idx=0,
    output_dim_idx=0,
    min=-1.0,
    max=1.0,
    seed=0,
):
    """
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.
    .. code-block:: text
        *Case 1:
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]
            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0,
            input_dim_idx = 0,
            result.shape[0] = input.shape[0],
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
       *Case 2:
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1,
           input_dim_idx = 1,
           result.shape[1] = input.shape[1],
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
    Args:
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0.
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
    Returns:
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            from paddle.tensor import random
            paddle.enable_static()
            # example 1:
263
            input = paddle.static.data(name="input", shape=[1, 3], dtype='float32')
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            out_1 = random.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
            # example 2:
            out_2 = random.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]
    """
    check_variable_and_dtype(
        input,
        'Input',
        ("float32", 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )
    check_type(shape, 'shape', (list, tuple), 'uniform_random_batch_size_like')
    check_dtype(
        dtype,
        'dtype',
        ('float32', 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_variable_for_type_inference(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype,
        },
    )

    return out


303
def gaussian(shape, mean=0.0, std=1.0, seed=0, dtype=None, name=None):
304
    """
305
    Returns a Tensor filled with random values sampled from a Gaussian
306 307 308
    distribution, with ``shape`` and ``dtype``.

    Args:
309 310 311
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
312 313
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
314
            is 1.0.
315 316
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
317 318 319
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
320
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
321 322 323

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
324
        distribution, with ``shape`` and ``dtype``.
325
    """
326
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
327
    supported_dtypes = ['float32', 'float64', 'float16', 'uint16']
328

329 330
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
331
        if dtype not in supported_dtypes:
332
            raise TypeError(
333 334
                "{} only supports {}, but the default dtype is {}".format(
                    op_type_for_check, supported_dtypes, dtype
335 336
                )
            )
337 338 339
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

340
    if in_dygraph_mode():
341
        shape = paddle.utils.convert_shape_to_list(shape)
342
        place = _current_expected_place()
343
        return _C_ops.gaussian(
344 345
            shape, float(mean), float(std), seed, dtype, place
        )
346 347
    else:
        check_shape(shape, op_type_for_check)
348
        check_dtype(dtype, 'dtype', supported_dtypes, op_type_for_check)
349

350 351 352 353 354 355 356 357
        inputs = {}
        attrs = {
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': dtype,
            'use_mkldnn': False,
        }
358
        paddle.utils.get_shape_tensor_inputs(
359
            inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check
360
        )
361

362 363 364 365 366 367 368 369 370 371
        helper = LayerHelper('gaussian', **locals())
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='gaussian_random',
            inputs=inputs,
            outputs={'Out': out},
            attrs=attrs,
        )
        out.stop_gradient = True
        return out
372 373 374 375


def standard_normal(shape, dtype=None, name=None):
    """
376
    Returns a Tensor filled with random values sampled from a standard
377 378 379 380
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
381 382 383
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
384
        dtype (str|np.dtype, optional): The data type of the output Tensor.
385 386 387
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
388 389 390 391 392 393 394 395 396 397 398 399 400 401
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
402
            out1 = paddle.standard_normal(shape=[2, 3])
403 404 405 406
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
407 408
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
409
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
410 411 412 413 414 415 416 417
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
418
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
419
            out3 = paddle.standard_normal(shape_tensor)
420 421 422 423
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
424
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
425 426


Z
zhupengyang 已提交
427 428
def randn(shape, dtype=None, name=None):
    """
429
    Returns a Tensor filled with random values sampled from a standard
Z
zhupengyang 已提交
430 431 432 433
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
434 435 436
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
Z
zhupengyang 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
460 461
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
477 478 479 480


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
481
    Returns a Tensor filled with random values sampled from a normal
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
499 500 501 502
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. If ``mean`` or ``std``
            is a Tensor, the shape of the output Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

519
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
520 521 522
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

523
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
524 525 526 527
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
528
    if not in_dygraph_mode():
529 530 531 532
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
533 534 535 536 537
                mean.dtype,
                'mean',
                ['float32', 'float64'],
                'normal',
                "If mean is Tensor, it's data type only support float32, float64.",
538 539 540
            )
        if isinstance(std, Variable):
            check_dtype(
541 542 543 544 545
                std.dtype,
                'std',
                ['float32', 'float64'],
                'normal',
                "If std is Tensor, it's data type only support float32, float64.",
546 547
            )
        if shape is not None:
548
            check_shape(shape, 'normal')
549 550 551 552 553 554 555 556 557 558 559 560 561 562

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
563
        return gaussian(shape=shape, mean=mean, std=std, name=name)
564 565

    out = out * std + mean
566
    if not in_dygraph_mode():
567 568 569 570
        out.stop_grediant = True
    return out


571
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
572
    """
573
    Returns a Tensor filled with random values sampled from a uniform
P
pangyoki 已提交
574 575 576
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
577

Z
zhupengyang 已提交
578
    .. code-block:: text
李灿 已提交
579

P
pangyoki 已提交
580 581 582 583 584 585
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
586 587 588
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
589 590 591 592
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
593 594 595 596
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
597
        seed(int, optional): Random seed used for generating samples. If seed is 0,
598
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
599
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
600
            time. Default is 0.
601 602
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
P
pangyoki 已提交
603 604 605 606 607 608 609

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python
610
          :name: code-example1
611

P
pangyoki 已提交
612 613 614 615
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
616 617 618 619
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
620 621 622

            # example 2:
            # attr shape is a list which contains Tensor.
623 624
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
625 626 627
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
628 629 630

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
631
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
632 633 634
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
635
    """
636
    supported_dtypes = ['float32', 'float64', 'float16', 'uint16']
637 638
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
639
        if dtype not in supported_dtypes:
640
            raise TypeError(
641 642
                "uniform/rand only supports {}, but the default dtype is {}".format(
                    supported_dtypes, dtype
643 644
                )
            )
645

P
pangyoki 已提交
646 647 648
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

649
    if in_dygraph_mode():
650
        shape = paddle.utils.convert_shape_to_list(shape)
651
        return _C_ops.uniform(
652 653 654 655 656 657 658
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
659 660
    else:
        check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
661
        check_dtype(dtype, 'dtype', supported_dtypes, 'uniform/rand')
662 663 664
        check_type(min, 'min', (float, int, Variable), 'uniform/rand')
        check_type(max, 'max', (float, int, Variable), 'uniform/rand')

665
        inputs = {}
666
        attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
667
        paddle.utils.get_shape_tensor_inputs(
668
            inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand'
669
        )
P
pangyoki 已提交
670

671 672 673 674 675 676 677 678 679 680
        helper = LayerHelper("uniform", **locals())
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="uniform_random",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out},
        )
        out.stop_gradient = True
        return out
P
pangyoki 已提交
681 682


J
JYChen 已提交
683 684 685
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
686
    This is the inplace version of OP ``uniform``, which returns a Tensor filled
J
JYChen 已提交
687 688
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
689

J
JYChen 已提交
690 691 692 693 694 695
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
696 697
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
698 699 700 701 702 703 704 705 706 707
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
708

J
JYChen 已提交
709 710 711 712 713 714 715 716 717
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
718
    return _C_ops.uniform_inplace_(x, min, max, seed, 0, 0, 1.0)
J
JYChen 已提交
719 720


721
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
722
    """
723
    Returns a Tensor filled with random integers from a discrete uniform
724 725
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
726 727

    Args:
728
        low (int, optional): The lower bound on the range of random values to generate.
729 730
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
731
        high (int, optional): The upper bound on the range of random values to
732 733
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
734 735 736
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. Default is [1].
737
        dtype (str|np.dtype, optional): The data type of the
738 739
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
740
        name (str, optional): The default value is None.  Normally there is no
741 742
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
743

744
    Returns:
745 746
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
747 748 749

    Examples:
        .. code-block:: python
750

751
            import paddle
752

753 754
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
755
            out1 = paddle.randint(low=-5, high=5, shape=[2, 3])
756 757 758 759
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
760 761
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
762
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
763 764 765 766 767
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
768
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
769
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
770 771
            # [[ 2, -3, -1],    # random
            #  [-3, -2,  1]])   # random
772 773 774

            # example 4:
            # data type is int32
775
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
776 777 778 779 780
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
781
            out5 = paddle.randint(10)
782
            # [7]  # random
S
silingtong123 已提交
783

784 785
    """
    if high is None:
786 787
        if low <= 0:
            raise ValueError(
788
                "If high is None, low must be greater than 0, but received low = {}.".format(
789 790 791
                    low
                )
            )
792 793
        high = low
        low = 0
S
silingtong123 已提交
794
    if dtype is None:
W
Weilong Wu 已提交
795 796
        dtype = core.VarDesc.VarType.INT64
    elif not isinstance(dtype, core.VarDesc.VarType):
797
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
798

F
From00 已提交
799
    if in_dygraph_mode():
800
        shape = paddle.utils.convert_shape_to_list(shape)
F
From00 已提交
801
        place = _current_expected_place()
802
        return _C_ops.randint(low, high, shape, dtype, place)
803 804 805 806 807
    else:
        check_shape(shape, 'randint')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
        if low >= high:
            raise ValueError(
808 809
                f"randint's low must less then high, but received low = {low}, "
                f"high = {high}"
810
            )
S
silingtong123 已提交
811

812
        inputs = {}
813
        attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
814
        paddle.utils.get_shape_tensor_inputs(
815
            inputs=inputs, attrs=attrs, shape=shape, op_type='randint'
816
        )
S
silingtong123 已提交
817

818 819 820 821 822 823 824
        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        return out
C
cc 已提交
825 826


827 828
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
829
    Returns a Tensor filled with random integers from a discrete uniform
830
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
831
    (use ``dtype`` if ``dtype`` is not None)
832 833 834
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
835
        x (Tensor): The input multi-dimensional tensor which specifies shape. The dtype of ``x``
836
            can be bool, int32, int64, float16, float32, float64.
837
        low (int, optional): The lower bound on the range of random values to generate.
838 839 840
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
841 842
            generate, the ``high`` is excluded in the range. Default is None.
            If ``high`` is None, the range is [0, ``low``).
843
        dtype (str|np.dtype, optional): The data type of the
844
            output tensor. Supported data types: bool, int32, int64, float16,
845 846 847 848 849 850
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

851
    Returns:
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
954
                "If high is None, low must be greater than 0, but received low = {}.".format(
955 956 957
                    low
                )
            )
958 959 960 961 962 963
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
964
    shape = paddle.shape(x)
965 966 967

    if low >= high:
        raise ValueError(
968 969
            f"randint_like's low must less then high, but received low = {low}, "
            f"high = {high}"
970
        )
971

972
    if in_dygraph_mode():
973
        shape = paddle.utils.convert_shape_to_list(shape)
974 975 976 977 978 979 980 981 982 983 984 985
        out = _legacy_C_ops.randint(
            'shape',
            shape,
            'low',
            low,
            'high',
            high,
            'seed',
            0,
            'dtype',
            core.VarDesc.VarType.INT64,
        )
986 987
        out = paddle.cast(out, dtype)
        return out
988 989 990 991 992 993 994 995
    else:
        check_shape(shape, 'randint_like')
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'randint_like',
        )
996

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        inputs = {"ShapeTensor": shape}
        attrs = {
            'low': low,
            'high': high,
            'seed': 0,
            'dtype': core.VarDesc.VarType.INT64,
        }

        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64
        )
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        out = paddle.cast(out, dtype)
        return out
1015 1016


1017
def randperm(n, dtype="int64", name=None):
C
cc 已提交
1018
    """
1019
    Returns a 1-D Tensor filled with random permutation values from 0
1020
    to n-1, with ``dtype``.
C
cc 已提交
1021 1022

    Args:
1023 1024
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
1025 1026
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
1027
        name (str, optional): The default value is None. Normally there is no
1028 1029
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
1030 1031

    Returns:
1032 1033
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
1034 1035 1036 1037

    Examples:
        .. code-block:: python

1038
            import paddle
C
cc 已提交
1039

1040
            out1 = paddle.randperm(5)
1041
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
1042

1043
            out2 = paddle.randperm(7, 'int32')
1044
            # [1, 6, 2, 0, 4, 3, 5]  # random
1045

C
cc 已提交
1046
    """
1047 1048 1049
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zyfncg 已提交
1050
    if in_dygraph_mode():
1051
        return _C_ops.randperm(n, dtype, _current_expected_place())
1052 1053 1054 1055 1056 1057 1058 1059
    else:
        if n < 1:
            raise ValueError(
                "The input n should be greater than 0 in randperm op."
            )
        check_dtype(
            dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'], 'randperm'
        )
C
cc 已提交
1060

1061 1062 1063 1064 1065 1066 1067 1068
        helper = LayerHelper("randperm", **locals())
        out = helper.create_variable_for_type_inference(dtype)
        attrs = {'n': n, 'dtype': dtype, 'seed': 0}
        helper.append_op(
            type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        return out
X
Xing Wu 已提交
1069 1070


1071
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
1072
    """
1073
    Returns a Tensor filled with random values sampled from a uniform
1074
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1075 1076

    Args:
1077 1078 1079
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1080
        dtype (str|np.dtype, optional): The data type of the output Tensor.
1081 1082 1083
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
1084
        name (str, optional): The default value is None. Normally there is no
1085 1086
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1087

X
Xing Wu 已提交
1088
    Returns:
1089 1090
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1091 1092 1093 1094

    Examples:
        .. code-block:: python

1095
            import paddle
1096

1097
            # example 1: attr shape is a list which doesn't contain Tensor.
1098
            out1 = paddle.rand(shape=[2, 3])
1099 1100 1101 1102
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
1103 1104
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
1105
            out2 = paddle.rand(shape=[dim1, dim2, 2])
1106 1107 1108 1109 1110 1111 1112 1113
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
1114
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1115
            out3 = paddle.rand(shape_tensor)
1116 1117
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1118
    """
1119
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1120 1121 1122


def exponential_(x, lam=1.0, name=None):
1123
    r"""
1124 1125
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

1126 1127
    ``lam`` is :math:`\lambda` parameter of Exponential Distribution.

1128 1129 1130 1131 1132 1133
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1134
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1135 1136 1137
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1138
    Returns:
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
1154
    if in_dygraph_mode():
1155
        return _C_ops.exponential_(x, lam)
1156
    else:
1157 1158 1159
        check_variable_and_dtype(
            x, "x", ["float16", "float32", "float64", "uint16"], "exponential"
        )
1160 1161 1162 1163 1164 1165 1166 1167 1168

        helper = LayerHelper("exponential", **locals())
        helper.append_op(
            type='exponential',
            inputs={"X": x},
            outputs={'Out': x},
            attrs={"lambda": lam},
        )
        return x