random.py 44.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define random functions
S
silingtong123 已提交
16

17 18
import paddle
from paddle import _C_ops, _legacy_C_ops
19
from paddle.fluid.framework import _current_expected_place, in_dygraph_mode
20 21
from paddle.static import Variable

22 23 24
from ..fluid.data_feeder import (
    check_dtype,
    check_shape,
25 26
    check_type,
    check_variable_and_dtype,
27
)
28
from ..fluid.layers import utils
29 30 31 32 33
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
34
)
S
silingtong123 已提交
35

36 37
__all__ = []

S
silingtong123 已提交
38

L
Leo Chen 已提交
39
def bernoulli(x, name=None):
40
    r"""
L
Leo Chen 已提交
41

42
    For each element :math:`x_i` in input ``x``, take a sample from the Bernoulli distribution, also called two-point distribution, with success probability :math:`x_i`. The Bernoulli distribution with success probability :math:`x_i` is a discrete probability distribution with probability mass function
L
Leo Chen 已提交
43

44
    .. math::
45 46
        p(y)=\begin{cases}
            x_i,&y=1\\
47 48
            1-x_i,&y=0
        \end{cases}.
L
Leo Chen 已提交
49 50

    Args:
51 52 53
        x (Tensor): The input Tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

54
    Returns:
55
        Tensor: A Tensor filled samples from Bernoulli distribution, whose shape and dtype are same as ``x``.
L
Leo Chen 已提交
56 57 58 59

    Examples:
        .. code-block:: python

60
            import paddle
L
Leo Chen 已提交
61

L
Leo Chen 已提交
62
            paddle.set_device('cpu')  # on CPU device
63
            paddle.seed(100)
L
Leo Chen 已提交
64

65
            x = paddle.rand([2,3])
L
Leo Chen 已提交
66 67 68
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
69

70
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
71 72 73
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
74 75 76

    """

H
hong 已提交
77
    if in_dygraph_mode():
78
        return _C_ops.bernoulli(x)
79 80 81 82 83 84 85 86 87 88 89 90
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )  # maybe set out to int32 ?
        helper.append_op(
            type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={}
        )
        out.stop_gradient = True
        return out
L
Leo Chen 已提交
91 92


93
def poisson(x, name=None):
94
    r"""
95
    Returns a tensor filled with random number from a Poisson Distribution.
96 97 98

    .. math::

99
        out_i \sim Poisson (lambda = x_i)
100 101

    Args:
102
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type
103 104 105 106
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
107
    Returns:
108 109 110 111 112 113
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
114
            paddle.set_device('cpu')
115
            paddle.seed(100)
116 117 118

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
119 120
            #[[2., 5., 0.],
            # [5., 1., 3.]]
121 122

    """
H
hong 已提交
123
    if in_dygraph_mode():
124
        return _C_ops.poisson(x)
125 126
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")
127

128 129 130 131 132 133
        helper = LayerHelper("poisson", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='poisson', inputs={'X': x}, outputs={'Out': out}, attrs={}
        )
        return out
134 135


P
pangyoki 已提交
136 137
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
138
    Returns a Tensor filled with random values sampled from a Multinomical
P
pangyoki 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

158 159
            import paddle

C
cnn 已提交
160
            paddle.seed(100) # on CPU device
161
            x = paddle.rand([2,4])
162
            print(x)
163 164 165
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
166
            paddle.seed(200) # on CPU device
167
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
168
            print(out1)
169 170 171 172 173 174 175
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
176
            paddle.seed(300) # on CPU device
177
            out3 = paddle.multinomial(x, num_samples=3)
178
            print(out3)
179 180
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
181 182 183

    """

184
    assert (
185
        not core.is_compiled_with_rocm()
186
    ), "multinomial op is not supported on ROCM yet."
187

H
hong 已提交
188
    if in_dygraph_mode():
189
        return _C_ops.multinomial(x, num_samples, replacement)
190 191
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")
H
hong 已提交
192

193 194 195
        helper = LayerHelper("multinomial", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_('int64')
196
        )
197 198 199 200 201 202 203 204
        helper.append_op(
            type='multinomial',
            inputs={"X": x},
            outputs={'Out': out},
            attrs={'num_samples': num_samples, 'replacement': replacement},
        )
        out.stop_gradient = True
        return out
P
pangyoki 已提交
205 206


207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
def uniform_random_batch_size_like(
    input,
    shape,
    dtype='float32',
    input_dim_idx=0,
    output_dim_idx=0,
    min=-1.0,
    max=1.0,
    seed=0,
):
    """
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.
    .. code-block:: text
        *Case 1:
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]
            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0,
            input_dim_idx = 0,
            result.shape[0] = input.shape[0],
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
       *Case 2:
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1,
           input_dim_idx = 1,
           result.shape[1] = input.shape[1],
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
    Args:
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0.
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
    Returns:
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            from paddle.tensor import random
            paddle.enable_static()
            # example 1:
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = random.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
            # example 2:
            out_2 = random.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]
    """
    check_variable_and_dtype(
        input,
        'Input',
        ("float32", 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )
    check_type(shape, 'shape', (list, tuple), 'uniform_random_batch_size_like')
    check_dtype(
        dtype,
        'dtype',
        ('float32', 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_variable_for_type_inference(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype,
        },
    )

    return out


302
def gaussian(shape, mean=0.0, std=1.0, seed=0, dtype=None, name=None):
303
    """
304
    Returns a Tensor filled with random values sampled from a Gaussian
305 306 307
    distribution, with ``shape`` and ``dtype``.

    Args:
308 309 310
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
311 312
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
313
            is 1.0.
314 315
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
316 317 318
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
319
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
320 321 322

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
323
        distribution, with ``shape`` and ``dtype``.
324
    """
325 326
    op_type_for_check = 'gaussian/standard_normal/randn/normal'

327 328 329 330
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
331 332 333 334
                "{} only supports [float32, float64], but the default dtype is {}".format(
                    op_type_for_check, dtype
                )
            )
335 336 337
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

338 339 340
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
341
        return _C_ops.gaussian(
342 343
            shape, float(mean), float(std), seed, dtype, place
        )
344 345 346
    else:
        check_shape(shape, op_type_for_check)
        check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)
347

348 349 350 351 352 353 354 355 356 357
        inputs = {}
        attrs = {
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': dtype,
            'use_mkldnn': False,
        }
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check
358
        )
359

360 361 362 363 364 365 366 367 368 369
        helper = LayerHelper('gaussian', **locals())
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='gaussian_random',
            inputs=inputs,
            outputs={'Out': out},
            attrs=attrs,
        )
        out.stop_gradient = True
        return out
370 371 372 373


def standard_normal(shape, dtype=None, name=None):
    """
374
    Returns a Tensor filled with random values sampled from a standard
375 376 377 378
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
379 380 381
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
382
        dtype (str|np.dtype, optional): The data type of the output Tensor.
383 384 385
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
386 387 388 389 390 391 392 393 394 395 396 397 398 399
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
400
            out1 = paddle.standard_normal(shape=[2, 3])
401 402 403 404
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
405 406
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
407
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
408 409 410 411 412 413 414 415
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
416
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
417
            out3 = paddle.standard_normal(shape_tensor)
418 419 420 421
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
422
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
423 424


Z
zhupengyang 已提交
425 426
def randn(shape, dtype=None, name=None):
    """
427
    Returns a Tensor filled with random values sampled from a standard
Z
zhupengyang 已提交
428 429 430 431
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
432 433 434
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
Z
zhupengyang 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
458 459
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
475 476 477 478


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
479
    Returns a Tensor filled with random values sampled from a normal
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
497 498 499 500
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. If ``mean`` or ``std``
            is a Tensor, the shape of the output Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

517
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
518 519 520
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

521
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
522 523 524 525
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
526
    if not in_dygraph_mode():
527 528 529 530
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
531 532 533 534 535
                mean.dtype,
                'mean',
                ['float32', 'float64'],
                'normal',
                "If mean is Tensor, it's data type only support float32, float64.",
536 537 538
            )
        if isinstance(std, Variable):
            check_dtype(
539 540 541 542 543
                std.dtype,
                'std',
                ['float32', 'float64'],
                'normal',
                "If std is Tensor, it's data type only support float32, float64.",
544 545
            )
        if shape is not None:
546
            check_shape(shape, 'normal')
547 548 549 550 551 552 553 554 555 556 557 558 559 560

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
561
        return gaussian(shape=shape, mean=mean, std=std, name=name)
562 563

    out = out * std + mean
564
    if not in_dygraph_mode():
565 566 567 568
        out.stop_grediant = True
    return out


569
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
570
    """
571
    Returns a Tensor filled with random values sampled from a uniform
P
pangyoki 已提交
572 573 574
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
575

Z
zhupengyang 已提交
576
    .. code-block:: text
李灿 已提交
577

P
pangyoki 已提交
578 579 580 581 582 583
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
584 585 586
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
587 588 589 590
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
591 592 593 594
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
595
        seed(int, optional): Random seed used for generating samples. If seed is 0,
596
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
597
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
598
            time. Default is 0.
599 600
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
P
pangyoki 已提交
601 602 603 604 605 606 607

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python
608
          :name: code-example1
609

P
pangyoki 已提交
610 611 612 613
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
614 615 616 617
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
618 619 620

            # example 2:
            # attr shape is a list which contains Tensor.
621 622
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
623 624 625
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
626 627 628

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
629
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
630 631 632
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
633
    """
634 635 636 637
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
638 639 640 641
                "uniform/rand only supports [float32, float64], but the default dtype is {}".format(
                    dtype
                )
            )
642

P
pangyoki 已提交
643 644 645
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

646 647
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
648
        return _C_ops.uniform(
649 650 651 652 653 654 655
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
656 657 658 659 660 661 662 663 664 665
    else:
        check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
        check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
        check_type(min, 'min', (float, int, Variable), 'uniform/rand')
        check_type(max, 'max', (float, int, Variable), 'uniform/rand')

        inputs = dict()
        attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand'
666
        )
P
pangyoki 已提交
667

668 669 670 671 672 673 674 675 676 677
        helper = LayerHelper("uniform", **locals())
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="uniform_random",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out},
        )
        out.stop_gradient = True
        return out
P
pangyoki 已提交
678 679


J
JYChen 已提交
680 681 682
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
683
    This is the inplace version of OP ``uniform``, which returns a Tensor filled
J
JYChen 已提交
684 685
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
686

J
JYChen 已提交
687 688 689 690 691 692
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
693 694
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
695 696 697 698 699 700 701 702 703 704
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
705

J
JYChen 已提交
706 707 708 709 710 711 712 713 714
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
715
    return _C_ops.uniform_inplace_(x, min, max, seed, 0, 0, 1.0)
J
JYChen 已提交
716 717


718
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
719
    """
720
    Returns a Tensor filled with random integers from a discrete uniform
721 722
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
723 724

    Args:
725
        low (int, optional): The lower bound on the range of random values to generate.
726 727
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
728
        high (int, optional): The upper bound on the range of random values to
729 730
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
731 732 733
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. Default is [1].
734
        dtype (str|np.dtype, optional): The data type of the
735 736
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
737
        name (str, optional): The default value is None.  Normally there is no
738 739
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
740

741
    Returns:
742 743
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
744 745 746

    Examples:
        .. code-block:: python
747

748
            import paddle
749

750 751
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
752
            out1 = paddle.randint(low=-5, high=5, shape=[2, 3])
753 754 755 756
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
757 758
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
759
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
760 761 762 763 764
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
765
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
766
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
767 768
            # [[ 2, -3, -1],    # random
            #  [-3, -2,  1]])   # random
769 770 771

            # example 4:
            # data type is int32
772
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
773 774 775 776 777
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
778
            out5 = paddle.randint(10)
779
            # [7]  # random
S
silingtong123 已提交
780

781 782
    """
    if high is None:
783 784
        if low <= 0:
            raise ValueError(
785 786 787 788
                "If high is None, low must be greater than 0, but received low = {0}.".format(
                    low
                )
            )
789 790
        high = low
        low = 0
S
silingtong123 已提交
791
    if dtype is None:
W
Weilong Wu 已提交
792 793
        dtype = core.VarDesc.VarType.INT64
    elif not isinstance(dtype, core.VarDesc.VarType):
794
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
795

F
From00 已提交
796 797 798
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
799
        return _C_ops.randint(low, high, shape, dtype, place)
800 801 802 803 804 805 806 807
    else:
        check_shape(shape, 'randint')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
        if low >= high:
            raise ValueError(
                "randint's low must less then high, but received low = {0}, "
                "high = {1}".format(low, high)
            )
S
silingtong123 已提交
808

809 810 811 812
        inputs = dict()
        attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='randint'
813
        )
S
silingtong123 已提交
814

815 816 817 818 819 820 821
        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        return out
C
cc 已提交
822 823


824 825
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
826
    Returns a Tensor filled with random integers from a discrete uniform
827
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
828
    (use ``dtype`` if ``dtype`` is not None)
829 830 831
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
832
        x (Tensor): The input multi-dimensional tensor which specifies shape. The dtype of ``x``
833
            can be bool, int32, int64, float16, float32, float64.
834
        low (int, optional): The lower bound on the range of random values to generate.
835 836 837
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
838 839
            generate, the ``high`` is excluded in the range. Default is None.
            If ``high`` is None, the range is [0, ``low``).
840
        dtype (str|np.dtype, optional): The data type of the
841
            output tensor. Supported data types: bool, int32, int64, float16,
842 843 844 845 846 847
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

848
    Returns:
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
951 952 953 954
                "If high is None, low must be greater than 0, but received low = {0}.".format(
                    low
                )
            )
955 956 957 958 959 960
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
961
    shape = paddle.shape(x)
962 963 964 965

    if low >= high:
        raise ValueError(
            "randint_like's low must less then high, but received low = {0}, "
966 967
            "high = {1}".format(low, high)
        )
968

969
    if in_dygraph_mode():
970
        shape = utils.convert_shape_to_list(shape)
971 972 973 974 975 976 977 978 979 980 981 982
        out = _legacy_C_ops.randint(
            'shape',
            shape,
            'low',
            low,
            'high',
            high,
            'seed',
            0,
            'dtype',
            core.VarDesc.VarType.INT64,
        )
983 984
        out = paddle.cast(out, dtype)
        return out
985 986 987 988 989 990 991 992
    else:
        check_shape(shape, 'randint_like')
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'randint_like',
        )
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
        inputs = {"ShapeTensor": shape}
        attrs = {
            'low': low,
            'high': high,
            'seed': 0,
            'dtype': core.VarDesc.VarType.INT64,
        }

        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64
        )
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        out = paddle.cast(out, dtype)
        return out
1012 1013


1014
def randperm(n, dtype="int64", name=None):
C
cc 已提交
1015
    """
1016
    Returns a 1-D Tensor filled with random permutation values from 0
1017
    to n-1, with ``dtype``.
C
cc 已提交
1018 1019

    Args:
1020 1021
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
1022 1023
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
1024
        name (str, optional): The default value is None. Normally there is no
1025 1026
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
1027 1028

    Returns:
1029 1030
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
1031 1032 1033 1034

    Examples:
        .. code-block:: python

1035
            import paddle
C
cc 已提交
1036

1037
            out1 = paddle.randperm(5)
1038
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
1039

1040
            out2 = paddle.randperm(7, 'int32')
1041
            # [1, 6, 2, 0, 4, 3, 5]  # random
1042

C
cc 已提交
1043
    """
1044 1045 1046
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zyfncg 已提交
1047
    if in_dygraph_mode():
1048
        return _C_ops.randperm(n, dtype, _current_expected_place())
1049 1050 1051 1052 1053 1054 1055 1056
    else:
        if n < 1:
            raise ValueError(
                "The input n should be greater than 0 in randperm op."
            )
        check_dtype(
            dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'], 'randperm'
        )
C
cc 已提交
1057

1058 1059 1060 1061 1062 1063 1064 1065
        helper = LayerHelper("randperm", **locals())
        out = helper.create_variable_for_type_inference(dtype)
        attrs = {'n': n, 'dtype': dtype, 'seed': 0}
        helper.append_op(
            type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        return out
X
Xing Wu 已提交
1066 1067


1068
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
1069
    """
1070
    Returns a Tensor filled with random values sampled from a uniform
1071
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1072 1073

    Args:
1074 1075 1076
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1077
        dtype (str|np.dtype, optional): The data type of the output Tensor.
1078 1079 1080
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
1081
        name (str, optional): The default value is None. Normally there is no
1082 1083
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1084

X
Xing Wu 已提交
1085
    Returns:
1086 1087
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1088 1089 1090 1091

    Examples:
        .. code-block:: python

1092
            import paddle
1093

1094
            # example 1: attr shape is a list which doesn't contain Tensor.
1095
            out1 = paddle.rand(shape=[2, 3])
1096 1097 1098 1099
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
1100 1101
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
1102
            out2 = paddle.rand(shape=[dim1, dim2, 2])
1103 1104 1105 1106 1107 1108 1109 1110
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
1111
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1112
            out3 = paddle.rand(shape_tensor)
1113 1114
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1115
    """
1116
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1117 1118 1119


def exponential_(x, lam=1.0, name=None):
1120
    r"""
1121 1122
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

1123 1124
    ``lam`` is :math:`\lambda` parameter of Exponential Distribution.

1125 1126 1127 1128 1129 1130
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1131
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1132 1133 1134
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1135
    Returns:
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
1151
    if in_dygraph_mode():
1152
        return _C_ops.exponential_(x, lam)
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")

        helper = LayerHelper("exponential", **locals())
        helper.append_op(
            type='exponential',
            inputs={"X": x},
            outputs={'Out': x},
            attrs={"lambda": lam},
        )
        return x