op_test.py 93.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28
from copy import copy
29

30
import paddle
31
import paddle.fluid as fluid
32
from paddle.fluid.framework import _dygraph_tracer
33
import paddle.fluid.core as core
34
from paddle.fluid.framework import _in_eager_mode
35
from paddle.fluid.framework import _test_eager_guard
36 37 38
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
A
arlesniak 已提交
39
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
40 41 42 43 44
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
45
from paddle.fluid import unique_name
46 47 48 49 50 51 52
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
53
from paddle.fluid.dygraph.dygraph_to_static.utils import parse_arg_and_kwargs
54 55


56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


98 99 100 101 102 103 104 105
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


106 107 108 109
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
110
    for i in six.moves.xrange(len(prob)):
111 112 113 114
        prob[i] /= prob_sum[i]
    return prob


115 116
def get_numeric_gradient(place,
                         scope,
117 118 119
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
120
                         output_names,
121
                         delta=0.005,
C
chengduo 已提交
122
                         in_place=False):
Y
Yu Yang 已提交
123
    # FIXME: change this method by compile time concepts
124
    set_input(scope, op, inputs, place)
125 126

    def product(dim):
M
minqiyang 已提交
127
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
128 129

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
130 131
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
132
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
133
        tensor_to_check_dtype = np.float32
134
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
135
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
136 137 138 139
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
140 141
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
142 143 144 145
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
146
    else:
147 148
        raise ValueError("Not supported data type " + str(tensor_to_check_dtype)
                         + ", tensor name : " + str(input_to_check))
149

C
chengduo 已提交
150 151 152 153
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
154
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
155 156 157
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
158 159 160
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
161 162
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

163 164 165
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
166 167 168 169
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
170 171 172
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
173 174 175 176
            return struct.unpack('<f',
                                 struct.pack('<I',
                                             np.uint32(numpy_tensor[i])
                                             << np.uint32(16)))[0]
D
dzhwinter 已提交
177
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
178
            return tensor._get_float_element(i)
179
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
180
            return tensor._get_double_element(i)
181 182 183
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
184 185

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
186 187 188 189 190
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
191
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
192
            tensor.set(numpy_tensor, place)
193 194 195 196 197 198 199
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
200
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
201
            tensor._set_float_element(i, e)
202
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
203
            tensor._set_double_element(i, e)
204 205 206
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
207

208 209
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
210
    for i in six.moves.xrange(tensor_size):
211
        if in_place:
212
            set_input(scope, op, inputs, place)
213 214

        # get one input element throw it's index i.
215
        origin = __get_elem__(tensor_to_check, i)
216 217
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
218
        __set_elem__(tensor_to_check, i, x_pos)
219 220 221
        y_pos = get_output()

        if in_place:
222
            set_input(scope, op, inputs, place)
223 224

        x_neg = origin - delta
225
        __set_elem__(tensor_to_check, i, x_neg)
226 227
        y_neg = get_output()

228
        __set_elem__(tensor_to_check, i, origin)
229 230
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
231
    return gradient_flat.reshape(tensor_to_check.shape())
232 233


234 235
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
236

237
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
238
       cases that do not need to do check_grad. This decorator is used to skip the
239
       check_grad of the above cases.
C
cc 已提交
240 241

       Note: the execution of unit test will not be skipped. It just avoids check_grad
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


258 259 260 261
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


262 263 264 265
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

266 267 268
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
269
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
270

271 272 273
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
274 275


276 277 278
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
279
        lambda x: struct.unpack('<f', struct.pack('<I', np.uint32(x) << np.uint32(16)))[0],
280 281
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
282 283


284
class OpTest(unittest.TestCase):
285 286 287 288 289
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
290
        cls.call_once = False
291
        cls.dtype = None
292
        cls.outputs = {}
293
        cls.input_shape_is_large = True
294 295 296 297

        np.random.seed(123)
        random.seed(124)

298 299 300 301
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
302

303 304
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
305
        """Restore random seeds"""
306 307 308
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

309 310
        _set_use_system_allocator(cls._use_system_allocator)

311 312 313 314
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
315
                if is_mkldnn_op_test():
316 317 318 319 320 321 322 323
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

324 325 326
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
327
        def is_mkldnn_op_test():
328
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
329

330 331 332
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

333 334 335
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

336 337 338
        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu == True

339 340
        if not hasattr(cls, "op_type"):
            raise AssertionError(
341 342
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
343

J
juncaipeng 已提交
344 345
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
346
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
347
            if cls.dtype is None or \
348 349
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
350 351 352 353
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

354
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
355 356
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
357
                and not hasattr(cls, 'exist_fp64_check_grad') \
358
                and not is_xpu_op_test() \
359
                and not is_mkldnn_op_test() \
360
                and not is_rocm_op_test() \
361 362
                and not is_npu_op_test() \
                and not is_mlu_op_test():
J
juncaipeng 已提交
363 364 365 366
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

367
            if not cls.input_shape_is_large \
368 369 370 371
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
372

373 374 375 376 377
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

378
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
379 380
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
381
        return self.dtype == np.uint16 or (
Y
Yiqun Liu 已提交
382 383 384
            hasattr(self, 'output_dtype') and
            self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type') and
385
                getattr(self, 'mkldnn_data_type') == "bfloat16") or (
Y
Yiqun Liu 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398
                    hasattr(self, 'attrs') and
                    'mkldnn_data_type' in self.attrs and
                    self.attrs['mkldnn_data_type'] == 'bfloat16')

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs and
            self.attrs["use_mkldnn"] == True)

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu == True) or (
            hasattr(self, "attrs") and "use_xpu" in self.attrs and
            self.attrs["use_xpu"] == True)
399

400
    # set the self.output_dtype .
401
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
402 403 404 405
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
406 407 408
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
431 432
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
433 434
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
435 436 437
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
438 439 440
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
441
            if dtype in input_dtype_set:
J
juncaipeng 已提交
442 443
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
444
        # save input dtype in class attr
445
        self.__class__.dtype = self.dtype
446

Y
Yiqun Liu 已提交
447 448 449 450 451 452 453 454
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
455 456 457 458 459 460
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
461
                    if isinstance(np_value, tuple):
462
                        tensor.set(np_value[0], place)
463
                        tensor.set_recursive_sequence_lengths(np_value[1])
464
                    else:
465
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
466 467 468 469
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
470
                    tensor.set(self.inputs[var_name][0], place)
471 472
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
473
                else:
474
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
475 476 477
                feed_map[var_name] = tensor
        return feed_map

478
    def _append_ops(self, block):
J
juncaipeng 已提交
479
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
480
        if self.is_mkldnn_op():
481
            self.__class__.use_mkldnn = True
C
cc 已提交
482

Y
Yiqun Liu 已提交
483
        if self.is_xpu_op():
484 485
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
486
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
487
        "infer datatype from inputs and outputs for this test case"
488 489 490 491 492 493
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
494 495 496 497
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
498 499 500 501 502 503 504 505 506

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
507 508 509 510
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
511
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict())
C
cc 已提交
512
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
513 514
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
515

516 517
        return op

518 519
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
520
        for name, value in six.iteritems(numpy_inputs):
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
540 541 542 543
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
544
            v = fluid.dygraph.base.to_variable(value=data)
545
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
546 547
            return v
        else:
L
lujun 已提交
548
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
549

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

604 605 606 607 608 609 610 611 612 613 614 615 616
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
617

618 619
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
620 621 622
                    if _in_eager_mode():
                        v.retain_grads()

623
                if has_lod:
624
                    v.value().get_tensor().set_recursive_sequence_lengths(
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
        """ for quick verify, here we take a simplest strategy:
                1. we only check variable in api_outs.
                2. we simply check the numpy (tensor) .
                3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
            self.assertTrue(
                np.allclose(
                    np_api, np_dyg, equal_nan=False),
                "Output (" + name + ") has diff at " + str(place) + "\nExpect "
                + str(np_dyg) + "\n" + "But Got" + str(np_api) + " in class " +
                self.__class__.__name__)

701 702 703 704
    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
        """ set egr_inps and egr_oups = None if you want to create it by yourself.
        """

705
        def prepare_python_api_arguments(api, op_proto_ins, op_proto_attrs,
706 707 708
                                         kernel_sig):
            """ map from `op proto inputs and attrs` to `api input list and api attrs dict`
            """
709 710 711 712 713 714 715 716 717 718 719 720

            class Empty:
                pass

            def is_empty(a):
                return isinstance(a, Empty)

            def get_default(idx, all_params_number, defaults):
                related_idx = idx - all_params_number + len(defaults)
                assert related_idx >= 0, "%d-th arguments don't have default value" % idx
                return defaults[related_idx]

721 722 723
            def filter_by_name(x):
                names = set(['name', 'out', 'output'])
                if isinstance(x, list): return [i for i in x if i not in names]
724
                if isinstance(x, dict):
725
                    return {k: v for k, v in x.items() if k not in names}
726 727 728 729 730
                assert False, "Only support list or dict."

            def to_defaults_list(params, defaults):
                return [defaults[p] for p in params if p in defaults]

731 732
            # NOTE(xiongkun): why don't use input arguments dicts ? 
            # Because we don't know the python api name of each arguments.
733 734
            # using parse_arg_and_kwargs, we can get the all api information we need.
            api_params, api_defaults = [
735
                filter_by_name(item) for item in parse_arg_and_kwargs(api)
736 737
            ]
            api_defaults = to_defaults_list(api_params, api_defaults)
738
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
            inputs_and_attrs = inputs_sig + attrs_sig
            assert (
                len(api_params) == len(inputs_and_attrs)
            ), "inputs and attrs length must equals to python api length. (May be output is in argument list?)"
            input_arguments = [op_proto_ins[name] for name in inputs_sig] + [
                op_proto_attrs[name] if name in op_proto_attrs else Empty()
                for name in attrs_sig
            ]
            results = []
            for idx, arg in enumerate(input_arguments):
                if is_empty(arg):
                    results.append(
                        get_default(idx, len(input_arguments), api_defaults))
                else:
                    results.append(arg)
            return results
755 756 757 758

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
759 760 761 762 763 764 765 766 767
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
                assert len(
                    output_sig
                ) == 1, "Don't support multi-output with multi-tensor output."
                return {output_sig[0]: ret_tuple}
768

769
        def assumption_assert_and_transform(args, inp_num):
770
            """
771
            transform inputs by the following rules:
772 773 774 775
                1. [Tensor] -> Tensor
                2. [Tensor, Tensor, ...] -> list of Tensors

            only support "X" is list of Tensor, currently don't support other structure like dict.
776
            """
777
            for inp in args[:inp_num]:
778 779 780
                assert isinstance(
                    inp, list
                ), "currently only support `X` is [Tensor], don't support other structure."
781 782 783 784
            args = [
                inp[0] if len(inp) == 1 else inp for inp in args[:inp_num]
            ] + args[inp_num:]
            return args
785

786 787 788 789 790 791 792 793 794 795 796 797
        def _get_kernel_signature(eager_tensor_inputs, eager_tensor_outputs,
                                  attrs_outputs):
            try:
                kernel_sig = _dygraph_tracer()._get_kernel_signature(
                    self.op_type, eager_tensor_inputs, eager_tensor_outputs,
                    attrs_outputs)
            except RuntimeError as re:
                """ we think the kernel_sig is missing.
                """
                kernel_sig = None
            return kernel_sig

798
        def cal_python_api(python_api, args, kernel_sig):
799
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
800 801
            args = assumption_assert_and_transform(args, len(inputs_sig))
            ret_tuple = python_api(*args)
802 803 804 805 806 807
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
808
            eager_tensor_inputs = egr_inps if egr_inps else self.append_input_output_for_dygraph(
809
                op_proto, self.inputs, True, False, block)
810
            # prepare output variable
811
            eager_tensor_outputs = egr_oups if egr_oups else self.append_input_output_for_dygraph(
812 813 814 815 816 817 818 819 820
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

821 822 823 824
            kernel_sig = _get_kernel_signature(
                eager_tensor_inputs, eager_tensor_outputs, attrs_outputs)
            if not kernel_sig:
                return None
825 826
            assert hasattr(
                self, "python_api"
827
            ), "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_eager = True" % self.op_type
828 829
            args = prepare_python_api_arguments(
                self.python_api, eager_tensor_inputs, attrs_outputs, kernel_sig)
830 831
            """ we directly return the cal_python_api value because the value is already tensor. 
            """
832
            return cal_python_api(self.python_api, args, kernel_sig)
833

L
lujun 已提交
834
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
835
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
836
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
837 838
            block = fluid.default_main_program().global_block()

839
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
840

841 842 843
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
844
            # prepare output variable
845 846 847 848 849 850 851 852 853
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
854

M
minqiyang 已提交
855 856 857 858
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
859
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
860
            return outputs
861

862 863 864 865 866 867
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
868
                     for_inplace_test=None):
869 870
        program = Program()
        block = program.global_block()
871
        op = self._append_ops(block)
872 873 874 875 876

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

877
        if for_inplace_test:
C
cc 已提交
878 879
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
880 881
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
882 883
            for out_name in op.output_arg_names:
                var = block.var(out_name)
884 885
                if 0 in var.shape:
                    var.persistable = True
886
        original_program = program
887 888
        if parallel:
            use_cuda = False
889
            if isinstance(place, fluid.CUDAPlace):
890
                use_cuda = True
891 892 893
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
894 895 896 897
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
898
            for var_name, var in six.iteritems(outputs):
899 900
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
901 902
                if isinstance(var, list):
                    for v in var:
903
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
904
                else:
905
                    fetch_list.append(var.name)
906 907 908 909
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
910 911 912 913 914 915 916 917 918

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

919
        executor = Executor(place)
920 921 922 923
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
924 925
        self.op = op
        self.program = original_program
926 927 928 929
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
930

931 932 933 934 935 936 937 938 939
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
940
            place (CPUPlace | CUDAPlace): The place where the op runs.
941 942 943 944 945 946 947 948 949 950
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
951
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
952 953 954
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
955 956
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
957 958 959
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
960
                        expect_out, actual_out, atol=inplace_atol),
961 962
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
963 964
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
965 966
            else:
                self.assertTrue(
967
                    np.array_equal(expect_out, actual_out),
968 969
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
970 971
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
972 973 974 975 976 977 978 979

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
980
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
1007 1008
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1024
            place (CPUPlace | CUDAPlace): The place where the op runs.
1025 1026 1027
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1028
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
1060

1061
        Args:
C
cc 已提交
1062 1063
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
1064
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
1080
                # get grad_op_desc
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
1104
        """Check the inplace correctness of given op (self.op_type).
1105
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
1106

1107
        Args:
C
cc 已提交
1108
            place (CPUPlace | CUDAPlace): The place where the op runs.
1109 1110 1111 1112
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1113 1114
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1115 1116
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
1127
        # compare expect_outs and actual_outs
1128 1129 1130 1131 1132 1133
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1147
            place (CPUPlace | CUDAPlace): The place where the op runs.
1148 1149 1150 1151 1152 1153 1154 1155 1156
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
1157
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
1158
                                                                  set(), [])
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1184
        """Check the inplace correctness of given grad_op_desc.
1185 1186 1187 1188 1189 1190

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1191
            place (CPUPlace | CUDAPlace): The place where the op runs.
1192 1193 1194 1195 1196 1197
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1198 1199
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1223
            place (CPUPlace | CUDAPlace): The place where the op runs.
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1239 1240
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1254 1255
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1256
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1269
                else:
1270 1271
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1272

1273 1274
    def check_output_with_place(self,
                                place,
1275
                                atol=0,
1276
                                no_check_set=None,
M
minqiyang 已提交
1277
                                equal_nan=False,
1278
                                check_dygraph=True,
1279 1280
                                inplace_atol=None,
                                check_eager=False):
1281 1282 1283 1284 1285
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1286
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1287 1288
            if self.is_mkldnn_op():
                check_dygraph = False
1289
                check_eager = False
Y
Yiqun Liu 已提交
1290 1291 1292 1293 1294
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1295
            else:
1296
                atol = 1e-1
1297

1298 1299 1300 1301
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1302

L
lujun 已提交
1303 1304
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1305
                place, no_check_set=no_check_set)
1306

1307
        if check_eager:
1308
            # we only check end2end api when check_eager=True
1309
            with _test_eager_guard():
1310 1311 1312 1313 1314
                eager_dygraph_outs = self._calc_python_api_output(place)
                if eager_dygraph_outs is None:
                    # missing KernelSignature, fall back to eager middle output.
                    eager_dygraph_outs = self._calc_dygraph_output(
                        place, no_check_set=no_check_set)
1315

1316
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
1317

Y
Yang Yang(Tony) 已提交
1318
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1319 1320
            if out_name not in self.outputs:
                continue
1321 1322
            if no_check_set is not None and out_name in no_check_set:
                continue
1323

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
1336 1337
            def find_actual(target_name, fetch_list):
                found = [
1338 1339
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
1340 1341 1342 1343 1344 1345
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1346 1347
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1348 1349 1350
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1351 1352
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1353
                    if check_dygraph:
1354 1355
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1356 1357
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
1358 1359 1360 1361 1362 1363 1364
                    if check_eager:
                        with _test_eager_guard():
                            eager_imperative_actual = find_imperative_actual(
                                sub_out_name, eager_dygraph_outs, place)
                            eager_imperative_actual_t = eager_imperative_actual.numpy(
                            )

Y
Yang Yang(Tony) 已提交
1365
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1366 1367
                    actual = outs[idx]
                    actual_t = np.array(actual)
1368 1369
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1370 1371
                    self.assertTrue(
                        np.allclose(
1372
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1373 1374
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1375
                    if check_dygraph:
M
minqiyang 已提交
1376 1377 1378 1379 1380 1381 1382
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1383
                            str(place) + " in dygraph mode")
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
                    if check_eager:
                        with _test_eager_guard():
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    equal_nan=equal_nan),
                                "Output (" + sub_out_name + ") has diff at " +
                                str(place) + " in eager dygraph mode")
1394 1395
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1396 1397
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1398
                            ") has different lod at " + str(place))
1399 1400
                        if check_dygraph:
                            self.assertListEqual(
1401
                                imperative_actual.value().get_tensor()
1402 1403 1404 1405
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1406 1407 1408 1409 1410 1411 1412 1413
                        if check_eager:
                            with _test_eager_guard():
                                self.assertListEqual(
                                    eager_imperative_actual.value().get_tensor()
                                    .recursive_sequence_lengths(), expect[1],
                                    "Output (" + out_name +
                                    ") has different lod at " + str(place) +
                                    " in eager dygraph mode")
1414
            else:
L
lujun 已提交
1415
                if check_dygraph:
1416 1417
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1418 1419
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
1420 1421 1422 1423 1424 1425 1426
                if check_eager:
                    with _test_eager_guard():
                        eager_imperative_actual = find_imperative_actual(
                            out_name, eager_dygraph_outs, place)
                        eager_imperative_actual_t = eager_imperative_actual.numpy(
                        )

Y
Yang Yang(Tony) 已提交
1427
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1428 1429
                actual = outs[idx]
                actual_t = np.array(actual)
1430

1431
                expect = self.outputs[out_name]
1432
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1433

Y
Yiqun Liu 已提交
1434
                # np.uint16 represents bfloat16
1435 1436 1437
                if actual_t.dtype == np.uint16 and expect_t.dtype in [
                        np.float32, np.float64
                ]:
1438
                    actual_t = convert_uint16_to_float(actual_t)
W
wuhuanzhou 已提交
1439 1440 1441
                    rtol = 1.e-2
                else:
                    rtol = 1.e-5
1442

1443 1444 1445 1446
                if expect_t.dtype == np.uint16 and actual_t.dtype == np.uint16:
                    expect_t = convert_uint16_to_float(expect_t)
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = max(atol, 0.03)
Y
Yiqun Liu 已提交
1447

1448 1449 1450 1451 1452
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_t.size == 0:
                    self.assertTrue(actual_t.size == 0)

1453 1454
                self.assertTrue(
                    np.allclose(
W
wuhuanzhou 已提交
1455 1456 1457
                        actual_t,
                        expect_t,
                        atol=atol,
Y
Yiqun Liu 已提交
1458
                        rtol=rtol,
W
wuhuanzhou 已提交
1459
                        equal_nan=equal_nan),
E
emailweixu 已提交
1460
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1461
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1462
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1463
                if check_dygraph:
Y
Yiqun Liu 已提交
1464 1465 1466 1467 1468 1469
                    if self.is_bfloat16_op():
                        if imperative_actual_t.dtype == np.uint16:
                            imperative_actual_t = convert_uint16_to_float(
                                imperative_actual_t)
                        if expect_t.dtype == np.uint16:
                            expect_t = convert_uint16_to_float(expect_t)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
Y
Yiqun Liu 已提交
1481
                                rtol=rtol,
1482 1483 1484 1485 1486
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
                if check_eager:
                    with _test_eager_guard():
                        if self.is_bfloat16_op():
                            if eager_imperative_actual_t.dtype == np.uint16:
                                eager_imperative_actual_t = convert_uint16_to_float(
                                    eager_imperative_actual_t)
                            if expect_t.dtype == np.uint16:
                                expect_t = convert_uint16_to_float(expect_t)
                        if six.moves.reduce(lambda x, y: x * y,
                                            eager_imperative_actual_t.shape,
                                            1) == 0 and six.moves.reduce(
                                                lambda x, y: x * y,
                                                expect_t.shape, 1) == 0:
                            pass
                        else:
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    rtol=rtol,
                                    equal_nan=equal_nan),
                                "Output (" + out_name + ") has diff at " +
                                str(place) + "\nExpect " + str(expect_t) + "\n"
                                + "But Got" + str(eager_imperative_actual_t) +
                                " in class " + self.__class__.__name__)
1513
                if isinstance(expect, tuple):
1514 1515
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1516
                                         ") has different lod at " + str(place))
L
lujun 已提交
1517
                    if check_dygraph:
M
minqiyang 已提交
1518
                        self.assertListEqual(
1519
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1520 1521
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
1522 1523 1524 1525 1526 1527 1528 1529 1530
                            str(place) + " in eager dygraph mode")
                    if check_eager:
                        with _test_eager_guard():
                            self.assertListEqual(
                                eager_imperative_actual.value().get_tensor()
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in eager dygraph mode")
1531

C
cc 已提交
1532
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1533 1534
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1535
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1536 1537 1538
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1539 1540
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1541 1542
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1543
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1544
        # No effect on original OpTest
1545
        # Currently not support ParallelExecutor on XPUPlace.
1546
        if not paddle.is_compiled_with_xpu(
1547 1548
        ) and not paddle.is_compiled_with_npu(
        ) and not paddle.is_compiled_with_mlu():
1549 1550
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1551

1552 1553 1554
        if check_eager:
            return outs, dygraph_outs, eager_dygraph_outs, fetch_list
        elif check_dygraph:
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1602
    def _get_places(self):
D
dzhwinter 已提交
1603 1604 1605 1606 1607 1608
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1609 1610
                else:
                    return []
D
dzhwinter 已提交
1611 1612
            else:
                return []
1613
        places = [fluid.CPUPlace()]
1614 1615 1616
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1617
            places.append(core.CUDAPlace(0))
1618 1619
        return places

M
minqiyang 已提交
1620 1621 1622 1623
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1624
                     check_dygraph=True,
1625 1626
                     inplace_atol=None,
                     check_eager=False):
1627
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1628
        if self.is_mkldnn_op():
1629
            self.__class__.use_mkldnn = True
C
cc 已提交
1630

Y
Yiqun Liu 已提交
1631
        if self.is_xpu_op():
1632 1633
            self.__class__.use_xpu = True

1634
        places = self._get_places()
Q
qijun 已提交
1635
        for place in places:
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager)
            if check_eager:
                assert check_dygraph == True
                outs, dygraph_outs, eager_dygraph_outs, fetch_list = res
            elif check_dygraph:
1648 1649 1650
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1651
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1652
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1653

P
pangyoki 已提交
1654
    def check_output_customized(self, checker, custom_place=None):
1655
        places = self._get_places()
P
pangyoki 已提交
1656 1657
        if custom_place:
            places.append(custom_place)
1658 1659 1660
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1661
            outs.sort(key=len)
1662 1663
            checker(outs)

1664 1665 1666 1667 1668 1669
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1670 1671
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1672
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1673 1674 1675 1676 1677 1678
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1679
            abs_a = np.abs(a)
1680 1681 1682 1683 1684
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1685 1686
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1687 1688
            else:
                abs_a[abs_a < 1e-3] = 1
1689 1690 1691 1692 1693 1694

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1695 1696 1697
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1698
                    offset, a.flatten()[offset], b.flatten()[offset])
1699 1700 1701

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1702 1703 1704 1705 1706 1707 1708
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1709 1710
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1711
                   output_names,
1712
                   no_grad_set=None,
1713
                   numeric_grad_delta=0.005,
1714
                   in_place=False,
Q
Qiao Longfei 已提交
1715
                   max_relative_error=0.005,
1716
                   user_defined_grads=None,
1717
                   user_defined_grad_outputs=None,
1718 1719
                   check_dygraph=True,
                   check_eager=False):
1720
        self._check_grad_helper()
1721
        places = self._get_places()
1722
        for place in places:
1723
            self.check_grad_with_place(
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager)
1735 1736 1737 1738 1739 1740 1741 1742 1743

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1744
                              user_defined_grads=None,
1745
                              user_defined_grad_outputs=None,
1746
                              check_dygraph=True,
1747 1748
                              numeric_place=None,
                              check_eager=False):
1749
        self.scope = core.Scope()
Q
qijun 已提交
1750
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1751
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1752
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1753

Y
Yiqun Liu 已提交
1754 1755
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1756
            check_dygraph = False
1757
            check_eager = False
1758

1759 1760 1761 1762
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1763

P
phlrain 已提交
1764 1765 1766
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1767 1768 1769 1770 1771 1772 1773

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1774 1775 1776 1777 1778 1779 1780
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1781

1782 1783 1784
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1785 1786
        if no_grad_set is None:
            no_grad_set = set()
1787 1788
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1789 1790 1791
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1792 1793
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1794

1795 1796 1797 1798 1799 1800 1801 1802
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1803 1804 1805
        if not type(output_names) is list:
            output_names = [output_names]

1806 1807 1808
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1809
        numeric_grads = user_defined_grads or [
1810
            get_numeric_gradient(
1811
                numeric_place,
1812 1813 1814 1815
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1816
                output_names,
1817
                delta=numeric_grad_delta,
C
chengduo 已提交
1818
                in_place=in_place) for input_to_check in inputs_to_check
1819
        ]
1820
        analytic_grads = self._get_gradient(inputs_to_check, place,
1821 1822
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1823 1824
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1825
        fp32_analytic_grads = []
1826 1827 1828
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1829
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1830 1831 1832 1833 1834 1835 1836
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1837
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1838 1839
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1840

D
Dun 已提交
1841 1842 1843
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1844

1845
        if check_dygraph:
1846 1847
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
1848
                no_grad_set, False)
1849 1850 1851 1852
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1853
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1854 1855
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1856 1857 1858 1859
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

1860 1861 1862 1863
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_grad = self._get_dygraph_grad(
                    inputs_to_check, place, output_names,
1864
                    user_defined_grad_outputs, no_grad_set, check_eager)
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
                fp32_grads = []
                for grad in eager_dygraph_grad:
                    if grad.dtype == np.uint16:
                        grad = convert_uint16_to_float(grad)
                        max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
                    fp32_grads.append(grad)
                eager_dygraph_grad = fp32_grads
                self._assert_is_close(numeric_grads, eager_dygraph_grad,
                                      inputs_to_check, max_relative_error,
                                      "Gradient Check On %s" % str(place))

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1889
                          user_defined_grad_outputs=None,
1890 1891
                          no_grad_set=None,
                          check_eager=False):
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
            if check_eager:
                outputs = self._calc_python_api_output(place, inputs, outputs)

            # if outputs is None, kernel sig is empty or other error is happens.
            if not check_eager or outputs is None:
                block.append_op(
                    type=self.op_type,
                    inputs=inputs,
                    outputs=outputs,
                    attrs=attrs_outputs if hasattr(self, "attrs") else None)
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

1938 1939 1940 1941 1942
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
1977
                    block.append_op(
1978 1979 1980
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
1981
                        attrs=None)
1982
                    loss = block.create_var(
1983 1984 1985
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
1986 1987
                        stop_gradient=False,
                        shape=[1])
1988
                    block.append_op(
1989 1990 1991 1992
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
1993

1994
                loss.backward()
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
2008 2009 2010 2011
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
                if _in_eager_mode():
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs,
                        False)
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
                        grad_outputs=grad_outputs)
                    return [grad.numpy() for grad in grad_inputs]
2027

Y
Yu Yang 已提交
2028 2029 2030 2031 2032
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
2033
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
2034 2035
        return tensor

K
Kexin Zhao 已提交
2036
    @staticmethod
K
Kexin Zhao 已提交
2037 2038
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
2039

D
dzhwinter 已提交
2040 2041 2042 2043 2044 2045 2046 2047
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

2048 2049 2050 2051 2052
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
2053
                      user_defined_grad_outputs=None,
2054
                      parallel=False):
Y
Yu Yang 已提交
2055
        prog = Program()
2056
        scope = core.Scope()
Y
Yu Yang 已提交
2057
        block = prog.global_block()
2058
        self._append_ops(block)
Y
Yu Yang 已提交
2059

2060
        inputs = self._get_inputs(block)
2061
        outputs = self._get_outputs(block)
2062
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
2063

2064
        if user_defined_grad_outputs is None:
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
2105
            inputs = [inputs[name] for name in input_to_check if name in inputs]
2106 2107 2108 2109
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

2110 2111
        if parallel:
            use_cuda = False
2112
            if isinstance(place, fluid.CUDAPlace):
2113
                use_cuda = True
2114 2115 2116 2117
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
2118 2119
        return list(
            map(np.array,
2120 2121 2122 2123 2124
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")
2138 2139 2140 2141 2142 2143

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")