distribute_transpiler.py 102.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
T
tangwei12 已提交
133
    A configuration class that provide support for transpiler distributed jobs.
134 135 136
    Some important parameters are explained as follows:


H
haowang101779990 已提交
137 138
    .. py:attribute:: slice_var_up (bool)

139
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
140 141 142

    .. py:attribute:: split_method (PSDispatcher)

143 144 145 146
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
147 148 149

    .. py:attribute:: min_block_size (int)

150
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
151 152

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
153
          We can use bandwidth effiently when data size is larger than 2MB.If you
154 155 156 157
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
158

159 160 161
    Examples:
        .. code-block:: python

162 163 164
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

165 166
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
167 168
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
169 170 171 172 173
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
174
    enable_dc_asgd = False
175
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
176
    mode = "pserver"
177
    print_log = False
W
Wu Yi 已提交
178
    wait_port = True
Q
Qiao Longfei 已提交
179
    # split the send recv var in runtime
180 181
    _runtime_split_send_recv = False
    _sync_mode = True
G
gongweibao 已提交
182

183 184 185 186
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

187 188 189 190 191 192 193
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

194
    # if mode is collective
195
    # supported modes: grad_allreduce, local_sgd
196 197
    collective_mode = None

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
        return self._runtime_split_send_recv

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
        if value and self._sync_mode:
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
        self._runtime_split_send_recv = value

    @property
    def sync_mode(self):
        return self._sync_mode

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
        if value and self._runtime_split_send_recv:
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
        self._sync_mode = value

G
gongweibao 已提交
229

Y
gen rst  
yi.wu 已提交
230
class DistributeTranspiler(object):
Y
yi.wu 已提交
231 232 233 234
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
T
tangwei12 已提交
235
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
236

W
Wu Yi 已提交
237 238 239 240 241 242 243 244 245
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
246 247 248 249

    Examples:
        .. code-block:: python

T
tangwei12 已提交
250 251
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
252 253 254 255 256 257 258 259
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
260 261 262 263 264 265
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
266
            role = "PSERVER"
T
Tink_Y 已提交
267 268 269 270 271 272
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
273
                                                                pserver_program)
T
Tink_Y 已提交
274 275 276 277
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
278 279
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
280 281
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
282
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
283
            t = fluid.DistributeTranspiler(config=config)
284
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
285
            exe = fluid.ParallelExecutor(
286 287 288
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
289 290
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
291
    """
Y
Yancey1989 已提交
292

G
gongweibao 已提交
293 294 295 296 297 298 299 300 301
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

302 303 304
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
305 306 307
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
308 309 310 311
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
312 313
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
314 315 316 317 318 319
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
320 321
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
322 323 324

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
325 326 327 328 329 330 331 332 333

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
334 335 336 337
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
338 339 340 341 342
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
343 344 345 346 347
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
348 349 350 351 352 353 354
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
355 356 357 358 359
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
386
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
387
        elif collective_mode == 'local_sgd':
388
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
389 390 391 392 393 394 395 396 397 398 399
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
400
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
401
        sparse_update_ops = []
402
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
403 404
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
405
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
406 407 408
                sparse_update_ops.append(op)
        return sparse_update_ops

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
484

485 486
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
487 488 489 490 491 492

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
493

494 495 496 497 498
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
499
                  sync_mode=True,
W
Wu Yi 已提交
500 501
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
502
        """
T
tangwei12 已提交
503
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
504 505 506 507 508 509

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
510 511
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
512 513
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
514 515 516
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
517
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
518 519
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
520 521 522
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
523 524 525 526 527 528 529 530 531 532 533

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
534 535 536
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
537 538
        if startup_program is None:
            startup_program = default_startup_program()
539
        self.origin_program = program
W
Wu Yi 已提交
540 541
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
542

W
Wu Yi 已提交
543 544
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
545
            self.origin_program._trainers_endpoints = trainers.split(",")
546 547
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
548 549 550 551 552
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
553
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
554 555 556 557 558 559 560 561 562 563 564
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
565 566 567 568
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
569 570
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
571 572
            return

573 574 575 576 577 578 579 580 581 582 583
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

584
        self.trainer_num = trainers
585
        self.sync_mode = sync_mode
586 587 588
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
589
        self.vars_overview = VarsDistributed()
590 591
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
592
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
593 594
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
595
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
596
        self.grad_name_to_param_name = dict()
597 598
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
599
            self.grad_name_to_param_name[grad_var.name] = param_var.name
600

Q
Qiao Longfei 已提交
601
        # get all sparse update ops
Q
Qiao Longfei 已提交
602
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
603
            self.origin_program)
Q
Qiao Longfei 已提交
604
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
605 606
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
607 608 609
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
610
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
611 612 613
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

614
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
615
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
616
        self._init_splited_vars()
617

G
gongweibao 已提交
618
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
619
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
620
        send_vars = []
621 622 623 624 625 626

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
627
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
628

G
gongweibao 已提交
629
        if not self.config.slice_var_up:
630 631
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
632

633
        self.grad_name_to_send_dummy_out = dict()
634
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
635
            eplist = ps_dispatcher.dispatch(splited_vars)
636

G
gongweibao 已提交
637
            if not self.config.slice_var_up:
638 639
                assert (len(splited_vars) == 1)

640
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
641
            if len(splited_vars) == 1:
642
                splited_grad_varname = splited_vars[0].name
643 644
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
645

Y
Yancey1989 已提交
646
            elif len(splited_vars) > 1:
647
                orig_var = program.global_block().vars[splited_grad_varname]
648 649
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
650

Q
Qiao Longfei 已提交
651 652 653 654
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
655 656
            else:
                AssertionError("Can not insert the send op by original "
657
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
658

659 660 661 662 663 664 665
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
666 667
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
668
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
669

Q
Qiao Longfei 已提交
670 671 672 673 674 675 676 677 678 679 680
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
681 682 683 684
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
685
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
686
                index=index + 1,
687
                type="send",
Q
Qiao Longfei 已提交
688
                inputs={"X": send_input_vars},
689
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
690 691
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
692 693
                    "sections": sections,
                    "send_varnames": send_varnames,
694
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
695 696 697
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
698
                    ]
Y
Yancey1989 已提交
699
                })
Y
update  
Yancey1989 已提交
700 701
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
702 703

        if self.sync_mode:
704
            fetch_barrier_input = []
W
Wu Yi 已提交
705 706
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
707 708 709 710
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
711
            input_deps = list(self.grad_name_to_send_dummy_out.values())
712

Y
Yancey1989 已提交
713 714
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
715
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
716
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
717 718
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
719
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
720
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
721
                })
722
            fetch_barrier_input.append(send_barrier_out)
Y
Yancey1989 已提交
723

G
gongweibao 已提交
724
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
725
        recv_vars = []
Y
update  
Yancey1989 已提交
726
        for _, var in enumerate(send_vars):
727
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
728
        ps_dispatcher.reset()
Y
Yancey1989 已提交
729 730
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
731
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
732 733
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
734

735 736 737 738
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

739 740
        need_sparse_update_params = {}

Y
Yancey1989 已提交
741
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
742
        all_recv_outputs = []
743
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
744
            eps = []
Q
Qiao Longfei 已提交
745
            table_names = []
Y
Yancey1989 已提交
746 747 748
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
749
                table_names.append(var.name)
W
Wu Yi 已提交
750 751 752 753
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
754
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
755
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
756

W
Wu Yi 已提交
757 758 759 760 761 762 763 764 765
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
766
            if param_varname in self.sparse_param_to_height_sections:
767 768 769 770 771
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

772
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
773
            else:
Q
Qiao Longfei 已提交
774 775 776
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
777
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
778
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
779
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
780

Q
Qiao Longfei 已提交
781 782 783 784 785 786
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
787
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
788 789 790
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
791
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
792
                    })
793 794
                if self.sync_mode:
                    fetch_barrier_input.extend(splited_var)
T
typhoonzero 已提交
795

796 797
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
798
        if self.sync_mode:
W
Wu Yi 已提交
799
            # form a WAW dependency
Q
qiaolongfei 已提交
800 801
            program.global_block().append_op(
                type="fetch_barrier",
802
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
803
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
804 805
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
806
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
807 808
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
809

810 811
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
812
            if param_varname not in self.sparse_param_to_height_sections:
813 814
                if len(splited_var
                       ) > 1 and not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
815 816 817 818 819 820 821 822
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
823

824 825 826 827 828 829 830 831 832 833 834 835
        if not self.sync_mode:
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0:
                program.global_block().append_op(
                    type="distributed_notify",
                    inputs={},
                    outputs={},
                    attrs={
                        "epmap": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "type": "LRDECAY@RECV"
                    })
836

G
gongweibao 已提交
837 838
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

839
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
840 841
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
842
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
843

844 845 846
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
847
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
848
        """
849 850 851 852 853 854 855 856 857
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
858 859 860

        Returns:
            Program: trainer side program.
861 862 863 864 865 866 867 868 869 870 871 872

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
873
        """
T
typhoonzero 已提交
874
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
875
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
876

T
typhoonzero 已提交
877
        lr_ops = self._get_lr_ops()
878
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
879 880
        delete_ops(self.origin_program.global_block(), lr_ops)

881 882
        # delete table init op
        if self.has_distributed_lookup_table:
883 884 885
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
886 887
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
888 889 890 891 892
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
893
            table_init_op = table_param_init_op[0]
894 895 896 897 898 899
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
900

901
        self.origin_program.__str__()
G
gongweibao 已提交
902

W
Wu Yi 已提交
903 904 905
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

906
        return self.origin_program
T
typhoonzero 已提交
907

W
Wu Yi 已提交
908
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
909 910 911 912
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
913
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
914
            eplist (list): A list of strings indicating
G
gongweibao 已提交
915 916 917 918

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
919
        startup_program = self.startup_program
G
gongweibao 已提交
920 921 922 923

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
924
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
945
                inputs={"X": []},
G
gongweibao 已提交
946 947 948
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
949
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
950 951 952
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
953 954
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
955 956 957
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
958
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
959 960
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
961
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
962 963 964
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
965
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
966
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
967 968
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
969
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
970
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
971 972 973 974 975 976 977 978 979 980
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
981 982 983 984 985 986 987 988
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
989 990
    def get_pserver_program(self, endpoint):
        """
991 992 993 994 995 996
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
997

Y
yi.wu 已提交
998 999
        Args:
            endpoint (str): current parameter server endpoint.
1000

Y
yi.wu 已提交
1001 1002
        Returns:
            Program: the program for current parameter server to run.
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1017
        """
Y
yi.wu 已提交
1018 1019 1020 1021
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1022 1023 1024
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1025 1026
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1027
        pserver_program.random_seed = self.origin_program.random_seed
1028 1029
        pserver_program._copy_dist_param_info_from(self.origin_program)

1030
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1031 1032 1033 1034 1035 1036 1037 1038
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1039 1040 1041 1042 1043
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1053
            if self.sync_mode and self.trainer_num > 1:
1054
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1064

Q
qiaolongfei 已提交
1065
        # step 3
1066
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1067 1068 1069
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1070
        # step 3.2
T
typhoonzero 已提交
1071 1072 1073 1074
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1075 1076
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1077
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1078
        # step 3.3
W
Wu Yi 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1097
        # Iterate through the ops, and if an op and the optimize ops
1098
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1099
        # append it into the sub program.
T
typhoonzero 已提交
1100 1101 1102

        global_ops = []

1103 1104 1105
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1106 1107
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1108
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1109
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1110 1111
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1112
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1113
                self._append_pserver_non_opt_ops(block, op)
1114

Y
Yancey1989 已提交
1115
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1116 1117 1118 1119 1120 1121 1122 1123
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1124
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1125 1126 1127

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1128
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1129 1130

            # clone ops
Y
Yancey1989 已提交
1131 1132
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1133
                # clone sub_block of op
Y
Yancey1989 已提交
1134
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1135 1136

            # reset the block of op
W
Wu Yi 已提交
1137
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1138

1139
        # append lr decay ops to the child block if exists
1140
        lr_ops = self._get_lr_ops()
1141 1142
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1143 1144

        lr_decay_block_id = -1
1145
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1146
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1147
                pserver_program.num_blocks - 1)
1148
            optimize_blocks.append(lr_decay_block)
1149
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1150
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1151
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1152 1153
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1154
            lr_decay_block_id = lr_decay_block.idx
1155

T
typhoonzero 已提交
1156
        # append op to the current block
Q
qiaolongfei 已提交
1157
        grad_to_block_id = []
Q
qiaolongfei 已提交
1158
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1159
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1160
            per_opt_block = pserver_program._create_block(pre_block_idx)
1161
            optimize_blocks.append(per_opt_block)
1162
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1163
            # append grad merging ops before clip and weight decay
1164 1165
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1166
            for _, op in enumerate(self.optimize_ops):
1167
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1168
                # merged_var should be the input var name of L2Decay
1169 1170 1171
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1172 1173 1174
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1175 1176 1177 1178 1179 1180
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1181
                            op not in global_ops:
1182 1183 1184 1185 1186
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1187

1188
        # dedup grad to ids list
W
Wu Yi 已提交
1189
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1190
        # append global ops
1191
        if global_ops:
W
Wu Yi 已提交
1192
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1193
                pserver_program.num_blocks - 1)
1194
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1195
            for glb_op in global_ops:
X
Xi Chen 已提交
1196
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1197
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1198

1199
        # process distributed lookup_table
Q
qiaolongfei 已提交
1200
        prefetch_var_name_to_block_id = []
1201 1202
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1203
            table_opt_block = self._create_table_optimize_block(
1204
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1205
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1206
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1207
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1208 1209
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1210

T
tangwei12 已提交
1211
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1212 1213
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1214

1215
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1216 1217
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1218 1219 1220 1221 1222 1223
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1224
        attrs = {
1225
            "optimize_blocks": optimize_blocks,
1226
            "endpoint": endpoint,
1227
            "pserver_id": self.pserver_endpoints.index(endpoint),
1228 1229
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1230
            "grad_to_block_id": grad_to_block_id,
1231
            "sparse_grad_to_param": sparse_grad_to_param,
1232
            "lr_decay_block_id": lr_decay_block_id,
1233
        }
T
tangwei12 已提交
1234 1235

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1236
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1237 1238
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1239

T
tangwei12 已提交
1240 1241 1242 1243
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1244 1245 1246 1247 1248
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1249
            attrs=attrs)
1250

W
Wu Yi 已提交
1251
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1252 1253
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1254 1255
        return pserver_program

W
Wu Yi 已提交
1256 1257 1258
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
1259 1260
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1261 1262 1263

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1264

W
Wu Yi 已提交
1265 1266
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1281 1282
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1283 1284
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1285 1286
        return pserver_prog, pserver_startup

1287 1288
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1289
                            pserver_program=None,
1290
                            startup_program=None):
T
typhoonzero 已提交
1291
        """
W
Wu Yi 已提交
1292 1293
        **Deprecated**

T
typhoonzero 已提交
1294 1295 1296
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1297 1298 1299

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1300 1301
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1302
                when initalizing
1303

Y
yi.wu 已提交
1304 1305
        Returns:
            Program: parameter server side startup program.
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1321 1322
        """
        s_prog = Program()
W
Wu Yi 已提交
1323
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1324
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1336
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1337
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1338
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1339 1340 1341 1342
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1343
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1344 1345
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1356 1357

            if op_on_pserver:
1358 1359 1360
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1361
                if op.type in [
1362 1363
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1364
                ]:
W
Wu Yi 已提交
1365
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1366 1367 1368 1369
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1370
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1380

T
typhoonzero 已提交
1381 1382
        return s_prog

1383 1384
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1385
        block_suffix = "block"
1386 1387 1388
        block_idx = 0
        offset = 0
        is_slice = False
1389

1390
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1391

1392 1393
        if not block_name:
            return is_slice, block_idx, offset
1394

1395 1396 1397 1398
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1399 1400 1401 1402 1403
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1467

Y
yi.wu 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1507
    def _init_splited_vars(self):
Y
yi.wu 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1531
        if self.config.slice_var_up:
Y
yi.wu 已提交
1532 1533
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1534 1535 1536
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1537
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1538 1539
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1540 1541 1542
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1543 1544 1545 1546
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1547 1548
        assert (len(grad_blocks) == len(param_blocks))

1549
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1550 1551
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1568
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1569 1570 1571 1572
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1573
        # dict(grad_splited_var -> param_splited_var)
1574
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1575 1576 1577
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1578
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1579
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1580 1581

        # create mapping of endpoint -> split var to create pserver side program
1582
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1592
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1593 1594
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1595
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1596
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1597 1598
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1599 1600
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1601 1602 1603 1604 1605 1606

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1607 1608
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1609
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1610 1611 1612
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1613 1614
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1615 1616
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1617 1618 1619
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1620
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1621
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1622 1623

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1624
                    self.all_out_emb_vars.append(out_var)
1625 1626

                    # delete lookup_table_op
1627
                    delete_ops(program.global_block(), [op])
1628 1629 1630
                    # break for loop
                    break

S
seiriosPlus 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1677
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1678
        # 2. add split_ids_op and send_op to send gradient to pservers
1679

1680 1681
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1682
        table_grad_name = grad_var_name(self.table_name)
1683 1684 1685 1686
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1687
                program.global_block()._insert_op(
1688 1689 1690 1691 1692
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1693 1694
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1695
                program.global_block()._insert_op(
1696
                    index=op_index + 2,
1697
                    type="send",
1698
                    inputs={'X': self.trainer_side_table_grad_list},
1699 1700 1701 1702 1703
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1704 1705
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1706
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1707 1708 1709 1710 1711
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1712
                    })
1713 1714 1715 1716 1717 1718
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1719
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1745
        return prefetch_var_name_to_block_id
1746 1747

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1748
                                     pre_block_idx, grad_to_block_id):
1749
        # STEP: create table optimize block
1750
        table_opt_block = pserver_program._create_block(pre_block_idx)
1751
        # create table param and grad var in pserver program
1752 1753
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1754 1755 1756
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1757 1758
        ][0]

Y
Yancey1989 已提交
1759 1760
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1761

T
tangwei12 已提交
1762
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1763 1764
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1765 1766 1767
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1768 1769
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1770
            shape=table_shape,
Y
Yancey1989 已提交
1771 1772 1773
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1774

1775 1776
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1777
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1778
            self.origin_program.global_block().vars[grad_var_name(
1779
                self.table_name)])
1780

1781 1782 1783
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1784

1785 1786 1787
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1788
            pserver_side_table_grad_list = [
1789 1790 1791 1792 1793 1794 1795 1796 1797
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1798
            # append sum op for pserver_side_table_grad_list
1799 1800
            table_opt_block.append_op(
                type="sum",
1801
                inputs={"X": pserver_side_table_grad_list},
1802 1803
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1804 1805
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1806
            origin_grad_name = grad_var.name
1807 1808
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1809 1810
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1811
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1812
            grad_var = pserver_program.global_block()._rename_var(
1813
                origin_grad_name, splited_grad_name)
1814 1815 1816 1817 1818 1819 1820

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1821
        # only support sgd now
1822 1823 1824
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1825
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1826

1827 1828 1829
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1830 1831
        return table_opt_block

T
tangwei12 已提交
1832 1833 1834 1835 1836
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1837
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1838
            name="kLookupTablePath",
T
tangwei12 已提交
1839 1840
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1841

W
Wu Yi 已提交
1842
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1843
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1844 1845 1846 1847
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1848
            attrs={'file_path': "none"})
T
tangwei12 已提交
1849 1850 1851

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1852 1853 1854 1855 1856
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1857
        Create vars for each split.
T
typhoonzero 已提交
1858 1859
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1860 1861 1862 1863
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1864
        Returns:
1865
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1866
                from original var name to each var split.
T
typhoonzero 已提交
1867
        """
1868 1869

        # varname->[(block_id, current_block_size)]
1870
        block_map = collections.OrderedDict()
1871

1872
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1873 1874
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1875
            if varname not in block_map:
T
typhoonzero 已提交
1876
                block_map[varname] = []
1877
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1878

M
minqiyang 已提交
1879
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1880
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1881
            if len(splited) == 1:
1882
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1883
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1884
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1885
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1886 1887 1888 1889 1890
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1891
                continue
T
typhoonzero 已提交
1892
            var_mapping[varname] = []
T
typhoonzero 已提交
1893 1894 1895 1896
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1897

T
typhoonzero 已提交
1898
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1899
                size = block[1]
M
minqiyang 已提交
1900
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1901 1902 1903
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1904
                new_var_name = ""
1905
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1906
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1907
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1908 1909
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1910
                                   (varname, i)
T
typhoonzero 已提交
1911
                var = program.global_block().create_var(
T
typhoonzero 已提交
1912 1913
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1914
                    dtype=orig_var.dtype,
1915
                    type=orig_var.type,
T
typhoonzero 已提交
1916
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1917
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1918
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1919
        return var_mapping
T
done  
typhoonzero 已提交
1920

1921
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1922 1923 1924 1925 1926 1927
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1928
            persistable=persistable)
T
done  
typhoonzero 已提交
1929

Q
Qiao Longfei 已提交
1930 1931 1932 1933 1934 1935 1936
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1937
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1938 1939
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1940
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1941
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1942
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1943 1944
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1945
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1946 1947 1948 1949
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1950 1951 1952 1953
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1954
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1955
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1956 1957 1958 1959
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1960
                attrs={
Q
Qiao Longfei 已提交
1961
                    "sections": height_sections,
1962 1963
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1964 1965 1966
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1967

T
typhoonzero 已提交
1968 1969 1970 1971
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1972
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1985
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1986 1987
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1988 1989
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1990
                return param_shape
1991 1992 1993
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1994 1995 1996
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1997 1998
        elif op_type == "sgd":
            pass
1999 2000 2001 2002
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2003 2004
        return orig_shape

2005 2006
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2007
        orig_var_name = ""
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2018
        else:
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2041
            return None
2042 2043 2044 2045
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2046
        else:
2047
            merged_var_name = orig_varname
2048 2049

        merged_var = pserver_block.vars[merged_var_name]
2050 2051 2052
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2053
            for i in range(self.trainer_num):
2054
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2055
                                   (merged_var_name, i)
2056 2057 2058 2059
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2060 2061
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2062 2063 2064 2065 2066
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2067
        return merged_var
T
typhoonzero 已提交
2068

W
Wu Yi 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2131
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2132 2133
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2134
        program = optimize_block.program
T
typhoonzero 已提交
2135
        pserver_block = program.global_block()
2136
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2147 2148 2149 2150
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2151
        for key in opt_op.input_names:
T
typhoonzero 已提交
2152
            if key == "Grad":
W
Wu Yi 已提交
2153 2154 2155
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2166
            elif key == "Param":
W
Wu Yi 已提交
2167
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2168 2169
                if not param_block:
                    return
T
typhoonzero 已提交
2170
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2171
                    name=param_block.name,
T
typhoonzero 已提交
2172
                    persistable=True,
T
typhoonzero 已提交
2173 2174 2175
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2176
            elif key == "LearningRate":
2177
                # learning rate variable has already be created by non-optimize op,
2178
                # don't create it once again.
2179
                lr_varname = opt_op.input(key)[0]
2180
                if lr_varname in pserver_block.vars:
2181 2182 2183 2184 2185 2186 2187 2188 2189
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2190

T
typhoonzero 已提交
2191
        for key in opt_op.input_names:
2192
            new_shape = None
W
Wu Yi 已提交
2193
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2194
                continue
2195
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2196
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2197
            # update accumulator variable shape
2198 2199
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2200
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2201 2202 2203 2204 2205
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2206

2207
        # change output's ParamOut variable
2208 2209
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2210
        outputs["ParamOut"] = new_inputs["Param"]
2211
        optimize_block.append_op(
T
typhoonzero 已提交
2212 2213
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2214
            outputs=outputs,
G
gongweibao 已提交
2215
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2216

2217 2218 2219 2220 2221 2222
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2234
        grad_block = None
M
minqiyang 已提交
2235
        for _, g in six.iteritems(var_dict):
2236
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2237
                # skip per trainer vars
2238
                if g.name.find(".trainer_") == -1:
2239
                    # only param or grads have splited blocks
2240 2241
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2242 2243
                        grad_block = g
                        break
2244 2245
        return grad_block

Q
Qiyang Min 已提交
2246 2247 2248
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2249
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2250 2251 2252 2253
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2254
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2255 2256 2257

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2258
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2259 2260 2261 2262
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2263
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2264

Y
Yancey1989 已提交
2265
        return block.append_op(
G
gongweibao 已提交
2266
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2267 2268

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2269
        program = optimize_block.program
2270
        # Append the ops for parameters that do not need to be optimized/updated
2271 2272
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2273
        for key, varlist in six.iteritems(inputs):
2274 2275
            if not isinstance(varlist, list):
                varlist = [varlist]
2276 2277 2278
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2279
                # for inputs/outputs
2280
                grad_block = self._get_pserver_grad_param_var(
2281 2282
                    var, program.global_block().vars)
                if grad_block:
2283
                    varlist[i] = grad_block
2284
                elif var.name not in program.global_block().vars:
2285 2286 2287 2288 2289
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2290

2291 2292
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2293
        for key, varlist in six.iteritems(outputs):
2294 2295
            if not isinstance(varlist, list):
                varlist = [varlist]
2296 2297 2298
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2299 2300
                    var, program.global_block().vars)
                if grad_block:
2301
                    varlist[i] = grad_block
2302
                elif var.name not in program.global_block().vars:
2303 2304 2305 2306 2307
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2308

Y
Yancey1989 已提交
2309
        return optimize_block.append_op(
T
typhoonzero 已提交
2310
            type=opt_op.type,
T
typhoonzero 已提交
2311 2312
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2313
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2314

2315 2316 2317 2318
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2319
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2320
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2321 2322 2323 2324 2325 2326
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2327 2328
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2329 2330 2331 2332 2333 2334
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2335
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2336
        if "Param" in op.input_names and \
T
tangwei12 已提交
2337
                "LearningRate" in op.input_names:
2338 2339 2340 2341 2342 2343 2344
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2345
        if op.input("Param")[0] in param_names:
2346 2347 2348
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2349
                param = op.input("Param")[0]
T
typhoonzero 已提交
2350
                if same_or_split_var(n, param) and n != param:
2351 2352 2353
                    return True
            return False

T
typhoonzero 已提交
2354
    def _get_input_map_from_op(self, varmap, op):
2355
        """Returns a dict from op input name to the vars in varmap."""
2356
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2368
        """Returns a dict from op output name to the vars in varmap."""
2369
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2379 2380

    def _get_lr_ops(self):
2381 2382 2383
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2384 2385 2386 2387
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2388 2389 2390 2391 2392
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2393 2394 2395 2396
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2397
            if self._is_optimizer_op(op):
2398 2399 2400 2401
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2402
        block = self.origin_program.global_block()
2403 2404 2405 2406 2407
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2408

2409 2410 2411 2412 2413
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2414
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2415 2416 2417 2418 2419 2420
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2421 2422
                    # we only need to append op for once
                    break
2423
        return lr_ops
Y
Yancey1989 已提交
2424

W
Wu Yi 已提交
2425 2426 2427 2428 2429
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2430 2431
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2432 2433 2434
            return True
        return False

Y
Yancey1989 已提交
2435
    def _get_optimize_pass(self):
2436
        """
2437
        Get optimizer operators, parameters and gradients from origin_program
2438 2439
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2440
            params_grads (dict): parameter->gradient.
2441
        """
Y
Yancey1989 已提交
2442 2443 2444
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2445 2446
        # tmp set to dedup
        optimize_params = set()
2447
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2448
        for op in block.ops:
W
Wu Yi 已提交
2449
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2450
                opt_ops.append(op)
2451 2452 2453 2454 2455 2456
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2457 2458
                        params_grads.append([
                            origin_var_dict[param_name],
2459
                            origin_var_dict[grad_name]
2460
                        ])
Y
Yancey1989 已提交
2461 2462 2463
            else:
                pass
        return opt_ops, params_grads