distribute_transpiler.py 102.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
T
tangwei12 已提交
133
    A configuration class that provide support for transpiler distributed jobs.
134 135 136
    Some important parameters are explained as follows:


H
haowang101779990 已提交
137 138
    .. py:attribute:: slice_var_up (bool)

139
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
140 141 142

    .. py:attribute:: split_method (PSDispatcher)

143 144 145 146
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
147 148 149

    .. py:attribute:: min_block_size (int)

150
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
151 152

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
153
          We can use bandwidth effiently when data size is larger than 2MB.If you
154 155 156 157
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
158

159 160 161
    Examples:
        .. code-block:: python

162 163 164
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

165 166
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
167 168
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
169 170 171 172 173
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
174
    enable_dc_asgd = False
175
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
176
    mode = "pserver"
177
    print_log = False
W
Wu Yi 已提交
178
    wait_port = True
Q
Qiao Longfei 已提交
179
    # split the send recv var in runtime
180 181
    _runtime_split_send_recv = False
    _sync_mode = True
G
gongweibao 已提交
182

183 184 185 186
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

187 188 189 190 191 192 193
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

194
    # if mode is collective
195
    # supported modes: grad_allreduce, local_sgd
196 197
    collective_mode = None

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
        return self._runtime_split_send_recv

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
        if value and self._sync_mode:
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
        self._runtime_split_send_recv = value

    @property
    def sync_mode(self):
        return self._sync_mode

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
        if value and self._runtime_split_send_recv:
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
        self._sync_mode = value

G
gongweibao 已提交
229

Y
gen rst  
yi.wu 已提交
230
class DistributeTranspiler(object):
Y
yi.wu 已提交
231 232 233 234
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
T
tangwei12 已提交
235
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
236

W
Wu Yi 已提交
237 238 239 240 241 242 243 244 245
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
246 247 248 249

    Examples:
        .. code-block:: python

T
tangwei12 已提交
250 251
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
252 253 254 255 256 257 258 259
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
260 261 262 263 264 265
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
266
            role = "PSERVER"
T
Tink_Y 已提交
267 268 269 270 271 272
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
273
                                                                pserver_program)
T
Tink_Y 已提交
274 275 276 277
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
278 279
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
280 281
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
282
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
283
            t = fluid.DistributeTranspiler(config=config)
284
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
285
            exe = fluid.ParallelExecutor(
286 287 288
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
289 290
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
291
    """
Y
Yancey1989 已提交
292

G
gongweibao 已提交
293 294 295 296 297 298 299 300 301
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

302 303 304
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
305 306 307
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
308 309 310 311
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
312 313
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
314 315 316 317 318 319
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
320 321
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
322 323 324

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
325 326 327 328 329 330 331 332 333

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
334 335 336 337
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
338 339 340 341 342
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
343 344 345 346 347
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
348 349 350 351 352 353 354
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
355 356 357 358 359
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
386
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
387
        elif collective_mode == 'local_sgd':
388
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
389 390 391 392 393 394 395 396 397 398 399
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
400
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
401
        sparse_update_ops = []
402
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
403 404
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
405
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
406 407 408
                sparse_update_ops.append(op)
        return sparse_update_ops

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
484

485 486
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
487 488 489 490 491 492

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
493

494 495 496 497 498
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
499
                  sync_mode=True,
W
Wu Yi 已提交
500 501
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
502
        """
T
tangwei12 已提交
503
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
504 505 506 507 508 509

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
510 511
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
512 513
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
514 515 516
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
517
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
518 519
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
520 521 522
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
523 524 525 526 527 528 529 530 531 532 533

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
534 535 536
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
537 538
        if startup_program is None:
            startup_program = default_startup_program()
539
        self.origin_program = program
W
Wu Yi 已提交
540 541
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
542

W
Wu Yi 已提交
543 544
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
545
            self.origin_program._trainers_endpoints = trainers.split(",")
546 547
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
548 549 550 551 552
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
553
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
554 555 556 557 558 559 560 561 562 563 564
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
565 566 567 568
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
569 570
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
571 572
            return

573 574 575 576 577 578 579 580 581 582 583
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

584
        self.trainer_num = trainers
585
        self.sync_mode = sync_mode
586 587 588
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
589
        self.vars_overview = VarsDistributed()
590 591
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
592
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
593 594
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
595
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
596
        self.grad_name_to_param_name = dict()
597 598
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
599
            self.grad_name_to_param_name[grad_var.name] = param_var.name
600

Q
Qiao Longfei 已提交
601
        # get all sparse update ops
Q
Qiao Longfei 已提交
602
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
603
            self.origin_program)
Q
Qiao Longfei 已提交
604
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
605 606
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
607 608 609
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
610
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
611 612 613
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

614
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
615
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
616
        self._init_splited_vars()
617

G
gongweibao 已提交
618
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
619
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
620
        send_vars = []
621 622 623 624 625 626

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
627
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
628

G
gongweibao 已提交
629
        if not self.config.slice_var_up:
630 631
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
632

633
        self.grad_name_to_send_dummy_out = dict()
634
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
635
            eplist = ps_dispatcher.dispatch(splited_vars)
636

G
gongweibao 已提交
637
            if not self.config.slice_var_up:
638 639
                assert (len(splited_vars) == 1)

640
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
641
            if len(splited_vars) == 1:
642
                splited_grad_varname = splited_vars[0].name
643 644
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
645

Y
Yancey1989 已提交
646
            elif len(splited_vars) > 1:
647
                orig_var = program.global_block().vars[splited_grad_varname]
648 649
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
650

Q
Qiao Longfei 已提交
651 652 653 654
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
655 656
            else:
                AssertionError("Can not insert the send op by original "
657
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
658

659 660 661 662 663 664 665
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
666 667
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
668
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
669

Q
Qiao Longfei 已提交
670 671 672 673 674 675 676 677 678 679 680
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
681 682 683 684
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
685
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
686
                index=index + 1,
687
                type="send",
Q
Qiao Longfei 已提交
688
                inputs={"X": send_input_vars},
689
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
690 691
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
692 693
                    "sections": sections,
                    "send_varnames": send_varnames,
694
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
695 696 697
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
698
                    ]
Y
Yancey1989 已提交
699
                })
Y
update  
Yancey1989 已提交
700 701
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
702 703

        if self.sync_mode:
W
Wu Yi 已提交
704 705
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
706 707 708 709
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
710
            input_deps = list(self.grad_name_to_send_dummy_out.values())
711

Y
Yancey1989 已提交
712 713
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
714
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
715
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
716 717
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
718
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
719
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
720
                })
Y
Yancey1989 已提交
721

G
gongweibao 已提交
722
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
723
        recv_vars = []
Y
update  
Yancey1989 已提交
724
        for _, var in enumerate(send_vars):
725
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
726
        ps_dispatcher.reset()
Y
Yancey1989 已提交
727 728
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
729
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
730 731
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
732

733 734 735 736
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

737 738
        need_sparse_update_params = {}

Y
Yancey1989 已提交
739
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
740
        all_recv_outputs = []
741
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
742
            eps = []
Q
Qiao Longfei 已提交
743
            table_names = []
Y
Yancey1989 已提交
744 745 746
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
747
                table_names.append(var.name)
W
Wu Yi 已提交
748 749 750 751
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
752
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
753
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
754

W
Wu Yi 已提交
755 756 757 758 759 760 761 762 763
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
764
            if param_varname in self.sparse_param_to_height_sections:
765 766 767 768 769
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

770
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
771
            else:
Q
Qiao Longfei 已提交
772 773 774
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
775
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
776
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
777
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
778

Q
Qiao Longfei 已提交
779 780 781 782 783 784
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
785
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
786 787 788
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
789
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
790
                    })
T
typhoonzero 已提交
791

Q
qiaolongfei 已提交
792
        if self.sync_mode:
W
Wu Yi 已提交
793
            # form a WAW dependency
Q
qiaolongfei 已提交
794 795 796
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
797
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
798 799
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
800
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
801 802
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
803

804
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
805 806
            if len(splited_var) <= 1:
                continue
807
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
808
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
809 810 811 812 813 814 815 816 817
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
818

819 820
            self._update_remote_sparse_update_op(program,
                                                 need_sparse_update_params)
821 822 823 824 825 826 827 828 829 830 831 832
        if not self.sync_mode:
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0:
                program.global_block().append_op(
                    type="distributed_notify",
                    inputs={},
                    outputs={},
                    attrs={
                        "epmap": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "type": "LRDECAY@RECV"
                    })
833

G
gongweibao 已提交
834 835
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

836
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
837 838
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
839
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
840

841 842 843
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
844
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
845
        """
846 847 848 849 850 851 852 853 854
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
855 856 857

        Returns:
            Program: trainer side program.
858 859 860 861 862 863 864 865 866 867 868 869

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
870
        """
T
typhoonzero 已提交
871
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
872
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
873

T
typhoonzero 已提交
874
        lr_ops = self._get_lr_ops()
875
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
876 877
        delete_ops(self.origin_program.global_block(), lr_ops)

878 879
        # delete table init op
        if self.has_distributed_lookup_table:
880 881 882
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
883 884
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
885 886 887 888 889
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
890
            table_init_op = table_param_init_op[0]
891 892 893 894 895 896
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
897

898
        self.origin_program.__str__()
G
gongweibao 已提交
899

W
Wu Yi 已提交
900 901 902
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

903
        return self.origin_program
T
typhoonzero 已提交
904

W
Wu Yi 已提交
905
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
906 907 908 909
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
910
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
911
            eplist (list): A list of strings indicating
G
gongweibao 已提交
912 913 914 915

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
916
        startup_program = self.startup_program
G
gongweibao 已提交
917 918 919 920

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
921
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
942
                inputs={"X": []},
G
gongweibao 已提交
943 944 945
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
946
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
947 948 949
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
950 951
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
952 953 954
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
955
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
956 957
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
958
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
959 960 961
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
962
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
963
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
964 965
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
966
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
967
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
968 969 970 971 972 973 974 975 976 977
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
978 979 980 981 982 983 984 985
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
986 987
    def get_pserver_program(self, endpoint):
        """
988 989 990 991 992 993
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
994

Y
yi.wu 已提交
995 996
        Args:
            endpoint (str): current parameter server endpoint.
997

Y
yi.wu 已提交
998 999
        Returns:
            Program: the program for current parameter server to run.
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1014
        """
Y
yi.wu 已提交
1015 1016 1017 1018
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1019 1020 1021
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1022 1023
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1024
        pserver_program.random_seed = self.origin_program.random_seed
1025 1026
        pserver_program._copy_dist_param_info_from(self.origin_program)

1027
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1028 1029 1030 1031 1032 1033 1034 1035
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1036 1037 1038 1039 1040
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1050
            if self.sync_mode and self.trainer_num > 1:
1051
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1061

Q
qiaolongfei 已提交
1062
        # step 3
1063
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1064 1065 1066
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1067
        # step 3.2
T
typhoonzero 已提交
1068 1069 1070 1071
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1072 1073
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1074
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1075
        # step 3.3
W
Wu Yi 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1094
        # Iterate through the ops, and if an op and the optimize ops
1095
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1096
        # append it into the sub program.
T
typhoonzero 已提交
1097 1098 1099

        global_ops = []

1100 1101 1102
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1103 1104
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1105
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1106
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1107 1108
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1109
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1110
                self._append_pserver_non_opt_ops(block, op)
1111

Y
Yancey1989 已提交
1112
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1113 1114 1115 1116 1117 1118 1119 1120
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1121
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1122 1123 1124

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1125
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1126 1127

            # clone ops
Y
Yancey1989 已提交
1128 1129
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1130
                # clone sub_block of op
Y
Yancey1989 已提交
1131
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1132 1133

            # reset the block of op
W
Wu Yi 已提交
1134
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1135

1136
        # append lr decay ops to the child block if exists
1137
        lr_ops = self._get_lr_ops()
1138 1139
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1140 1141

        lr_decay_block_id = -1
1142
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1143
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1144
                pserver_program.num_blocks - 1)
1145
            optimize_blocks.append(lr_decay_block)
1146
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1147
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1148
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1149 1150
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1151
            lr_decay_block_id = lr_decay_block.idx
1152

T
typhoonzero 已提交
1153
        # append op to the current block
Q
qiaolongfei 已提交
1154
        grad_to_block_id = []
Q
qiaolongfei 已提交
1155
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1156
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1157
            per_opt_block = pserver_program._create_block(pre_block_idx)
1158
            optimize_blocks.append(per_opt_block)
1159
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1160
            # append grad merging ops before clip and weight decay
1161 1162
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1163
            for _, op in enumerate(self.optimize_ops):
1164
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1165
                # merged_var should be the input var name of L2Decay
1166 1167 1168
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1169 1170 1171
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1172 1173 1174 1175 1176 1177
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1178
                            op not in global_ops:
1179 1180 1181 1182 1183
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1184

1185
        # dedup grad to ids list
W
Wu Yi 已提交
1186
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1187
        # append global ops
1188
        if global_ops:
W
Wu Yi 已提交
1189
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1190
                pserver_program.num_blocks - 1)
1191
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1192
            for glb_op in global_ops:
X
Xi Chen 已提交
1193
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1194
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1195

1196
        # process distributed lookup_table
Q
qiaolongfei 已提交
1197
        prefetch_var_name_to_block_id = []
1198 1199
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1200
            table_opt_block = self._create_table_optimize_block(
1201
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1202
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1203
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1204
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1205 1206
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1207

T
tangwei12 已提交
1208
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1209 1210
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1211

1212
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1213 1214
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1215 1216 1217 1218 1219 1220
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1221
        attrs = {
1222
            "optimize_blocks": optimize_blocks,
1223
            "endpoint": endpoint,
1224
            "pserver_id": self.pserver_endpoints.index(endpoint),
1225 1226
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1227
            "grad_to_block_id": grad_to_block_id,
1228
            "sparse_grad_to_param": sparse_grad_to_param,
1229
            "lr_decay_block_id": lr_decay_block_id,
1230
        }
T
tangwei12 已提交
1231 1232

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1233
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1234 1235
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1236

T
tangwei12 已提交
1237 1238 1239 1240
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1241 1242 1243 1244 1245
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1246
            attrs=attrs)
1247

W
Wu Yi 已提交
1248
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1249 1250
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1251 1252
        return pserver_program

W
Wu Yi 已提交
1253 1254 1255
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
1256 1257
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1258 1259 1260

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1261

W
Wu Yi 已提交
1262 1263
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1278 1279
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1280 1281
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1282 1283
        return pserver_prog, pserver_startup

1284 1285
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1286
                            pserver_program=None,
1287
                            startup_program=None):
T
typhoonzero 已提交
1288
        """
W
Wu Yi 已提交
1289 1290
        **Deprecated**

T
typhoonzero 已提交
1291 1292 1293
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1294 1295 1296

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1297 1298
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1299
                when initalizing
1300

Y
yi.wu 已提交
1301 1302
        Returns:
            Program: parameter server side startup program.
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1318 1319
        """
        s_prog = Program()
W
Wu Yi 已提交
1320
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1321
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1333
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1334
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1335
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1336 1337 1338 1339
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1340
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1341 1342
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1353 1354

            if op_on_pserver:
1355 1356 1357
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1358
                if op.type in [
1359 1360
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1361
                ]:
W
Wu Yi 已提交
1362
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1363 1364 1365 1366
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1367
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1377

T
typhoonzero 已提交
1378 1379
        return s_prog

1380 1381
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1382
        block_suffix = "block"
1383 1384 1385
        block_idx = 0
        offset = 0
        is_slice = False
1386

1387
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1388

1389 1390
        if not block_name:
            return is_slice, block_idx, offset
1391

1392 1393 1394 1395
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1396 1397 1398 1399 1400
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1464

Y
yi.wu 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1504
    def _init_splited_vars(self):
Y
yi.wu 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1528
        if self.config.slice_var_up:
Y
yi.wu 已提交
1529 1530
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1531 1532 1533
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1534
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1535 1536
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1537 1538 1539
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1540 1541 1542 1543
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1544 1545
        assert (len(grad_blocks) == len(param_blocks))

1546
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1547 1548
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1565
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1566 1567 1568 1569
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1570
        # dict(grad_splited_var -> param_splited_var)
1571
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1572 1573 1574
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1575
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1576
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1577 1578

        # create mapping of endpoint -> split var to create pserver side program
1579
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1589
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1590 1591
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1592
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1593
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1594 1595
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1596 1597
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1598 1599 1600 1601 1602 1603

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1604 1605
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1606
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1607 1608 1609
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1610 1611
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1612 1613
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1614 1615 1616
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1617
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1618
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1619 1620

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1621
                    self.all_out_emb_vars.append(out_var)
1622 1623

                    # delete lookup_table_op
1624
                    delete_ops(program.global_block(), [op])
1625 1626 1627
                    # break for loop
                    break

S
seiriosPlus 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1674
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1675
        # 2. add split_ids_op and send_op to send gradient to pservers
1676

1677 1678
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1679
        table_grad_name = grad_var_name(self.table_name)
1680 1681 1682 1683
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1684
                program.global_block()._insert_op(
1685 1686 1687 1688 1689
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1690 1691
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1692
                program.global_block()._insert_op(
1693
                    index=op_index + 2,
1694
                    type="send",
1695
                    inputs={'X': self.trainer_side_table_grad_list},
1696 1697 1698 1699 1700
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1701 1702
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1703
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1704 1705 1706 1707 1708
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1709
                    })
1710 1711 1712 1713 1714 1715
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1716
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1742
        return prefetch_var_name_to_block_id
1743 1744

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1745
                                     pre_block_idx, grad_to_block_id):
1746
        # STEP: create table optimize block
1747
        table_opt_block = pserver_program._create_block(pre_block_idx)
1748
        # create table param and grad var in pserver program
1749 1750
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1751 1752 1753
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1754 1755
        ][0]

Y
Yancey1989 已提交
1756 1757
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1758

T
tangwei12 已提交
1759
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1760 1761
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1762 1763 1764
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1765 1766
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1767
            shape=table_shape,
Y
Yancey1989 已提交
1768 1769 1770
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1771

1772 1773
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1774
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1775
            self.origin_program.global_block().vars[grad_var_name(
1776
                self.table_name)])
1777

1778 1779 1780
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1781

1782 1783 1784
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1785
            pserver_side_table_grad_list = [
1786 1787 1788 1789 1790 1791 1792 1793 1794
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1795
            # append sum op for pserver_side_table_grad_list
1796 1797
            table_opt_block.append_op(
                type="sum",
1798
                inputs={"X": pserver_side_table_grad_list},
1799 1800
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1801 1802
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1803
            origin_grad_name = grad_var.name
1804 1805
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1806 1807
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1808
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1809
            grad_var = pserver_program.global_block()._rename_var(
1810
                origin_grad_name, splited_grad_name)
1811 1812 1813 1814 1815 1816 1817

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1818
        # only support sgd now
1819 1820 1821
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1822
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1823

1824 1825 1826
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1827 1828
        return table_opt_block

T
tangwei12 已提交
1829 1830 1831 1832 1833
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1834
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1835
            name="kLookupTablePath",
T
tangwei12 已提交
1836 1837
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1838

W
Wu Yi 已提交
1839
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1840
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1841 1842 1843 1844
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1845
            attrs={'file_path': "none"})
T
tangwei12 已提交
1846 1847 1848

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1849 1850 1851 1852 1853
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1854
        Create vars for each split.
T
typhoonzero 已提交
1855 1856
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1857 1858 1859 1860
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1861
        Returns:
1862
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1863
                from original var name to each var split.
T
typhoonzero 已提交
1864
        """
1865 1866

        # varname->[(block_id, current_block_size)]
1867
        block_map = collections.OrderedDict()
1868

1869
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1870 1871
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1872
            if varname not in block_map:
T
typhoonzero 已提交
1873
                block_map[varname] = []
1874
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1875

M
minqiyang 已提交
1876
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1877
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1878
            if len(splited) == 1:
1879
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1880
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1881
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1882
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1883 1884 1885 1886 1887
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1888
                continue
T
typhoonzero 已提交
1889
            var_mapping[varname] = []
T
typhoonzero 已提交
1890 1891 1892 1893
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1894

T
typhoonzero 已提交
1895
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1896
                size = block[1]
M
minqiyang 已提交
1897
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1898 1899 1900
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1901
                new_var_name = ""
1902
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1903
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1904
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1905 1906
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1907
                                   (varname, i)
T
typhoonzero 已提交
1908
                var = program.global_block().create_var(
T
typhoonzero 已提交
1909 1910
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1911
                    dtype=orig_var.dtype,
1912
                    type=orig_var.type,
T
typhoonzero 已提交
1913
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1914
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1915
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1916
        return var_mapping
T
done  
typhoonzero 已提交
1917

1918
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1919 1920 1921 1922 1923 1924
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1925
            persistable=persistable)
T
done  
typhoonzero 已提交
1926

Q
Qiao Longfei 已提交
1927 1928 1929 1930 1931 1932 1933
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1934
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1935 1936
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1937
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1938
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1939
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1940 1941
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1942
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1943 1944 1945 1946
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1947 1948 1949 1950
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1951
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1952
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1953 1954 1955 1956
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1957
                attrs={
Q
Qiao Longfei 已提交
1958
                    "sections": height_sections,
1959 1960
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1961 1962 1963
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1964

T
typhoonzero 已提交
1965 1966 1967 1968
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1969
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1982
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1983 1984
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1985 1986
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1987
                return param_shape
1988 1989 1990
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1991 1992 1993
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1994 1995
        elif op_type == "sgd":
            pass
1996 1997 1998 1999
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2000 2001
        return orig_shape

2002 2003
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2004
        orig_var_name = ""
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2015
        else:
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2038
            return None
2039 2040 2041 2042
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2043
        else:
2044
            merged_var_name = orig_varname
2045 2046

        merged_var = pserver_block.vars[merged_var_name]
2047 2048 2049
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2050
            for i in range(self.trainer_num):
2051
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2052
                                   (merged_var_name, i)
2053 2054 2055 2056
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2057 2058
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2059 2060 2061 2062 2063
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2064
        return merged_var
T
typhoonzero 已提交
2065

W
Wu Yi 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2128
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2129 2130
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2131
        program = optimize_block.program
T
typhoonzero 已提交
2132
        pserver_block = program.global_block()
2133
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2144 2145 2146 2147
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2148
        for key in opt_op.input_names:
T
typhoonzero 已提交
2149
            if key == "Grad":
W
Wu Yi 已提交
2150 2151 2152
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2163
            elif key == "Param":
W
Wu Yi 已提交
2164
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2165 2166
                if not param_block:
                    return
T
typhoonzero 已提交
2167
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2168
                    name=param_block.name,
T
typhoonzero 已提交
2169
                    persistable=True,
T
typhoonzero 已提交
2170 2171 2172
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2173
            elif key == "LearningRate":
2174
                # learning rate variable has already be created by non-optimize op,
2175
                # don't create it once again.
2176
                lr_varname = opt_op.input(key)[0]
2177
                if lr_varname in pserver_block.vars:
2178 2179 2180 2181 2182 2183 2184 2185 2186
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2187

T
typhoonzero 已提交
2188
        for key in opt_op.input_names:
2189
            new_shape = None
W
Wu Yi 已提交
2190
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2191
                continue
2192
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2193
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2194
            # update accumulator variable shape
2195 2196
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2197
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2198 2199 2200 2201 2202
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2203

2204
        # change output's ParamOut variable
2205 2206
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2207
        outputs["ParamOut"] = new_inputs["Param"]
2208
        optimize_block.append_op(
T
typhoonzero 已提交
2209 2210
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2211
            outputs=outputs,
G
gongweibao 已提交
2212
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2213

2214 2215 2216 2217 2218 2219
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2231
        grad_block = None
M
minqiyang 已提交
2232
        for _, g in six.iteritems(var_dict):
2233
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2234
                # skip per trainer vars
2235
                if g.name.find(".trainer_") == -1:
2236
                    # only param or grads have splited blocks
2237 2238
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2239 2240
                        grad_block = g
                        break
2241 2242
        return grad_block

Q
Qiyang Min 已提交
2243 2244 2245
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2246
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2247 2248 2249 2250
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2251
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2252 2253 2254

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2255
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2256 2257 2258 2259
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2260
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2261

Y
Yancey1989 已提交
2262
        return block.append_op(
G
gongweibao 已提交
2263
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2264 2265

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2266
        program = optimize_block.program
2267
        # Append the ops for parameters that do not need to be optimized/updated
2268 2269
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2270
        for key, varlist in six.iteritems(inputs):
2271 2272
            if not isinstance(varlist, list):
                varlist = [varlist]
2273 2274 2275
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2276
                # for inputs/outputs
2277
                grad_block = self._get_pserver_grad_param_var(
2278 2279
                    var, program.global_block().vars)
                if grad_block:
2280
                    varlist[i] = grad_block
2281
                elif var.name not in program.global_block().vars:
2282 2283 2284 2285 2286
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2287

2288 2289
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2290
        for key, varlist in six.iteritems(outputs):
2291 2292
            if not isinstance(varlist, list):
                varlist = [varlist]
2293 2294 2295
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2296 2297
                    var, program.global_block().vars)
                if grad_block:
2298
                    varlist[i] = grad_block
2299
                elif var.name not in program.global_block().vars:
2300 2301 2302 2303 2304
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2305

Y
Yancey1989 已提交
2306
        return optimize_block.append_op(
T
typhoonzero 已提交
2307
            type=opt_op.type,
T
typhoonzero 已提交
2308 2309
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2310
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2311

2312 2313 2314 2315
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2316
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2317
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2318 2319 2320 2321 2322 2323
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2324 2325
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2326 2327 2328 2329 2330 2331
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2332
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2333
        if "Param" in op.input_names and \
T
tangwei12 已提交
2334
                "LearningRate" in op.input_names:
2335 2336 2337 2338 2339 2340 2341
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2342
        if op.input("Param")[0] in param_names:
2343 2344 2345
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2346
                param = op.input("Param")[0]
T
typhoonzero 已提交
2347
                if same_or_split_var(n, param) and n != param:
2348 2349 2350
                    return True
            return False

T
typhoonzero 已提交
2351
    def _get_input_map_from_op(self, varmap, op):
2352
        """Returns a dict from op input name to the vars in varmap."""
2353
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2365
        """Returns a dict from op output name to the vars in varmap."""
2366
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2376 2377

    def _get_lr_ops(self):
2378 2379 2380
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2381 2382 2383 2384
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2385 2386 2387 2388 2389
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2390 2391 2392 2393
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2394
            if self._is_optimizer_op(op):
2395 2396 2397 2398
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2399
        block = self.origin_program.global_block()
2400 2401 2402 2403 2404
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2405

2406 2407 2408 2409 2410
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2411
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2412 2413 2414 2415 2416 2417
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2418 2419
                    # we only need to append op for once
                    break
2420
        return lr_ops
Y
Yancey1989 已提交
2421

W
Wu Yi 已提交
2422 2423 2424 2425 2426
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2427 2428
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2429 2430 2431
            return True
        return False

Y
Yancey1989 已提交
2432
    def _get_optimize_pass(self):
2433
        """
2434
        Get optimizer operators, parameters and gradients from origin_program
2435 2436
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2437
            params_grads (dict): parameter->gradient.
2438
        """
Y
Yancey1989 已提交
2439 2440 2441
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2442 2443
        # tmp set to dedup
        optimize_params = set()
2444
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2445
        for op in block.ops:
W
Wu Yi 已提交
2446
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2447
                opt_ops.append(op)
2448 2449 2450 2451 2452 2453
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2454 2455
                        params_grads.append([
                            origin_var_dict[param_name],
2456
                            origin_var_dict[grad_name]
2457
                        ])
Y
Yancey1989 已提交
2458 2459 2460
            else:
                pass
        return opt_ops, params_grads