random.py 44.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define random functions
S
silingtong123 已提交
16

17 18
import paddle
from paddle import _C_ops, _legacy_C_ops
19
from paddle.common_ops_import import Variable
20
from paddle.fluid.framework import _current_expected_place, in_dygraph_mode
21

22 23 24
from ..fluid.data_feeder import (
    check_dtype,
    check_shape,
25 26
    check_type,
    check_variable_and_dtype,
27
)
28 29 30 31 32
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
33
)
S
silingtong123 已提交
34

35 36
__all__ = []

S
silingtong123 已提交
37

L
Leo Chen 已提交
38
def bernoulli(x, name=None):
39
    r"""
L
Leo Chen 已提交
40

41
    For each element :math:`x_i` in input ``x``, take a sample from the Bernoulli distribution, also called two-point distribution, with success probability :math:`x_i`. The Bernoulli distribution with success probability :math:`x_i` is a discrete probability distribution with probability mass function
L
Leo Chen 已提交
42

43
    .. math::
44 45
        p(y)=\begin{cases}
            x_i,&y=1\\
46 47
            1-x_i,&y=0
        \end{cases}.
L
Leo Chen 已提交
48 49

    Args:
50 51 52
        x (Tensor): The input Tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

53
    Returns:
54
        Tensor: A Tensor filled samples from Bernoulli distribution, whose shape and dtype are same as ``x``.
L
Leo Chen 已提交
55 56 57 58

    Examples:
        .. code-block:: python

59
            import paddle
L
Leo Chen 已提交
60

L
Leo Chen 已提交
61
            paddle.set_device('cpu')  # on CPU device
62
            paddle.seed(100)
L
Leo Chen 已提交
63

64
            x = paddle.rand([2,3])
L
Leo Chen 已提交
65 66 67
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
68

69
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
70 71 72
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
73 74 75

    """

H
hong 已提交
76
    if in_dygraph_mode():
77
        return _C_ops.bernoulli(x)
78 79 80 81 82 83 84 85 86 87 88 89
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )  # maybe set out to int32 ?
        helper.append_op(
            type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={}
        )
        out.stop_gradient = True
        return out
L
Leo Chen 已提交
90 91


92
def poisson(x, name=None):
93
    r"""
94
    Returns a tensor filled with random number from a Poisson Distribution.
95 96 97

    .. math::

98
        out_i \sim Poisson (lambda = x_i)
99 100

    Args:
101
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type
102 103 104 105
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
106
    Returns:
107 108 109 110 111 112
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
113
            paddle.set_device('cpu')
114
            paddle.seed(100)
115 116 117

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
118 119
            #[[2., 5., 0.],
            # [5., 1., 3.]]
120 121

    """
H
hong 已提交
122
    if in_dygraph_mode():
123
        return _C_ops.poisson(x)
124 125
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")
126

127 128 129 130 131 132
        helper = LayerHelper("poisson", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='poisson', inputs={'X': x}, outputs={'Out': out}, attrs={}
        )
        return out
133 134


P
pangyoki 已提交
135 136
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
137
    Returns a Tensor filled with random values sampled from a Multinomical
P
pangyoki 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

157 158
            import paddle

C
cnn 已提交
159
            paddle.seed(100) # on CPU device
160
            x = paddle.rand([2,4])
161
            print(x)
162 163 164
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
165
            paddle.seed(200) # on CPU device
166
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
167
            print(out1)
168 169 170 171 172 173 174
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
175
            paddle.seed(300) # on CPU device
176
            out3 = paddle.multinomial(x, num_samples=3)
177
            print(out3)
178 179
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
180 181 182

    """

183
    assert (
184
        not core.is_compiled_with_rocm()
185
    ), "multinomial op is not supported on ROCM yet."
186

H
hong 已提交
187
    if in_dygraph_mode():
188
        return _C_ops.multinomial(x, num_samples, replacement)
189 190
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")
H
hong 已提交
191

192 193 194
        helper = LayerHelper("multinomial", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_('int64')
195
        )
196 197 198 199 200 201 202 203
        helper.append_op(
            type='multinomial',
            inputs={"X": x},
            outputs={'Out': out},
            attrs={'num_samples': num_samples, 'replacement': replacement},
        )
        out.stop_gradient = True
        return out
P
pangyoki 已提交
204 205


206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
def uniform_random_batch_size_like(
    input,
    shape,
    dtype='float32',
    input_dim_idx=0,
    output_dim_idx=0,
    min=-1.0,
    max=1.0,
    seed=0,
):
    """
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.
    .. code-block:: text
        *Case 1:
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]
            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0,
            input_dim_idx = 0,
            result.shape[0] = input.shape[0],
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
       *Case 2:
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1,
           input_dim_idx = 1,
           result.shape[1] = input.shape[1],
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
    Args:
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0.
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
    Returns:
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            from paddle.tensor import random
            paddle.enable_static()
            # example 1:
261
            input = paddle.static.data(name="input", shape=[1, 3], dtype='float32')
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            out_1 = random.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
            # example 2:
            out_2 = random.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]
    """
    check_variable_and_dtype(
        input,
        'Input',
        ("float32", 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )
    check_type(shape, 'shape', (list, tuple), 'uniform_random_batch_size_like')
    check_dtype(
        dtype,
        'dtype',
        ('float32', 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_variable_for_type_inference(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype,
        },
    )

    return out


301
def gaussian(shape, mean=0.0, std=1.0, seed=0, dtype=None, name=None):
302
    """
303
    Returns a Tensor filled with random values sampled from a Gaussian
304 305 306
    distribution, with ``shape`` and ``dtype``.

    Args:
307 308 309
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
310 311
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
312
            is 1.0.
313 314
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
315 316 317
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
318
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
319 320 321

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
322
        distribution, with ``shape`` and ``dtype``.
323
    """
324
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
325
    supported_dtypes = ['float32', 'float64', 'float16', 'uint16']
326

327 328
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
329
        if dtype not in supported_dtypes:
330
            raise TypeError(
331 332
                "{} only supports {}, but the default dtype is {}".format(
                    op_type_for_check, supported_dtypes, dtype
333 334
                )
            )
335 336 337
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

338
    if in_dygraph_mode():
339
        shape = paddle.utils.convert_shape_to_list(shape)
340
        place = _current_expected_place()
341
        return _C_ops.gaussian(
342 343
            shape, float(mean), float(std), seed, dtype, place
        )
344 345
    else:
        check_shape(shape, op_type_for_check)
346
        check_dtype(dtype, 'dtype', supported_dtypes, op_type_for_check)
347

348 349 350 351 352 353 354 355
        inputs = {}
        attrs = {
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': dtype,
            'use_mkldnn': False,
        }
356
        paddle.utils.get_shape_tensor_inputs(
357
            inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check
358
        )
359

360 361 362 363 364 365 366 367 368 369
        helper = LayerHelper('gaussian', **locals())
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='gaussian_random',
            inputs=inputs,
            outputs={'Out': out},
            attrs=attrs,
        )
        out.stop_gradient = True
        return out
370 371 372 373


def standard_normal(shape, dtype=None, name=None):
    """
374
    Returns a Tensor filled with random values sampled from a standard
375 376 377 378
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
379 380 381
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
382
        dtype (str|np.dtype, optional): The data type of the output Tensor.
383 384 385
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
386 387 388 389 390 391 392 393 394 395 396 397 398 399
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
400
            out1 = paddle.standard_normal(shape=[2, 3])
401 402 403 404
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
405 406
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
407
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
408 409 410 411 412 413 414 415
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
416
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
417
            out3 = paddle.standard_normal(shape_tensor)
418 419 420 421
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
422
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
423 424


Z
zhupengyang 已提交
425 426
def randn(shape, dtype=None, name=None):
    """
427
    Returns a Tensor filled with random values sampled from a standard
Z
zhupengyang 已提交
428 429 430 431
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
432 433 434
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
Z
zhupengyang 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
458 459
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
475 476 477 478


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
479
    Returns a Tensor filled with random values sampled from a normal
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
497 498 499 500
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. If ``mean`` or ``std``
            is a Tensor, the shape of the output Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

517
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
518 519 520
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

521
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
522 523 524 525
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
526
    if not in_dygraph_mode():
527 528 529 530
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
531 532 533 534 535
                mean.dtype,
                'mean',
                ['float32', 'float64'],
                'normal',
                "If mean is Tensor, it's data type only support float32, float64.",
536 537 538
            )
        if isinstance(std, Variable):
            check_dtype(
539 540 541 542 543
                std.dtype,
                'std',
                ['float32', 'float64'],
                'normal',
                "If std is Tensor, it's data type only support float32, float64.",
544 545
            )
        if shape is not None:
546
            check_shape(shape, 'normal')
547 548 549 550 551 552 553 554 555 556 557 558 559 560

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
561
        return gaussian(shape=shape, mean=mean, std=std, name=name)
562 563

    out = out * std + mean
564
    if not in_dygraph_mode():
565 566 567 568
        out.stop_grediant = True
    return out


569
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
570
    """
571
    Returns a Tensor filled with random values sampled from a uniform
P
pangyoki 已提交
572 573 574
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
575

Z
zhupengyang 已提交
576
    .. code-block:: text
李灿 已提交
577

P
pangyoki 已提交
578 579 580 581 582 583
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
584 585 586
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
587 588 589 590
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
591 592 593 594
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
595
        seed(int, optional): Random seed used for generating samples. If seed is 0,
596
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
597
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
598
            time. Default is 0.
599 600
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
P
pangyoki 已提交
601 602 603 604 605 606 607

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python
608
          :name: code-example1
609

P
pangyoki 已提交
610 611 612 613
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
614 615 616 617
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
618 619 620

            # example 2:
            # attr shape is a list which contains Tensor.
621 622
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
623 624 625
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
626 627 628

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
629
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
630 631 632
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
633
    """
634
    supported_dtypes = ['float32', 'float64', 'float16', 'uint16']
635 636
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
637
        if dtype not in supported_dtypes:
638
            raise TypeError(
639 640
                "uniform/rand only supports {}, but the default dtype is {}".format(
                    supported_dtypes, dtype
641 642
                )
            )
643

P
pangyoki 已提交
644 645 646
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

647
    if in_dygraph_mode():
648
        shape = paddle.utils.convert_shape_to_list(shape)
649
        return _C_ops.uniform(
650 651 652 653 654 655 656
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
657 658
    else:
        check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
659
        check_dtype(dtype, 'dtype', supported_dtypes, 'uniform/rand')
660 661 662
        check_type(min, 'min', (float, int, Variable), 'uniform/rand')
        check_type(max, 'max', (float, int, Variable), 'uniform/rand')

663
        inputs = {}
664
        attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
665
        paddle.utils.get_shape_tensor_inputs(
666
            inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand'
667
        )
P
pangyoki 已提交
668

669 670 671 672 673 674 675 676 677 678
        helper = LayerHelper("uniform", **locals())
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="uniform_random",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out},
        )
        out.stop_gradient = True
        return out
P
pangyoki 已提交
679 680


J
JYChen 已提交
681 682 683
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
684
    This is the inplace version of OP ``uniform``, which returns a Tensor filled
J
JYChen 已提交
685 686
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
687

J
JYChen 已提交
688 689 690 691 692 693
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
694 695
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
696 697 698 699 700 701 702 703 704 705
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
706

J
JYChen 已提交
707 708 709 710 711 712 713 714 715
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
716
    return _C_ops.uniform_inplace_(x, min, max, seed, 0, 0, 1.0)
J
JYChen 已提交
717 718


719
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
720
    """
721
    Returns a Tensor filled with random integers from a discrete uniform
722 723
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
724 725

    Args:
726
        low (int, optional): The lower bound on the range of random values to generate.
727 728
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
729
        high (int, optional): The upper bound on the range of random values to
730 731
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
732 733 734
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. Default is [1].
735
        dtype (str|np.dtype, optional): The data type of the
736 737
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
738
        name (str, optional): The default value is None.  Normally there is no
739 740
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
741

742
    Returns:
743 744
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
745 746 747

    Examples:
        .. code-block:: python
748

749
            import paddle
750

751 752
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
753
            out1 = paddle.randint(low=-5, high=5, shape=[2, 3])
754 755 756 757
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
758 759
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
760
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
761 762 763 764 765
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
766
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
767
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
768 769
            # [[ 2, -3, -1],    # random
            #  [-3, -2,  1]])   # random
770 771 772

            # example 4:
            # data type is int32
773
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
774 775 776 777 778
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
779
            out5 = paddle.randint(10)
780
            # [7]  # random
S
silingtong123 已提交
781

782 783
    """
    if high is None:
784 785
        if low <= 0:
            raise ValueError(
786 787 788 789
                "If high is None, low must be greater than 0, but received low = {0}.".format(
                    low
                )
            )
790 791
        high = low
        low = 0
S
silingtong123 已提交
792
    if dtype is None:
W
Weilong Wu 已提交
793 794
        dtype = core.VarDesc.VarType.INT64
    elif not isinstance(dtype, core.VarDesc.VarType):
795
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
796

F
From00 已提交
797
    if in_dygraph_mode():
798
        shape = paddle.utils.convert_shape_to_list(shape)
F
From00 已提交
799
        place = _current_expected_place()
800
        return _C_ops.randint(low, high, shape, dtype, place)
801 802 803 804 805 806 807 808
    else:
        check_shape(shape, 'randint')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
        if low >= high:
            raise ValueError(
                "randint's low must less then high, but received low = {0}, "
                "high = {1}".format(low, high)
            )
S
silingtong123 已提交
809

810
        inputs = {}
811
        attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
812
        paddle.utils.get_shape_tensor_inputs(
813
            inputs=inputs, attrs=attrs, shape=shape, op_type='randint'
814
        )
S
silingtong123 已提交
815

816 817 818 819 820 821 822
        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        return out
C
cc 已提交
823 824


825 826
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
827
    Returns a Tensor filled with random integers from a discrete uniform
828
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
829
    (use ``dtype`` if ``dtype`` is not None)
830 831 832
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
833
        x (Tensor): The input multi-dimensional tensor which specifies shape. The dtype of ``x``
834
            can be bool, int32, int64, float16, float32, float64.
835
        low (int, optional): The lower bound on the range of random values to generate.
836 837 838
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
839 840
            generate, the ``high`` is excluded in the range. Default is None.
            If ``high`` is None, the range is [0, ``low``).
841
        dtype (str|np.dtype, optional): The data type of the
842
            output tensor. Supported data types: bool, int32, int64, float16,
843 844 845 846 847 848
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

849
    Returns:
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
952 953 954 955
                "If high is None, low must be greater than 0, but received low = {0}.".format(
                    low
                )
            )
956 957 958 959 960 961
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
962
    shape = paddle.shape(x)
963 964 965 966

    if low >= high:
        raise ValueError(
            "randint_like's low must less then high, but received low = {0}, "
967 968
            "high = {1}".format(low, high)
        )
969

970
    if in_dygraph_mode():
971
        shape = paddle.utils.convert_shape_to_list(shape)
972 973 974 975 976 977 978 979 980 981 982 983
        out = _legacy_C_ops.randint(
            'shape',
            shape,
            'low',
            low,
            'high',
            high,
            'seed',
            0,
            'dtype',
            core.VarDesc.VarType.INT64,
        )
984 985
        out = paddle.cast(out, dtype)
        return out
986 987 988 989 990 991 992 993
    else:
        check_shape(shape, 'randint_like')
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'randint_like',
        )
994

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        inputs = {"ShapeTensor": shape}
        attrs = {
            'low': low,
            'high': high,
            'seed': 0,
            'dtype': core.VarDesc.VarType.INT64,
        }

        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64
        )
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        out = paddle.cast(out, dtype)
        return out
1013 1014


1015
def randperm(n, dtype="int64", name=None):
C
cc 已提交
1016
    """
1017
    Returns a 1-D Tensor filled with random permutation values from 0
1018
    to n-1, with ``dtype``.
C
cc 已提交
1019 1020

    Args:
1021 1022
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
1023 1024
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
1025
        name (str, optional): The default value is None. Normally there is no
1026 1027
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
1028 1029

    Returns:
1030 1031
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
1032 1033 1034 1035

    Examples:
        .. code-block:: python

1036
            import paddle
C
cc 已提交
1037

1038
            out1 = paddle.randperm(5)
1039
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
1040

1041
            out2 = paddle.randperm(7, 'int32')
1042
            # [1, 6, 2, 0, 4, 3, 5]  # random
1043

C
cc 已提交
1044
    """
1045 1046 1047
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zyfncg 已提交
1048
    if in_dygraph_mode():
1049
        return _C_ops.randperm(n, dtype, _current_expected_place())
1050 1051 1052 1053 1054 1055 1056 1057
    else:
        if n < 1:
            raise ValueError(
                "The input n should be greater than 0 in randperm op."
            )
        check_dtype(
            dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'], 'randperm'
        )
C
cc 已提交
1058

1059 1060 1061 1062 1063 1064 1065 1066
        helper = LayerHelper("randperm", **locals())
        out = helper.create_variable_for_type_inference(dtype)
        attrs = {'n': n, 'dtype': dtype, 'seed': 0}
        helper.append_op(
            type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        return out
X
Xing Wu 已提交
1067 1068


1069
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
1070
    """
1071
    Returns a Tensor filled with random values sampled from a uniform
1072
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1073 1074

    Args:
1075 1076 1077
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1078
        dtype (str|np.dtype, optional): The data type of the output Tensor.
1079 1080 1081
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
1082
        name (str, optional): The default value is None. Normally there is no
1083 1084
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1085

X
Xing Wu 已提交
1086
    Returns:
1087 1088
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1089 1090 1091 1092

    Examples:
        .. code-block:: python

1093
            import paddle
1094

1095
            # example 1: attr shape is a list which doesn't contain Tensor.
1096
            out1 = paddle.rand(shape=[2, 3])
1097 1098 1099 1100
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
1101 1102
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
1103
            out2 = paddle.rand(shape=[dim1, dim2, 2])
1104 1105 1106 1107 1108 1109 1110 1111
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
1112
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1113
            out3 = paddle.rand(shape_tensor)
1114 1115
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1116
    """
1117
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1118 1119 1120


def exponential_(x, lam=1.0, name=None):
1121
    r"""
1122 1123
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

1124 1125
    ``lam`` is :math:`\lambda` parameter of Exponential Distribution.

1126 1127 1128 1129 1130 1131
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1132
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1133 1134 1135
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1136
    Returns:
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
1152
    if in_dygraph_mode():
1153
        return _C_ops.exponential_(x, lam)
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")

        helper = LayerHelper("exponential", **locals())
        helper.append_op(
            type='exponential',
            inputs={"X": x},
            outputs={'Out': x},
            attrs={"lambda": lam},
        )
        return x