op_test.py 98.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import functools
B
baojun 已提交
16
import os
17 18
import random
import struct
19
import sys
20
import unittest
21
import warnings
M
minqiyang 已提交
22
from collections import defaultdict
23
from copy import copy
24

25 26
import numpy as np

27
import paddle
28 29
import paddle.fluid as fluid
import paddle.fluid.core as core
30
from paddle.fluid import unique_name
31 32
from paddle.fluid.backward import append_backward
from paddle.fluid.executor import Executor
33 34 35 36
from paddle.fluid.framework import (
    OpProtoHolder,
    Program,
    _current_expected_place,
37 38 39 40
    _disable_legacy_dygraph,
    _enable_legacy_dygraph,
    _in_eager_without_dygraph_check,
    _test_eager_guard,
姜永久 已提交
41
    in_dygraph_mode,
42
)
43
from paddle.fluid.op import Operator
44 45

sys.path.append(os.path.abspath(os.path.dirname(__file__)))
46
from prim_op_test import OpTestUtils, PrimForwardChecker, PrimGradChecker
47
from testsuite import append_input_output, append_loss_ops, create_op, set_input
48
from white_list import (
49 50 51
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
52
    no_grad_set_white_list,
53 54
    op_accuracy_white_list,
    op_threshold_white_list,
55
)
56

57 58
# For switch new eager mode globally
g_is_in_eager = _in_eager_without_dygraph_check()
59 60 61 62 63 64
g_enable_legacy_dygraph = (
    _enable_legacy_dygraph if g_is_in_eager else lambda: None
)
g_disable_legacy_dygraph = (
    _disable_legacy_dygraph if g_is_in_eager else lambda: None
)
65

66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
94 95 96 97
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".format(
                            index
                        )
                    )
98
                input_t.append(
99 100 101 102
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype
                    )
                )
103 104 105 106 107 108 109

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
110 111 112
                        expect_dtype, out_dtype, api_fn.__name__
                    )
                )
113 114


115 116 117 118 119 120 121 122
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


123
def randomize_probability(batch_size, class_num, dtype='float32'):
124 125 126
    prob = np.random.uniform(0.1, 1.0, size=(batch_size, class_num)).astype(
        dtype
    )
127
    prob_sum = prob.sum(axis=1)
128
    for i in range(len(prob)):
129 130 131 132
        prob[i] /= prob_sum[i]
    return prob


133 134 135 136 137 138 139 140 141 142
def get_numeric_gradient(
    place,
    scope,
    op,
    inputs,
    input_to_check,
    output_names,
    delta=0.005,
    in_place=False,
):
Y
Yu Yang 已提交
143
    # FIXME: change this method by compile time concepts
144
    set_input(scope, op, inputs, place)
145 146

    def product(dim):
147
        return functools.reduce(lambda a, b: a * b, dim, 1)
148 149

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
150 151
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
152
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
153
        tensor_to_check_dtype = np.float32
154
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
155
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
156 157 158 159
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
160 161
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
162 163 164
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
165
        tensor_to_check_dtype = np.complex128
166
    else:
167 168 169 170 171 172
        raise ValueError(
            "Not supported data type "
            + str(tensor_to_check_dtype)
            + ", tensor name : "
            + str(input_to_check)
        )
173

C
chengduo 已提交
174 175 176 177
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
178
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
179 180 181
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
182 183 184
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
185 186
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

187
    gradient_flat = np.zeros(shape=(tensor_size,), dtype=tensor_to_check_dtype)
188 189

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
190 191 192 193
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
194 195 196
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
197 198
            return struct.unpack(
                '<f',
199 200
                struct.pack('<I', np.uint32(numpy_tensor[i]) << np.uint32(16)),
            )[0]
D
dzhwinter 已提交
201
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
202
            return tensor._get_float_element(i)
203
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
204
            return tensor._get_double_element(i)
205
        else:
206 207 208
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )
209 210

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
211 212 213 214 215
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
216
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
217
            tensor.set(numpy_tensor, place)
218 219 220 221 222 223 224
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
225
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
226
            tensor._set_float_element(i, e)
227
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
228
            tensor._set_double_element(i, e)
229
        else:
230 231 232
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )
233

234 235
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
236
    for i in range(tensor_size):
237
        if in_place:
238
            set_input(scope, op, inputs, place)
239 240

        # get one input element throw it's index i.
241
        origin = __get_elem__(tensor_to_check, i)
242 243
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
244
        __set_elem__(tensor_to_check, i, x_pos)
245 246 247
        y_pos = get_output()

        if in_place:
248
            set_input(scope, op, inputs, place)
249 250

        x_neg = origin - delta
251
        __set_elem__(tensor_to_check, i, x_neg)
252 253
        y_neg = get_output()

254
        __set_elem__(tensor_to_check, i, origin)
255 256
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
257
    return gradient_flat.reshape(tensor_to_check.shape())
258 259


260 261
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
262

263 264 265
    Check_grad is required for Op test cases. However, there are some special
    cases that do not need to do check_grad. This decorator is used to skip the
    check_grad of the above cases.
C
cc 已提交
266

267 268
    Note: the execution of unit test will not be skipped. It just avoids check_grad
    checking in tearDownClass method by setting a `no_need_check_grad` flag.
269

270 271 272
    Example:
        @skip_check_grad_ci(reason="For inference, check_grad is not required.")
        class TestInference(OpTest):
273 274 275 276 277 278 279 280 281 282 283
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


284 285 286
def skip_check_inplace_ci(reason=None):
    if not isinstance(reason, str):
        raise AssertionError(
287 288
            "The reason for skipping check_inplace is required."
        )
289 290 291 292 293 294 295 296

    def wrapper(cls):
        cls.no_need_check_inplace = True
        return cls

    return wrapper


297 298 299 300
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


301 302 303 304
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

305 306 307
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
308
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
309

310 311 312
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
313 314


315 316
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
317 318 319 320 321 322
    out = np.vectorize(
        lambda x: struct.unpack(
            '<f', struct.pack('<I', np.uint32(x) << np.uint32(16))
        )[0],
        otypes=[np.float32],
    )(in_list.flat)
323
    return np.reshape(out, in_list.shape)
324 325


326
class OpTest(unittest.TestCase):
327 328 329 330 331
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
332
        cls.call_once = False
333
        cls.dtype = None
334
        cls.outputs = {}
335
        cls.input_shape_is_large = True
336
        cls.check_prim = False
337 338 339 340

        np.random.seed(123)
        random.seed(124)

341 342 343 344
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
345

346 347
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
348
        """Restore random seeds"""
349 350 351
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

352 353
        _set_use_system_allocator(cls._use_system_allocator)

354 355 356 357
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
358
                if is_mkldnn_op_test():
359 360 361 362 363 364 365 366
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

367
        def is_xpu_op_test():
368
            return hasattr(cls, "use_xpu") and cls.use_xpu
369

J
juncaipeng 已提交
370
        def is_mkldnn_op_test():
371
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn
J
juncaipeng 已提交
372

373 374 375
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

376
        def is_npu_op_test():
377
            return hasattr(cls, "use_npu") and cls.use_npu
378

379
        def is_mlu_op_test():
380
            return hasattr(cls, "use_mlu") and cls.use_mlu
381

382
        def is_custom_device_op_test():
383
            return hasattr(cls, "use_custom_device") and cls.use_custom_device
384

385 386
        if not hasattr(cls, "op_type"):
            raise AssertionError(
387
                "This test do not have op_type in class attrs, "
388 389
                "please set self.__class__.op_type=the_real_op_type manually."
            )
390

J
juncaipeng 已提交
391
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
392 393 394 395 396 397 398 399 400 401 402 403
        if not hasattr(cls, "no_need_check_grad") and not is_empty_grad_op(
            cls.op_type
        ):
            if cls.dtype is None or (
                cls.dtype == np.float16
                and cls.op_type
                not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST
                and not hasattr(cls, "exist_check_grad")
            ):
                raise AssertionError(
                    "This test of %s op needs check_grad." % cls.op_type
                )
J
juncaipeng 已提交
404

405
            # check for op test with fp64 precision, but not check mkldnn op test for now
406 407 408 409 410 411 412 413 414 415 416
            if (
                cls.dtype in [np.float32, np.float64]
                and cls.op_type
                not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST
                and not hasattr(cls, 'exist_fp64_check_grad')
                and not is_xpu_op_test()
                and not is_mkldnn_op_test()
                and not is_rocm_op_test()
                and not is_npu_op_test()
                and not is_mlu_op_test()
                and not is_custom_device_op_test()
417
                and not cls.check_prim
418
            ):
J
juncaipeng 已提交
419
                raise AssertionError(
420 421 422 423 424 425 426 427 428
                    "This test of %s op needs check_grad with fp64 precision."
                    % cls.op_type
                )

            if (
                not cls.input_shape_is_large
                and cls.op_type
                not in check_shape_white_list.NEED_TO_FIX_OP_LIST
            ):
429
                raise AssertionError(
430 431 432 433
                    "Input's shape should be large than or equal to 100 for "
                    + cls.op_type
                    + " Op."
                )
434

435 436 437 438 439
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

440
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
441 442
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
443 444 445 446 447 448
        return (
            self.dtype == np.uint16
            or (
                hasattr(self, 'output_dtype') and self.output_dtype == np.uint16
            )
            or (
449
                hasattr(self, 'mkldnn_data_type')
450 451 452 453 454 455 456 457
                and getattr(self, 'mkldnn_data_type') == "bfloat16"
            )
            or (
                hasattr(self, 'attrs')
                and 'mkldnn_data_type' in self.attrs
                and self.attrs['mkldnn_data_type'] == 'bfloat16'
            )
        )
Y
Yiqun Liu 已提交
458 459

    def is_mkldnn_op(self):
460
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn) or (
461 462
            hasattr(self, "attrs")
            and "use_mkldnn" in self.attrs
463
            and self.attrs["use_mkldnn"]
464
        )
Y
Yiqun Liu 已提交
465 466

    def is_xpu_op(self):
467
        return (hasattr(self, "use_xpu") and self.use_xpu) or (
468 469
            hasattr(self, "attrs")
            and "use_xpu" in self.attrs
470
            and self.attrs["use_xpu"]
471
        )
472

473
    # set the self.output_dtype .
474
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
475 476 477 478
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
479
            assert isinstance(
480 481
                numpy_dict, dict
            ), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
482 483 484 485 486 487
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
488
            for _, var_value in numpy_dict.items():
J
juncaipeng 已提交
489 490 491 492 493 494 495
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
496 497
                            sub_val_value[1]
                        ):  # case 3
J
juncaipeng 已提交
498
                            dtype_set.add(sub_val_value[1].dtype)
499 500 501 502 503
                        elif (
                            len(sub_val_value) > 1
                            and isinstance(sub_val_value[1], (list, tuple))
                            and is_np_data(sub_val_value[1][0])
                        ):  # case 4
J
juncaipeng 已提交
504 505 506 507
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
508 509
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
510
        dtype_list = [
511 512 513 514 515 516 517 518 519
            np.dtype(np.float64),
            np.dtype(np.float32),
            np.dtype(np.float16),
            np.dtype(np.int64),
            np.dtype(np.int32),
            np.dtype(np.uint16),
            np.dtype(np.int16),
            np.dtype(np.int8),
            np.dtype(np.uint8),
520
            np.dtype(np.bool_),
J
juncaipeng 已提交
521 522 523
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
524
            if dtype in input_dtype_set:
J
juncaipeng 已提交
525 526
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
527
        # save input dtype in class attr
528
        self.__class__.dtype = self.dtype
529

Y
Yiqun Liu 已提交
530 531 532 533 534 535 536 537
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
538 539 540 541 542 543
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
544
                    if isinstance(np_value, tuple):
545
                        tensor.set(np_value[0], place)
546
                        tensor.set_recursive_sequence_lengths(np_value[1])
547
                    else:
548
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
549 550 551 552
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
553
                    tensor.set(self.inputs[var_name][0], place)
554
                    tensor.set_recursive_sequence_lengths(
555 556
                        self.inputs[var_name][1]
                    )
Y
Yang Yang(Tony) 已提交
557
                else:
558
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
559
                feed_map[var_name] = tensor
560

Y
Yang Yang(Tony) 已提交
561 562
        return feed_map

563
    def _append_ops(self, block):
564 565 566
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
567
        if self.is_mkldnn_op():
568
            self.__class__.use_mkldnn = True
C
cc 已提交
569

Y
Yiqun Liu 已提交
570
        if self.is_xpu_op():
571 572
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
573
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
574
        "infer datatype from inputs and outputs for this test case"
575 576 577 578 579 580
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
581 582 583 584 585 586
        inputs = append_input_output(
            block, op_proto, self.inputs, True, self.dtype
        )
        outputs = append_input_output(
            block, op_proto, self.outputs, False, self.dtype
        )
P
phlrain 已提交
587 588 589

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
590 591 592 593 594 595
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True,
                )
P
phlrain 已提交
596

Y
Yang Yang(Tony) 已提交
597 598 599 600
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
601 602
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict(),
        )
C
cc 已提交
603
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
604 605
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
606

607 608
        return op

609 610
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
611
        for name, value in numpy_inputs.items():
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
631 632 633 634
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
635
            v = fluid.dygraph.base.to_variable(value=data)
636
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
637 638
            return v
        else:
L
lujun 已提交
639
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

659 660 661 662 663 664 665 666
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
667 668 669 670 671 672
            if (
                lod[i] != 0
                and lod[i + 1] == 0
                and lod[i + 2] == 0
                and lod[i + 3] != 0
            ):
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
690 691 692 693 694 695
        assert (
            lod[0][0] == 0
            and lod[0][1] == 0
            and lod[0][-1] == 0
            and lod[0][-2] == 0
        )
696 697 698 699 700 701 702
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

703 704 705
    def append_input_output_for_dygraph(
        self, op_proto, np_list, is_input, if_return_inputs_grad_dict, block
    ):
706 707 708 709 710 711 712 713 714 715 716
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
717

718 719
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
姜永久 已提交
720
                    if hasattr(v, "retain_grads"):
721 722
                        v.retain_grads()

723
                if has_lod:
724
                    v.value().get_tensor().set_recursive_sequence_lengths(
725 726
                        lod_temp
                    )
727
            else:
728 729 730 731 732 733 734
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                )
735 736 737 738 739 740 741 742 743 744 745 746 747
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
748 749 750
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR
                )
751 752 753 754 755 756
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
757 758
                    np_list[name], list
                ), "Duplicable {} should be set as list".format(name)
759 760 761
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
762 763 764
                    v = create_var(
                        np_value, name, is_input, if_return_inputs_grad_dict
                    )
765 766 767 768 769 770 771 772 773 774 775 776 777
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
778 779 780 781 782 783
                v = create_var(
                    nplist_value_temp,
                    name_temp,
                    is_input,
                    if_return_inputs_grad_dict,
                )
784 785 786 787 788 789 790 791 792
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

793
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
794 795 796 797
        """for quick verify, here we take a simplest strategy:
        1. we only check variable in api_outs.
        2. we simply check the numpy (tensor) .
        3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
798 799 800 801
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
802 803 804 805 806
            np.testing.assert_allclose(
                np_api,
                np_dyg,
                rtol=1e-05,
                equal_nan=False,
807 808 809 810 811 812 813 814 815 816 817 818
                err_msg='Output ('
                + name
                + ') has diff at '
                + str(place)
                + '\nExpect '
                + str(np_dyg)
                + '\n'
                + 'But Got'
                + str(np_api)
                + ' in class '
                + self.__class__.__name__,
            )
819

820
    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
821
        """set egr_inps and egr_oups = None if you want to create it by yourself."""
822

823
        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
X
xiongkun 已提交
824 825
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
826 827
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
828 829 830 831 832
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
833 834 835
                assert (
                    len(output_sig) == 1
                ), "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
836
                return {output_sig[0]: ret_tuple}
837

838
        def cal_python_api(python_api, args, kernel_sig):
839
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
840 841 842
            args = OpTestUtils.assumption_assert_and_transform(
                args, len(inputs_sig)
            )
843
            ret_tuple = python_api(*args)
844 845 846 847 848 849
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
850 851 852 853 854 855 856
            eager_tensor_inputs = (
                egr_inps
                if egr_inps
                else self.append_input_output_for_dygraph(
                    op_proto, self.inputs, True, False, block
                )
            )
857
            # prepare output variable
858 859 860 861 862 863 864
            eager_tensor_outputs = (
                egr_oups
                if egr_oups
                else self.append_input_output_for_dygraph(
                    op_proto, self.outputs, False, False, block
                )
            )
865
            # prepare attributes
866 867 868 869 870 871
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

872 873 874 875 876
            kernel_sig = OpTestUtils._get_kernel_signature(
                self.op_type,
                eager_tensor_inputs,
                eager_tensor_outputs,
                attrs_outputs,
877
            )
878 879
            if not kernel_sig:
                return None
880 881 882 883
            assert hasattr(self, "python_api"), (
                "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_eager = True"
                % self.op_type
            )
884
            args = OpTestUtils.prepare_python_api_arguments(
885 886
                self.python_api, eager_tensor_inputs, attrs_outputs, kernel_sig
            )
887
            """ we directly return the cal_python_api value because the value is already tensor.
888
            """
889
            return cal_python_api(self.python_api, args, kernel_sig)
890

L
lujun 已提交
891
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
892 893 894
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
L
lujun 已提交
895
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
896 897
            block = fluid.default_main_program().global_block()

898
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
899

900
            # prepare input variable
901
            inputs = self.append_input_output_for_dygraph(
902 903
                op_proto, self.inputs, True, False, block
            )
M
minqiyang 已提交
904
            # prepare output variable
905
            outputs = self.append_input_output_for_dygraph(
906 907
                op_proto, self.outputs, False, False, block
            )
908

909
            # prepare attributes
910 911 912 913 914
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
915

M
minqiyang 已提交
916 917 918 919
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
920 921
                attrs=attrs_outputs if hasattr(self, "attrs") else None,
            )
M
minqiyang 已提交
922
            return outputs
923

924 925 926 927 928 929 930 931 932
    def _calc_output(
        self,
        place,
        parallel=False,
        no_check_set=None,
        loss=None,
        enable_inplace=None,
        for_inplace_test=None,
    ):
933
        with paddle.static.program_guard(paddle.static.Program()):
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
            program = Program()
            block = program.global_block()
            op = self._append_ops(block)

            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_map = self.feed_var(inputs, place)

            if for_inplace_test:
                # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
                # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
                # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
                # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
                for out_name in op.output_arg_names:
                    var = block.var(out_name)
                    if 0 in var.shape:
                        var.persistable = True
            original_program = program
            if parallel:
                use_cuda = False
                if isinstance(place, fluid.CUDAPlace):
                    use_cuda = True
                compiled_prog = fluid.CompiledProgram(
                    program
                ).with_data_parallel(
                    loss_name=loss.name if loss else None, places=place
                )
                program = compiled_prog
            fetch_list = getattr(self, "fetch_list", [])
            # if the fetch_list is customized by user, we use it directly.
            # if not, fill the fetch_list by the user configured outputs in test.
            if len(fetch_list) == 0:
                for var_name, var in outputs.items():
                    if no_check_set is not None and var_name in no_check_set:
                        continue
                    if isinstance(var, list):
                        for v in var:
                            fetch_list.append(v.name)
                    else:
                        fetch_list.append(var.name)
            # if the fetch_list still empty, fill the fetch_list by the operator output.
            if len(fetch_list) == 0:
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                    fetch_list.append(str(out_name))
978

979 980 981
            if enable_inplace is not None:
                build_strategy = fluid.BuildStrategy()
                build_strategy.enable_inplace = enable_inplace
982

983 984 985 986 987 988 989 990 991 992 993 994 995
                compiled_prog = fluid.CompiledProgram(
                    program
                ).with_data_parallel(
                    build_strategy=build_strategy, places=place
                )
                program = compiled_prog

            executor = Executor(place)
            outs = executor.run(
                program,
                feed=feed_map,
                fetch_list=fetch_list,
                return_numpy=False,
996
            )
997 998
            self.op = op
            self.program = original_program
999 1000 1001 1002
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
1003

1004 1005 1006
    def _compare_expect_and_actual_outputs(
        self, place, fetch_list, expect_outs, actual_outs, inplace_atol=None
    ):
1007 1008 1009
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
1010
            place (CPUPlace | CUDAPlace): The place where the op runs.
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
1021
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1022 1023 1024
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
1025 1026
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
1027
            if inplace_atol is not None:
1028 1029 1030 1031 1032
                np.testing.assert_allclose(
                    expect_out,
                    actual_out,
                    rtol=1e-05,
                    atol=inplace_atol,
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
                    err_msg='Output ('
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__,
                )
1046
            else:
1047 1048 1049
                np.testing.assert_array_equal(
                    expect_out,
                    actual_out,
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
                    err_msg='Output ('
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__
                    + '\n',
                )

    def _construct_grad_program_from_forward(
        self, fwd_program, grad_op_desc, op_grad_to_var
    ):
1068 1069 1070 1071 1072
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1073
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
1085 1086 1087
        for arg in (
            grad_op_desc.input_arg_names() + grad_op_desc.output_arg_names()
        ):
1088 1089 1090 1091 1092
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
1093 1094 1095 1096 1097 1098 1099 1100 1101
                fwd_var_name
            )
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False,
            )
1102

C
cc 已提交
1103 1104
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
1105 1106 1107 1108 1109 1110 1111
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

1112 1113 1114
    def _construct_grad_feed_map_from_forward(
        self, place, fwd_res, grad_op_desc, op_grad_to_var
    ):
1115 1116 1117 1118 1119 1120
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1121
            place (CPUPlace | CUDAPlace): The place where the op runs.
1122 1123 1124
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1125
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
1126 1127 1128 1129

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
1130 1131 1132 1133 1134 1135 1136
        (
            fwd_outs,
            fwd_fetch_list,
            fwd_feed_map,
            fwd_program,
            fwd_op_desc,
        ) = fwd_res
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
1156

1157 1158 1159 1160 1161 1162 1163
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
1164

1165
        Args:
C
cc 已提交
1166 1167
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
1168
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
1184
                # get grad_op_desc
1185
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
1186 1187
                    op_desc, set(), []
                )
1188 1189 1190 1191
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
1192 1193 1194 1195
                        if (
                            grad_op_desc.type() not in visited_ops
                            and _dfs_grad_op(grad_op_desc, fwd_op_desc=op_desc)
                        ):
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

1206 1207 1208
    def _check_forward_inplace(
        self, place, no_check_set=None, inplace_atol=None
    ):
1209
        """Check the inplace correctness of given op (self.op_type).
1210
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
1211

1212
        Args:
C
cc 已提交
1213
            place (CPUPlace | CUDAPlace): The place where the op runs.
1214 1215 1216 1217
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1218 1219
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1220 1221
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True,
        )
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True,
        )
1234
        # compare expect_outs and actual_outs
1235 1236 1237 1238 1239 1240 1241
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
1242 1243
        return expect_res

1244 1245 1246
    def _calc_grad_output(
        self, place, fwd_res, grad_op_desc, enable_inplace=None
    ):
1247 1248 1249 1250 1251 1252
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1253
            place (CPUPlace | CUDAPlace): The place where the op runs.
1254 1255 1256 1257 1258 1259 1260 1261
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
1262
        with paddle.static.program_guard(paddle.static.Program()):
1263 1264 1265 1266 1267 1268 1269 1270 1271
            (
                fwd_outs,
                fwd_fetch_list,
                fwd_feed_map,
                fwd_program,
                fwd_op_desc,
            ) = fwd_res
            grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                fwd_op_desc, set(), []
1272
            )
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
            grad_program = self._construct_grad_program_from_forward(
                fwd_program, grad_op_desc, op_grad_to_var
            )
            grad_feed_map = self._construct_grad_feed_map_from_forward(
                place, fwd_res, grad_op_desc, op_grad_to_var
            )
            grad_fetch_list = grad_op_desc.output_arg_names()
            exe = Executor(place)
            program = grad_program
            if enable_inplace is not None:
                build_strategy = fluid.BuildStrategy()
                build_strategy.enable_inplace = enable_inplace
                compiled_program = fluid.CompiledProgram(
                    grad_program
                ).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place
                )
                program = compiled_program
1291

1292 1293 1294 1295 1296 1297
            outs = exe.run(
                program,
                feed=grad_feed_map,
                fetch_list=grad_fetch_list,
                return_numpy=False,
            )
1298 1299
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

1300 1301 1302
    def _check_grad_inplace(
        self, place, fwd_res, grad_op_desc, inplace_atol=None
    ):
1303
        """Check the inplace correctness of given grad_op_desc.
1304 1305 1306 1307 1308 1309

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1310
            place (CPUPlace | CUDAPlace): The place where the op runs.
1311 1312 1313 1314 1315 1316
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1317 1318
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1319
        """
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False
        )
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True
        )

        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
1334
        return expect_res
1335

1336 1337 1338
    def check_inplace_output_with_place(
        self, place, no_check_set=None, inplace_atol=None
    ):
1339 1340 1341 1342 1343 1344
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1345
            place (CPUPlace | CUDAPlace): The place where the op runs.
1346 1347 1348 1349 1350 1351
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
1352 1353 1354
        if getattr(self, "no_need_check_inplace", False):
            return

1355 1356 1357
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

1358 1359 1360
        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True
        )
1361 1362 1363 1364
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1365 1366
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1367 1368 1369 1370 1371 1372 1373 1374
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
1375 1376
                        inplace_atol=inplace_atol,
                    )
1377
                else:
1378 1379 1380
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True
                    )
1381
            else:
1382 1383
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1384
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1385
                attrs_use_mkldnn = hasattr(self, 'attrs') and bool(
1386 1387
                    self.attrs.get('use_mkldnn', False)
                )
1388 1389 1390 1391 1392 1393 1394 1395
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
1396 1397
                        place, fwd_res, op_desc, inplace_atol=inplace_atol
                    )
1398
                else:
1399
                    res[op_desc] = self._calc_grad_output(
1400 1401
                        place, fwd_res, op_desc
                    )
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411
    def check_output_with_place(
        self,
        place,
        atol=0,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
1412
        check_prim=False,
1413
    ):
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
        core._set_prim_all_enabled(False)
        if check_prim:
            prim_checker = PrimForwardChecker(self, place)
            prim_checker.check()
            # Support operators which not in the NO_FP64_CHECK_GRAD_OP_LIST list can be test prim with fp32
            setattr(self.__class__, 'check_prim', True)
            self.__class__.op_type = self.op_type
            if prim_checker.is_only_check_prim():
                self.only_prim = True
                return
1424
        # disable legacy dygraph check when check_eager is True
1425
        if check_eager:
1426 1427
            check_dygraph = False

1428 1429 1430 1431 1432 1433 1434 1435
        def find_imperative_actual(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
1436
            self.assertTrue(
1437 1438 1439
                False,
                "Found failed {} {}".format(dygraph_outs.keys(), target_name),
            )
1440 1441 1442

        def find_actual(target_name, fetch_list):
            found = [
1443 1444
                i
                for i, var_name in enumerate(fetch_list)
1445 1446 1447
                if var_name == target_name
            ]
            self.assertTrue(
1448 1449
                len(found) == 1, "Found {} {}".format(len(found), target_name)
            )
1450 1451
            return found[0]

1452
        class Checker:
1453 1454
            """base class for check with self.outputs.
            currently don't support check between checkers.
1455 1456 1457
            """

            def __init__(self, op_test, expect_dict):
1458 1459
                """expect_dict is the self.outputs
                support : {str: [numpy]} and {str: [(str, numpy), (str, numpy)]}
1460 1461 1462 1463 1464 1465
                """
                self.expects = expect_dict
                self.checker_name = "checker"
                self.op_test = op_test  # stop the op_test object.
                self.op_type = op_test.op_type

1466 1467 1468
            def init(self):
                pass

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
            def convert_uint16_to_float(self, actual_np, expect_np):
                raise NotImplementedError("base class, not implement!")

            def calculate_output(self):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """

            def _is_skip_name(self, name):
                if name not in self.expects:
                    return True
                if no_check_set is not None and name in no_check_set:
                    return True
                return False

            def find_actual_value(self, name):
1486
                """return: (actual_tensor(var_base), actual_numpy)"""
1487 1488 1489 1490 1491 1492 1493 1494 1495
                raise NotImplementedError("base class, not implement!")

            def _compare_numpy(self, name, actual_np, expect_np):
                self.op_test.assertTrue(
                    np.allclose(
                        actual_np,
                        expect_np,
                        atol=atol,
                        rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
1496 1497 1498 1499 1500 1501 1502 1503 1504
                        equal_nan=equal_nan,
                    ),
                    "Output ("
                    + name
                    + ") has diff at "
                    + str(place)
                    + " in "
                    + self.checker_name,
                )
1505 1506

            def _compare_list(self, name, actual, expect):
1507
                """if expect is a tuple, we need to compare list."""
1508 1509 1510 1511
                raise NotImplementedError("base class, not implement!")

            def compare_single_output_with_expect(self, name, expect):
                actual, actual_np = self.find_actual_value(name)
1512
                expect_np = expect[0] if isinstance(expect, tuple) else expect
1513
                actual_np, expect_np = self.convert_uint16_to_float_ifneed(
1514 1515
                    actual_np, expect_np
                )
1516 1517 1518
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_np.size == 0:
1519
                    self.op_test.assertTrue(actual_np.size == 0)
1520 1521 1522 1523 1524 1525
                self._compare_numpy(name, actual_np, expect_np)
                if isinstance(expect, tuple):
                    self._compare_list(name, actual, expect)

            def compare_outputs_with_expects(self):
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1526 1527
                    if self._is_skip_name(out_name):
                        continue
1528 1529 1530 1531
                    if out_dup:
                        # if self.output = {'name': [(subname, Tensor), (subname, Tensor)]}
                        sub_out = self.expects[out_name]
                        if not isinstance(sub_out, list):
1532 1533 1534
                            raise AssertionError(
                                "sub_out type %s is not list", type(sub_out)
                            )
1535 1536
                        for item in sub_out:
                            sub_out_name, expect = item[0], item[1]
1537
                            self.compare_single_output_with_expect(
1538 1539
                                sub_out_name, expect
                            )
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
                    else:
                        expect = self.expects[out_name]
                        self.compare_single_output_with_expect(out_name, expect)

            def check(self):
                """
                return None means ok, raise Error means failed.

                the main enter point of Checker class
                """
1550
                self.init()
1551 1552 1553 1554
                self.calculate_output()
                self.compare_outputs_with_expects()

        class StaticChecker(Checker):
1555 1556 1557
            def init(self):
                self.checker_name = "static checker"

1558 1559
            def calculate_output(self):
                outs, fetch_list = self.op_test._calc_output(
1560 1561
                    place, no_check_set=no_check_set
                )
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
                self.outputs = outs
                self.fetch_list = fetch_list

            def find_actual_value(self, name):
                idx = find_actual(name, self.fetch_list)
                actual = self.outputs[idx]
                actual_t = np.array(actual)
                return actual, actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
1577 1578
                    np.float32,
                    np.float64,
1579 1580
                ]:
                    actual_np = convert_uint16_to_float(actual_np)
1581
                    self.rtol = 1.0e-2
1582
                else:
1583 1584 1585 1586 1587
                    self.rtol = 1.0e-5
                if (
                    expect_np.dtype == np.uint16
                    and actual_np.dtype == np.uint16
                ):
1588 1589 1590 1591 1592 1593 1594
                    nonlocal atol
                    expect_np = convert_uint16_to_float(expect_np)
                    actual_np = convert_uint16_to_float(actual_np)
                    atol = max(atol, 0.03)
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
1595
                """if expect is a tuple, we need to compare list."""
1596
                self.op_test.assertListEqual(
1597 1598 1599 1600
                    actual.recursive_sequence_lengths(),
                    expect[1],
                    "Output (" + name + ") has different lod at " + str(place),
                )
1601 1602

        class DygraphChecker(Checker):
1603 1604 1605
            def init(self):
                self.checker_name = "dygraph checker"

1606 1607
            def calculate_output(self):
                self.outputs = self.op_test._calc_dygraph_output(
1608 1609
                    place, no_check_set=no_check_set
                )
1610 1611 1612 1613

            def find_actual_value(self, name):
                with fluid.dygraph.base.guard(place=place):
                    imperative_actual = find_imperative_actual(
1614 1615
                        name, self.outputs, place
                    )
1616
                    imperative_actual_t = np.array(
1617 1618
                        imperative_actual.value().get_tensor()
                    )
1619 1620 1621
                    return imperative_actual, imperative_actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
1622
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
1623 1624
                    np.float32,
                    np.float64,
1625
                ]:
1626
                    self.rtol = 1.0e-2
1627
                else:
1628
                    self.rtol = 1.0e-5
1629 1630 1631 1632
                if self.op_test.is_bfloat16_op():
                    if actual_np.dtype == np.uint16:
                        actual_np = convert_uint16_to_float(actual_np)
                    if expect_np.dtype == np.uint16:
X
xiongkun 已提交
1633
                        expect_np = convert_uint16_to_float(expect_np)
1634 1635 1636
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
1637
                """if expect is a tuple, we need to compare list."""
1638 1639
                with fluid.dygraph.base.guard(place=place):
                    self.op_test.assertListEqual(
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
                        actual.value()
                        .get_tensor()
                        .recursive_sequence_lengths(),
                        expect[1],
                        "Output ("
                        + name
                        + ") has different lod at "
                        + str(place)
                        + " in dygraph mode",
                    )
1650 1651

            def _compare_numpy(self, name, actual_np, expect_np):
1652 1653 1654 1655 1656 1657
                if (
                    functools.reduce(lambda x, y: x * y, actual_np.shape, 1)
                    == 0
                    and functools.reduce(lambda x, y: x * y, expect_np.shape, 1)
                    == 0
                ):
1658 1659 1660 1661 1662 1663 1664 1665
                    pass
                else:
                    self.op_test.assertTrue(
                        np.allclose(
                            actual_np,
                            expect_np,
                            atol=atol,
                            rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
1666 1667 1668 1669 1670 1671 1672 1673 1674
                            equal_nan=equal_nan,
                        ),
                        "Output ("
                        + name
                        + ") has diff at "
                        + str(place)
                        + " in "
                        + self.checker_name,
                    )
1675 1676

        class EagerChecker(DygraphChecker):
1677 1678 1679
            def init(self):
                self.checker_name = "eager checker"

1680 1681 1682
            def calculate_output(self):
                # we only check end2end api when check_eager=True
                with _test_eager_guard():
1683
                    self.is_python_api_test = True
1684
                    eager_dygraph_outs = self.op_test._calc_python_api_output(
1685 1686
                        place
                    )
1687
                    if eager_dygraph_outs is None:
X
xiongkun 已提交
1688
                        self.is_python_api_test = False
1689
                        # missing KernelSignature, fall back to eager middle output.
1690
                        eager_dygraph_outs = self.op_test._calc_dygraph_output(
1691 1692
                            place, no_check_set=no_check_set
                        )
1693 1694 1695 1696 1697 1698 1699 1700
                self.outputs = eager_dygraph_outs

            def _compare_numpy(self, name, actual_np, expect_np):
                with _test_eager_guard():
                    super()._compare_numpy(name, actual_np, expect_np)

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                with _test_eager_guard():
1701
                    return super().convert_uint16_to_float_ifneed(
1702 1703
                        actual_np, expect_np
                    )
1704 1705 1706 1707 1708 1709

            def find_actual_value(self, name):
                with _test_eager_guard():
                    return super().find_actual_value(name)

            def _compare_list(self, name, actual, expect):
1710
                """if expect is a tuple, we need to compare list."""
1711 1712 1713
                with _test_eager_guard():
                    super()._compare_list(name, actual, expect)

X
xiongkun 已提交
1714 1715
            def _is_skip_name(self, name):
                # if in final state and kernel signature don't have name, then skip it.
1716 1717 1718 1719 1720
                if (
                    self.is_python_api_test
                    and hasattr(self.op_test, "python_out_sig")
                    and name not in self.op_test.python_out_sig
                ):
X
xiongkun 已提交
1721 1722
                    return True
                return super()._is_skip_name(name)
1723

1724
        # set some flags by the combination of arguments.
X
xiongkun 已提交
1725
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
1726 1727 1728 1729 1730
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST
        ):
1731 1732
            atol = 0

1733
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1734 1735
            if self.is_mkldnn_op():
                check_dygraph = False
1736
                check_eager = False
Y
Yiqun Liu 已提交
1737
                if hasattr(self, 'force_fp32_output') and getattr(
1738 1739
                    self, 'force_fp32_output'
                ):
Y
Yiqun Liu 已提交
1740 1741 1742
                    atol = 1e-2
                else:
                    atol = 2
1743
            else:
1744
                atol = 1e-1
1745

1746
        if no_check_set is not None:
1747 1748 1749 1750
            if (
                self.op_type
                not in no_check_set_white_list.no_check_set_white_list
            ):
1751
                raise AssertionError(
1752 1753
                    "no_check_set of op %s must be set to None." % self.op_type
                )
1754 1755 1756
        static_checker = StaticChecker(self, self.outputs)
        static_checker.check()
        outs, fetch_list = static_checker.outputs, static_checker.fetch_list
L
lujun 已提交
1757
        if check_dygraph:
1758 1759
            # always enable legacy dygraph
            g_enable_legacy_dygraph()
1760 1761 1762
            dygraph_checker = DygraphChecker(self, self.outputs)
            dygraph_checker.check()
            dygraph_outs = dygraph_checker.outputs
1763 1764
            # yield the original state
            g_disable_legacy_dygraph()
1765
        if check_eager:
1766 1767 1768
            eager_checker = EagerChecker(self, self.outputs)
            eager_checker.check()
            eager_dygraph_outs = eager_checker.outputs
1769

C
cc 已提交
1770
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1771 1772
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1773
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1774 1775 1776
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1777 1778
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1779 1780
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1781
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1782
        # No effect on original OpTest
1783
        # Currently not support ParallelExecutor on XPUPlace.
1784 1785 1786 1787 1788 1789 1790 1791 1792
        if (
            not paddle.is_compiled_with_xpu()
            and not paddle.is_compiled_with_npu()
            and not paddle.is_compiled_with_mlu()
            and not isinstance(place, core.CustomPlace)
        ):
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol
            )
1793

1794
        if check_eager:
1795
            assert not check_dygraph
1796
            return outs, eager_dygraph_outs, fetch_list
1797
        elif check_dygraph:
1798 1799 1800 1801 1802 1803 1804
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
1805 1806
                i
                for i, var_name in enumerate(fetch_list)
1807 1808 1809 1810 1811 1812 1813
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
1814 1815
                    "Found {} {}".format(len(found), target_name),
                )
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
                    lod_level_compile,
                    lod_level_runtime,
                    "The lod_level of Output ("
                    + name
                    + ") is different between compile-time and runtime ("
                    + str(lod_level_compile)
                    + " vs "
                    + str(lod_level_runtime)
                    + ")",
                )
1851

1852
    def _get_places(self):
D
dzhwinter 已提交
1853 1854
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
1855 1856
                self.op_type
            ):
D
dzhwinter 已提交
1857 1858 1859
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1860 1861
                else:
                    return []
D
dzhwinter 已提交
1862 1863
            else:
                return []
1864
        places = [fluid.CPUPlace()]
1865
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
1866 1867 1868 1869 1870
        if (
            core.is_compiled_with_cuda()
            and core.op_support_gpu(self.op_type)
            and not cpu_only
        ):
D
dzhwinter 已提交
1871
            places.append(core.CUDAPlace(0))
1872 1873
        return places

1874 1875 1876 1877 1878 1879 1880 1881
    def check_output(
        self,
        atol=1e-5,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
1882
        check_prim=False,
1883
    ):
1884 1885

        # disable legacy dygraph check when check_eager is True
1886
        if check_eager:
1887 1888
            check_dygraph = False

1889
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1890
        if self.is_mkldnn_op():
1891
            self.__class__.use_mkldnn = True
C
cc 已提交
1892

Y
Yiqun Liu 已提交
1893
        if self.is_xpu_op():
1894 1895
            self.__class__.use_xpu = True

1896
        places = self._get_places()
Q
qijun 已提交
1897
        for place in places:
1898 1899 1900 1901 1902 1903 1904 1905
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager,
1906
                check_prim=check_prim,
1907
            )
1908 1909
            if hasattr(self, 'only_prim') and self.only_prim:
                continue
1910
            if check_eager:
1911
                assert not check_dygraph
1912
                outs, eager_dygraph_outs, fetch_list = res
1913
            elif check_dygraph:
1914 1915 1916
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1917 1918 1919 1920
            if (
                self.op_type
                not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST
            ):
1921
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1922

P
pangyoki 已提交
1923
    def check_output_customized(self, checker, custom_place=None):
1924
        places = self._get_places()
P
pangyoki 已提交
1925 1926
        if custom_place:
            places.append(custom_place)
1927 1928 1929
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1930
            outs.sort(key=len)
1931 1932
            checker(outs)

1933 1934 1935 1936 1937 1938
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

1939 1940 1941 1942 1943 1944 1945 1946
    def _assert_is_close(
        self,
        numeric_grads,
        analytic_grads,
        names,
        max_relative_error,
        msg_prefix,
    ):
1947
        for a, b, name in zip(numeric_grads, analytic_grads, names):
1948 1949 1950 1951 1952 1953
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1954
            abs_a = np.abs(a)
1955
            if abs_a.ndim > 0:
1956 1957 1958 1959 1960
                if (
                    self.dtype == np.float64
                    and self.op_type
                    not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                ):
1961 1962 1963 1964 1965 1966 1967 1968
                    abs_a[abs_a < 1e-10] = 1e-3
                    abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                    abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
                elif self.is_bfloat16_op():
                    abs_a[abs_a < 1e-2] = 1
                else:
                    abs_a[abs_a < 1e-3] = 1
            elif abs_a.ndim == 0:
1969 1970 1971 1972 1973
                if (
                    self.dtype == np.float64
                    and self.op_type
                    not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                ):
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
                    if abs_a < 1e-10:
                        abs_a = 1e-3
                    elif abs_a > 1e-10 and abs_a <= 1e-8:
                        abs_a = abs_a * 1e4
                    elif abs_a > 1e-8 and abs_a <= 1e-6:
                        abs_a = abs_a * 1e2
                elif self.is_bfloat16_op():
                    abs_a = 1 if abs_a < 1e-2 else abs_a
                else:
                    abs_a = 1 if abs_a < 1e-3 else abs_a
1984 1985 1986 1987 1988 1989

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
                return (
                    "Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e."
                ) % (
                    self.op_type,
                    msg_prefix,
                    name,
                    str(a.shape),
                    self.dtype,
                    max_diff,
                    max_relative_error,
                    offset,
                    a.flatten()[offset],
                    b.flatten()[offset],
                )
2005 2006 2007

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

2008 2009 2010 2011 2012 2013 2014
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
    def check_grad(
        self,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        check_eager=False,
2027
        check_prim=False,
2028
    ):
2029
        # disable legacy dygraph check when check_eager is True
2030
        if check_eager:
2031 2032
            check_dygraph = False

2033
        self._check_grad_helper()
2034
        places = self._get_places()
2035
        for place in places:
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
            self.check_grad_with_place(
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager,
2048
                check_prim=check_prim,
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
            )

    def check_grad_with_place(
        self,
        place,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        numeric_place=None,
        check_eager=False,
2065
        check_prim=False,
2066
    ):
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
        core._set_prim_all_enabled(False)
        if check_prim:
            prim_grad_checker = PrimGradChecker(
                self,
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                user_defined_grad_outputs,
            )
            prim_grad_checker.check()
            # Support operators which not in the NO_FP64_CHECK_GRAD_OP_LIST list can be test prim with fp32
            setattr(self.__class__, 'check_prim', True)
            self._check_grad_helper()
            if prim_grad_checker.is_only_check_prim():
                self.only_prim = True
                return
2084
        # disable legacy dygraph check when check_eager is True
2085
        if check_eager:
2086 2087
            check_dygraph = False

2088
        self.scope = core.Scope()
Q
qijun 已提交
2089
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
2090
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
2091
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
2092

Y
Yiqun Liu 已提交
2093 2094
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
2095
            check_dygraph = False
2096
            check_eager = False
2097

2098 2099 2100 2101 2102
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
        ):
2103 2104
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
2105

P
phlrain 已提交
2106 2107 2108
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
2109 2110 2111

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
2112
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"]:
2113 2114 2115
            op_attrs["use_mkldnn"] = False
            use_onednn = True

2116 2117 2118 2119 2120 2121 2122 2123
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list,
        )
Y
Yu Yang 已提交
2124

2125 2126 2127
        if use_onednn:
            op_attrs["use_mkldnn"] = True

2128 2129
        if no_grad_set is None:
            no_grad_set = set()
2130
        else:
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
            if (
                (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST)
                and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                )
                and (not self.is_bfloat16_op())
            ):
                raise AssertionError(
                    "no_grad_set must be None, op_type is "
                    + self.op_type
                    + " Op."
                )
2143

2144 2145 2146
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
2147 2148 2149
            tensor_size = functools.reduce(
                lambda a, b: a * b, tensor_to_check.shape(), 1
            )
2150 2151 2152
            tensor_ndim = len(tensor_to_check.shape())
            # for 0D Tensor, it's additional case for OP, so not raise error
            if tensor_ndim > 0 and tensor_size < 100:
2153 2154
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
2155 2156 2157
        if not type(output_names) is list:
            output_names = [output_names]

2158 2159 2160
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
2161
        numeric_grads = user_defined_grads or [
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
            get_numeric_gradient(
                numeric_place,
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
                output_names,
                delta=numeric_grad_delta,
                in_place=in_place,
            )
2172
            for input_to_check in inputs_to_check
2173
        ]
2174 2175 2176 2177 2178 2179 2180
        analytic_grads = self._get_gradient(
            inputs_to_check,
            place,
            output_names,
            no_grad_set,
            user_defined_grad_outputs,
        )
2181 2182
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
2183
        fp32_analytic_grads = []
2184 2185 2186
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
2187 2188 2189
                max_relative_error = (
                    0.04 if max_relative_error < 0.04 else max_relative_error
                )
2190 2191 2192 2193 2194 2195 2196
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
2197 2198 2199
                max_relative_error = (
                    0.04 if max_relative_error < 0.04 else max_relative_error
                )
2200 2201
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
2202

2203 2204 2205 2206 2207 2208 2209
        self._assert_is_close(
            numeric_grads,
            analytic_grads,
            inputs_to_check,
            max_relative_error,
            "Gradient Check On %s" % str(place),
        )
Q
qijun 已提交
2210

2211
        if check_dygraph:
2212 2213 2214
            # ensure switch into legacy dygraph
            g_enable_legacy_dygraph()

2215 2216 2217 2218 2219 2220 2221 2222
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check,
                place,
                output_names,
                user_defined_grad_outputs,
                no_grad_set,
                False,
            )
2223 2224 2225 2226
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
2227 2228 2229 2230 2231
                    max_relative_error = (
                        0.03
                        if max_relative_error < 0.03
                        else max_relative_error
                    )
2232 2233
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
2234 2235 2236 2237 2238 2239 2240
            self._assert_is_close(
                numeric_grads,
                dygraph_grad,
                inputs_to_check,
                max_relative_error,
                "Gradient Check On %s" % str(place),
            )
2241 2242
            # ensure switch back eager dygraph
            g_disable_legacy_dygraph()
2243

2244
        if check_eager:
J
Jiabin Yang 已提交
2245 2246 2247
            with fluid.dygraph.base.guard(place):
                with _test_eager_guard():
                    eager_dygraph_grad = self._get_dygraph_grad(
2248 2249 2250 2251 2252 2253 2254
                        inputs_to_check,
                        place,
                        output_names,
                        user_defined_grad_outputs,
                        no_grad_set,
                        check_eager,
                    )
J
Jiabin Yang 已提交
2255 2256 2257 2258
                    fp32_grads = []
                    for grad in eager_dygraph_grad:
                        if grad.dtype == np.uint16:
                            grad = convert_uint16_to_float(grad)
2259 2260 2261 2262 2263
                            max_relative_error = (
                                0.03
                                if max_relative_error < 0.03
                                else max_relative_error
                            )
J
Jiabin Yang 已提交
2264 2265
                        fp32_grads.append(grad)
                    eager_dygraph_grad = fp32_grads
2266 2267 2268 2269 2270 2271 2272
                    self._assert_is_close(
                        numeric_grads,
                        eager_dygraph_grad,
                        inputs_to_check,
                        max_relative_error,
                        "Gradient Check On %s" % str(place),
                    )
2273

2274 2275 2276 2277 2278 2279 2280 2281 2282
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

2283 2284 2285 2286 2287 2288 2289 2290 2291
    def _get_dygraph_grad(
        self,
        inputs_to_check,
        place,
        output_names,
        user_defined_grad_outputs=None,
        no_grad_set=None,
        check_eager=False,
    ):
2292 2293 2294 2295 2296 2297 2298
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
2299 2300
                op_proto, self.inputs, True, True, block
            )
2301 2302 2303

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
2304 2305
                op_proto, self.outputs, False, False, block
            )
2306

2307
            # prepare attributes
2308 2309 2310 2311 2312
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
2313

2314
            if check_eager:
2315
                eager_outputs = self._calc_python_api_output(
2316 2317
                    place, inputs, outputs
                )
2318
            # if outputs is None, kernel sig is empty or other error is happens.
X
xiongkun 已提交
2319
            if not check_eager or eager_outputs is None:
2320 2321 2322 2323
                block.append_op(
                    type=self.op_type,
                    inputs=inputs,
                    outputs=outputs,
2324 2325
                    attrs=attrs_outputs if hasattr(self, "attrs") else None,
                )
X
xiongkun 已提交
2326 2327
            else:
                outputs = eager_outputs
2328

2329
            if self.dtype == np.uint16:
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
                cast_inputs = self._find_var_in_dygraph(
                    outputs, output_names[0]
                )
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape
                )
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32,
                    },
                )
2345 2346
                outputs = {output_names[0]: cast_outputs}

2347 2348 2349
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
2350 2351
                    outputs, output_name
                )
2352

2353 2354 2355 2356 2357 2358 2359
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
2360 2361
                        shape=[1],
                    )
2362 2363 2364 2365 2366
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
2367 2368
                            attrs=None,
                        )
2369 2370 2371 2372 2373 2374 2375
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
2376 2377 2378 2379 2380 2381 2382 2383
                            stop_gradient=False,
                        )
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None,
                        )
2384 2385 2386 2387 2388 2389
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
2390 2391 2392 2393 2394 2395 2396 2397
                        shape=[1],
                    )
                    block.append_op(
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
                        attrs=None,
                    )
2398
                    loss = block.create_var(
2399 2400 2401
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
2402
                        stop_gradient=False,
2403 2404 2405 2406 2407 2408 2409 2410
                        shape=[1],
                    )
                    block.append_op(
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))},
                    )
2411
                loss.backward()
2412

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
2425
                # delete the inputs which no need to calculate grad
C
chentianyu03 已提交
2426
                for no_grad_val in no_grad_set:
2427
                    del inputs[no_grad_val]
C
chentianyu03 已提交
2428

姜永久 已提交
2429
                if in_dygraph_mode():
2430 2431 2432
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs, False
                    )
2433 2434 2435 2436 2437 2438 2439 2440 2441
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
2442 2443
                        grad_outputs=grad_outputs,
                    )
2444
                    return [grad.numpy() for grad in grad_inputs]
2445

Y
Yu Yang 已提交
2446 2447 2448 2449 2450
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
2451
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
2452 2453
        return tensor

K
Kexin Zhao 已提交
2454
    @staticmethod
K
Kexin Zhao 已提交
2455 2456
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
2457

D
dzhwinter 已提交
2458 2459 2460 2461 2462 2463 2464 2465
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

2466 2467 2468 2469 2470 2471 2472 2473 2474
    def _get_gradient(
        self,
        input_to_check,
        place,
        output_names,
        no_grad_set,
        user_defined_grad_outputs=None,
        parallel=False,
    ):
2475
        with paddle.static.program_guard(paddle.static.Program()):
2476 2477 2478 2479
            prog = Program()
            scope = core.Scope()
            block = prog.global_block()
            self._append_ops(block)
Y
Yu Yang 已提交
2480

2481 2482 2483
            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
2484

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
            if user_defined_grad_outputs is None:
                if self.dtype == np.uint16:
                    cast_inputs = list(map(block.var, output_names))
                    cast_outputs = block.create_var(
                        dtype="float32", shape=cast_inputs[0].shape
                    )
                    cast_op = block.append_op(
                        inputs={"X": cast_inputs},
                        outputs={"Out": cast_outputs},
                        type="cast",
                        attrs={
                            "in_dtype": core.VarDesc.VarType.BF16,
                            "out_dtype": core.VarDesc.VarType.FP32,
                        },
                    )
                    cast_op.desc.infer_var_type(block.desc)
                    cast_op.desc.infer_shape(block.desc)
                    output_names = [cast_outputs.name]
                loss = append_loss_ops(block, output_names)
                param_grad_list = append_backward(
                    loss=loss,
                    parameter_list=input_to_check,
                    no_grad_set=no_grad_set,
2508
                )
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
                fetch_list = [g for p, g in param_grad_list]
            else:
                assert (
                    parallel is False
                ), "unsupported parallel mode when giving custom grad outputs."
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    # `presistable` is used to avoid executor create new var in local scope
                    var = block.create_var(
                        shape=grad_out_value.shape,
                        dtype=grad_out_value.dtype,
                        persistable=True,
                    )
                    true_var = scope.var(var.name)
                    tensor = true_var.get_tensor()
                    tensor.set(grad_out_value, place)
                    grad_outputs.append(var)
                targets = [
                    outputs[name] for name in outputs if name in output_names
                ]
                inputs = [
                    inputs[name] for name in input_to_check if name in inputs
                ]
                grad_inputs = paddle.static.gradients(
                    targets, inputs, grad_outputs, no_grad_set
2537
                )
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
                fetch_list = grad_inputs

            if parallel:
                use_cuda = False
                if isinstance(place, fluid.CUDAPlace):
                    use_cuda = True
                compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                    loss_name=loss.name, places=place
                )
                prog = compiled_prog
            executor = fluid.Executor(place)
            res = list(
                map(
                    np.array,
                    executor.run(
                        prog,
                        feed_dict,
                        fetch_list,
                        scope=scope,
                        return_numpy=False,
                    ),
2559 2560
                )
            )
2561
        return res
A
arlesniak 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
2572 2573 2574 2575 2576 2577
            not (
                isinstance(_current_expected_place(), core.CPUPlace)
                and core.supports_bfloat16()
            ),
            "Place does not support BF16 evaluation",
        )
2578 2579 2580 2581 2582

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
2583 2584
            "OneDNN supports only CPU for now",
        )