framework.py 258.3 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
J
Jiabin Yang 已提交
55
    '_non_static_mode',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'is_compiled_with_npu',
62
    'Variable',
63
    'require_version',
64
    'device_guard',
G
guofei 已提交
65 66
    'set_flags',
    'get_flags',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_
        self._in_eager_mode_ = True

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        strings.append("_in_eager_mode_:" + str(self._in_eager_mode_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
109
_dygraph_tracer_ = None
110 111
global_var = GlobalThreadLocal()

112
_global_expected_place_ = None
113
_current_device = None
114
global_prog_seed = 0
115
_current_pipeline_stage = None
116
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
117
_already_patch_varbase = False
118
_current_cuda_graph_mode = None
119
_global_flags_ = core.globals()
120 121 122 123 124 125
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
126 127 128
_cuda_graph_enable_standalone_executor_ = os.environ.get(
    'FLAGS_CUDA_GRAPH_USE_STANDALONE_EXECUTOR', 0
)
J
Jiabin Yang 已提交
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

J
Jiabin Yang 已提交
172
# Some explanation of our execution system 2022.03
173
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
174
# build a fast execution system for dynamic mode. But we can't just remove all legacy
175
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
176
# these flags.
177
#
J
Jiabin Yang 已提交
178
# 1. _non_static_mode():
179
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
180 181 182
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
183
# This flags has been deprecated
184
#
J
Jiabin Yang 已提交
185
# They have a relation ship as below:
姜永久 已提交
186
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
187
#
J
Jiabin Yang 已提交
188 189 190 191 192 193
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


W
wanghuancoder 已提交
194
def _update_monkey_methods():
195
    """
W
wanghuancoder 已提交
196
    Update monkey methods of Tensor or eager.Tensor while
197 198
    switching eager mode and legacy mode.
    """
199
    from paddle import _C_ops, _legacy_C_ops
200 201 202
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

203 204 205
    global _already_patch_eager_tensor
    global _already_patch_varbase

W
wanghuancoder 已提交
206 207 208
    if not _already_patch_eager_tensor:
        monkey_patch_varbase()
        monkey_patch_math_varbase()
209

W
wanghuancoder 已提交
210
        _already_patch_eager_tensor = True
211

212
    # switch Paddle.Tensor bind type
W
wanghuancoder 已提交
213
    _switch_tensor_bind_type()
214 215


W
wanghuancoder 已提交
216
def _switch_tensor_bind_type():
217
    import paddle
218

W
wanghuancoder 已提交
219
    paddle.Tensor = core.eager.Tensor
220
    paddle.Tensor.__qualname__ = 'Tensor'
221 222


J
Jiabin Yang 已提交
223
def _in_eager_without_dygraph_check():
224
    return global_var._in_eager_mode_
J
Jiabin Yang 已提交
225 226


227 228 229 230 231
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
253
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
254 255 256 257 258

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
259 260 261
    return (
        global_var._dygraph_tracer_ is not None
    ) and global_var._in_eager_mode_
J
Jiabin Yang 已提交
262 263 264


def _non_static_mode():
265
    return global_var._dygraph_tracer_ is not None
266 267


268 269
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
270 271 272 273
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
274 275 276 277 278 279 280 281 282 283 284
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
285
@signature_safe_contextmanager
286
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
287 288 289 290
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
291
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
292
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
293
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
294
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
295
            which means no pipelining computation order and run Ops in terms of graph.
296

G
gouzil 已提交
297 298 299 300 301 302 303
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


338 339 340 341
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
342 343 344 345 346
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

347 348 349 350 351
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
352
            The sharded model will be computed from small to large. The default value is -1,
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

378
    from paddle.nn import Layer
379

380 381 382 383 384
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
385 386
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
387 388 389 390 391 392 393 394 395 396 397 398

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


399 400
def require_version(min_version, max_version=None):
    """
401 402 403
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
404

405 406 407 408
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
409

410 411
    Returns:
        None.
412

413 414 415 416 417 418
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
419

420 421
    Examples:
        .. code-block:: python
422

423
            import paddle.fluid as fluid
424

425 426
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
427

428 429 430
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
431 432 433
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
434 435
            % (type(min_version))
        )
436 437 438 439

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
440 441
            % (type(max_version))
        )
442 443 444 445 446

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
447 448
            "like '1.5.2.0', but received %s" % min_version
        )
449 450 451 452 453 454

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
455 456
                "like '1.5.2.0', but received %s" % max_version
            )
457 458

    version_installed = [
459 460 461 462
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
463 464 465 466
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
467
        for i in range(len(ver_a)):
468 469 470 471 472 473 474 475 476 477 478
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
479 480 481
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
482 483 484 485
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
486 487 488
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
489 490 491
        return

    min_version_split = min_version.split('.')
492 493 494
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
495 496 497

    if max_version is not None:
        max_version_split = max_version.split('.')
498 499 500
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
501

502 503 504 505
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
506 507
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
508 509
                % (min_version, max_version, fluid_version.full_version)
            )
510 511 512 513 514
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
515 516
                % (min_version, fluid_version.full_version, min_version)
            )
517 518


519 520
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
521 522 523
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
524 525 526 527 528 529 530
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
531 532 533 534
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
535 536 537 538 539
        return func(*args, **kwargs)

    return __impl__


540 541 542
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
543 544 545 546 547

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
548 549 550 551 552
        return func(*args, **kwargs)

    return __impl__


553 554
def _static_only_(func):
    def __impl__(*args, **kwargs):
555 556 557 558
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
559 560 561 562 563
        return func(*args, **kwargs)

    return __impl__


564 565 566 567 568
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


569
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
570 571
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
572 573
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
574
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
575
# same base class.
576 577 578
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
579 580
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
581
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
582
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
583 584
            % (func.__name__, func.__name__)
        )
585 586 587 588

    return __impl__


T
tangwei12 已提交
589 590
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
591 592 593 594 595 596 597 598 599
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
600 601
                DeprecationWarning,
            )
602 603 604 605 606 607 608
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


609 610
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
611
static_only = wrap_decorator(_static_only_)
612
fake_interface_only = wrap_decorator(_fake_interface_only_)
613
non_static_only = wrap_decorator(_non_static_only_)
614 615


L
lujun 已提交
616
def _dygraph_tracer():
617
    return global_var._dygraph_tracer_
618

W
Wu Yi 已提交
619

620 621 622 623
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
624
def _current_expected_place():
625 626 627
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
628 629 630 631 632
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
633
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
634 635 636 637 638
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
639 640 641 642 643 644
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
645
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
646 647 648 649 650
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
        elif core.is_compiled_with_custom_device("npu"):
            # TODO(duanyanhui): Optimize DeviceManager and Return all expected places when device registered in DeviceManager is greater than 1.
            try:
                device_count = core.get_custom_device_count("npu")
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    "npu", _custom_device_ids("npu")[0]
                )
            else:
                warnings.warn(
                    "You are using NPU version Paddle, but your NPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
666 667 668 669 670 671 672
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
673 674
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
675 676 677 678 679


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
680
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
681 682


S
sneaxiy 已提交
683
def _cpu_num():
684
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
685 686 687 688 689 690 691
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
692 693 694
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
695
        os.environ['CPU_NUM'] = str(1)
696
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
697 698 699 700 701 702 703 704
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
705
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
706
    return device_ids
S
sneaxiy 已提交
707 708


709 710 711 712 713
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
714
        device_ids = range(core.get_xpu_device_count())
715 716 717
    return device_ids


718 719 720 721 722
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
723
        device_ids = range(core.get_npu_device_count())
724 725 726
    return device_ids


727 728 729 730 731 732 733 734 735
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


766 767 768 769 770 771 772
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
773

774 775 776 777 778 779
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
780 781
    Returns:
        None
782 783 784 785 786 787 788 789 790 791

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
807 808 809 810
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

811
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
812 813 814 815

    Examples:
        .. code-block:: python

816
            import paddle
817
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
818 819 820 821
    """
    return core.is_compiled_with_cuda()


822 823 824 825 826 827 828 829 830 831
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
832
            support_gpu = paddle.device.is_compiled_with_rocm()
833 834 835 836
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
837
def cuda_places(device_ids=None):
L
lujun 已提交
838
    """
839
    Note:
840 841 842
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
843
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
844 845

    If :code:`device_ids` is None, environment variable of
846
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
847
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
848
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
849
    If :code:`FLAGS_selected_gpus` is not set, all visible
850
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
851 852

    If :code:`device_ids` is not None, it should be the device
853
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
854
    the returned list would be
C
Chen Weihang 已提交
855
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
856

857
    Parameters:
858
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
859 860

    Returns:
C
Chen Weihang 已提交
861
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
862 863

    Examples:
864

L
lujun 已提交
865 866
        .. code-block:: python

C
Chen Weihang 已提交
867 868
            import paddle
            import paddle.static as static
T
tangwei12 已提交
869

870
            # required: gpu
871

C
Chen Weihang 已提交
872 873 874
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
875 876

    """
877
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
878
    if device_ids is None:
C
chengduo 已提交
879
        device_ids = _cuda_ids()
S
sneaxiy 已提交
880 881 882 883 884
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


885 886 887 888
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
889 890 891 892 893 894 895 896 897
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
898
        the returned list would be
S
sunzhongkai588 已提交
899
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
900

901 902 903 904 905 906
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
907

908 909
            # required: xpu

910 911
            import paddle
            import paddle.static as static
912

913 914 915
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
916
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
917 918 919 920 921 922 923
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


924 925
def npu_places(device_ids=None):
    """
926 927

    Note:
928
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
929

930 931 932 933 934 935 936 937 938
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
939
    the returned list would be
940
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
941

942 943 944 945 946 947 948 949 950 951 952
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
953

954 955 956
            paddle.enable_static()
            npu_places = static.npu_places()
    """
957
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
958 959 960 961 962 963 964
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
965
def cpu_places(device_count=None):
L
lujun 已提交
966
    """
C
Chen Weihang 已提交
967
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
968

S
add doc  
sneaxiy 已提交
969
    If :code:`device_count` is None, the device count would
970
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
971 972
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
973 974
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
975

976 977
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
978 979

    Returns:
C
Chen Weihang 已提交
980
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
981 982

    Examples:
983

L
lujun 已提交
984 985
        .. code-block:: python

C
Chen Weihang 已提交
986 987
            import paddle
            import paddle.static as static
T
tangwei12 已提交
988

C
Chen Weihang 已提交
989 990 991
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
992 993
    """

S
sneaxiy 已提交
994 995 996 997 998 999
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1000
    """
1001
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1002 1003

    If :code:`device_count` is None, the device count would
1004
    be determined by environment variable :code:`CPU_NUM`.
1005 1006 1007 1008
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1009

1010 1011
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1012 1013

    Returns:
1014
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1015 1016 1017 1018

    Examples:
        .. code-block:: python

1019
            import paddle.fluid as fluid
L
lujun 已提交
1020 1021 1022 1023 1024
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
1025
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1026
    if device_count is None:
1027 1028
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1029 1030


1031
class NameScope:
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
1042 1043 1044
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1058
@signature_safe_contextmanager
1059 1060
def name_scope(prefix=None):
    """
1061

1062
    Generate hierarchical name prefix for the operators in Static Graph.
1063

1064
    Note:
T
Tao Luo 已提交
1065 1066
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1067
        Don't use it in dygraph, since it will cause memory leak.
1068 1069

    Args:
T
Tao Luo 已提交
1070
        prefix(str, optional): prefix. Default is none.
1071 1072

    Examples:
1073

1074
        .. code-block:: python
T
Tink_Y 已提交
1075

1076 1077 1078
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1079
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1080
             b = a + 1
1081
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1082
                c = b * 1
1083
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1084
                d = c / 1
1085 1086 1087
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1088 1089
                g = f - 1

1090
          # Op are created in the default main program.
1091
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1107 1108
    """
    # TODO(panyx0718): Only [0-9a-z].
1109
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1110
    if _non_static_mode():
L
Leo Chen 已提交
1111 1112
        yield
    else:
T
tianshuo78520a 已提交
1113
        assert prefix, "namescope prefix can not be empty."
1114 1115
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1116 1117 1118 1119
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1132 1133
def generate_control_dev_var_name():
    import random
1134

W
Wu Yi 已提交
1135
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1136 1137 1138 1139


def grad_var_name(var_name):
    """
1140 1141
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1142 1143 1144
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1145

1146
def convert_np_dtype_to_dtype_(np_dtype):
1147
    """
1148
    Convert the data type in numpy to the data type in Paddle.
1149

1150
    Args:
1151 1152
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1153

1154
    Returns:
1155
        core.VarDesc.VarType: The data type in Paddle.
1156 1157

    """
1158 1159
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1160 1161 1162
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1163

1164
    if dtype == np.float32:
1165
        return core.VarDesc.VarType.FP32
1166
    elif dtype == np.float64:
1167
        return core.VarDesc.VarType.FP64
1168
    elif dtype == np.float16:
1169
        return core.VarDesc.VarType.FP16
1170
    elif dtype == np.int32:
1171
        return core.VarDesc.VarType.INT32
1172
    elif dtype == np.int16:
1173
        return core.VarDesc.VarType.INT16
1174
    elif dtype == np.int64:
1175
        return core.VarDesc.VarType.INT64
1176
    elif dtype == np.bool_:
1177
        return core.VarDesc.VarType.BOOL
1178
    elif dtype == np.uint16:
1179 1180 1181
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1182 1183
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1184 1185
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1186 1187 1188 1189
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1190
    else:
M
minqiyang 已提交
1191
        raise ValueError("Not supported numpy dtype %s" % dtype)
1192 1193 1194


def dtype_is_floating(dtype):
1195 1196 1197
    """
    Check the data type is floating or not.
    Args:
1198
        dtype(np.dtype|core.VarDesc.VarType): data type.
1199 1200 1201 1202 1203
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1204
    if not isinstance(dtype, core.VarDesc.VarType):
1205 1206
        dtype = convert_np_dtype_to_dtype_(dtype)

1207
    return dtype in [
1208 1209 1210
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1211
    ]
1212 1213


Y
Yang Yang(Tony) 已提交
1214
def _debug_string_(proto, throw_on_error=True):
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1226
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1227
    if not proto.IsInitialized(error_fields) and throw_on_error:
1228 1229
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1230 1231 1232
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1233 1234 1235
    return proto.__str__()


1236 1237 1238 1239 1240 1241
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1242
    **kwargs,
1243
):
1244 1245 1246 1247
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1257 1258


1259 1260 1261 1262 1263 1264 1265
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1266 1267
    if not vals:
        return False
1268 1269 1270
    return all(isinstance(v, expected_type) for v in vals)


1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1366 1367 1368 1369 1370
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1371
            return issubclass(t, core.eager.Tensor)
1372 1373 1374 1375 1376 1377 1378 1379 1380
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1381
            return issubclass(t, EagerParamBase)
1382 1383 1384 1385
        else:
            return issubclass(t, Parameter)


1386
class Variable(metaclass=VariableMetaClass):
1387
    """
J
Jiabin Yang 已提交
1388

U
ustiniankw 已提交
1389 1390 1391 1392
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1393

U
ustiniankw 已提交
1394
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1395 1396

    In Fluid, every input and output of an OP is a variable. In most
1397
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1398 1399
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1400

1401
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1402
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1403

T
tianshuo78520a 已提交
1404
    Most of a Variable's member variables can be set to be None. It mean
1405
    it is not available or will be specified later.
1406

1407
    Examples:
1408 1409
        In Static Graph Mode:

1410 1411
        .. code-block:: python

1412
            import paddle.fluid as fluid
1413
            cur_program = fluid.Program()
1414 1415 1416 1417
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1418

1419
        In Dygraph  Mode:
1420 1421 1422 1423 1424 1425 1426 1427 1428

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1429 1430
    """

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1446
        **kwargs,
1447
    ):
Y
Yu Yang 已提交
1448 1449
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1450
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1451

Y
Yu Yang 已提交
1452
        if dtype is not None:
1453
            if not isinstance(dtype, core.VarDesc.VarType):
1454
                dtype = convert_np_dtype_to_dtype_(dtype)
1455

S
Steffy-zxf 已提交
1456 1457 1458 1459
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1460 1461 1462
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1463 1464
        self.belong_to_optimizer = belong_to_optimizer

1465 1466 1467
        self.error_clip = error_clip

        is_new_var = False
1468
        self.desc = self.block.desc.find_var(name.encode())
1469

1470
        if self.desc is None:
1471
            self.desc = self.block.desc.var(name.encode())
1472
            is_new_var = True
1473

1474 1475 1476
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1477 1478 1479 1480 1481
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1482

1483
        if shape is not None:
1484
            if is_new_var:
1485 1486 1487 1488 1489 1490
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1491 1492
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1493 1494
                        "matched.".format(self.name, old_shape, shape)
                    )
1495 1496 1497 1498 1499 1500
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1501 1502 1503 1504 1505 1506
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1507 1508 1509 1510 1511 1512

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1513 1514 1515 1516 1517 1518
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1519 1520 1521 1522 1523 1524
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1525 1526
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1527
                        "persistable is {2}. They are not matched".format(
1528 1529 1530
                            self.name, self.persistable, persistable
                        )
                    )
1531

1532 1533
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1534

1535 1536 1537 1538 1539 1540 1541
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1542

1543 1544
        self.block.vars[name] = self
        self.op = None
1545
        self.stop_gradient = stop_gradient
1546
        self.is_data = is_data
Y
Yu Yang 已提交
1547

1548 1549
    def detach(self):
        """
U
ustiniankw 已提交
1550

1551
        Returns a new Variable, detached from the current graph.
1552 1553
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1554

1555
        Returns:
U
ustiniankw 已提交
1556
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1557 1558 1559 1560

        Examples:
            .. code-block:: python

1561
                import paddle
1562

1563 1564 1565 1566
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1567

1568 1569
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1570

1571
        """
1572

1573 1574 1575 1576
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1577 1578 1579 1580 1581 1582

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1583 1584
            stop_gradient=True,
        )
1585

1586 1587 1588
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1589
        return output
1590

1591
    @fake_interface_only
1592
    def numpy(self):
1593
        """
J
Jiabin Yang 已提交
1594
        **Notes**:
T
tianshuo78520a 已提交
1595
            **This API is ONLY available in Dygraph mode**
1596

J
Jiabin Yang 已提交
1597
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1598 1599 1600 1601 1602

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1603
            ndarray: dtype is same as current Variable
1604 1605 1606 1607 1608 1609

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1610
                from paddle.fluid.dygraph import Linear
1611 1612 1613 1614
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1615
                    linear = Linear(32, 64)
1616
                    data = to_variable(data)
1617
                    x = linear(data)
1618 1619 1620
                    print(x.numpy())

        """
1621
        pass
1622

1623
    @fake_interface_only
1624
    def backward(self, retain_graph=False):
1625
        """
J
Jiabin Yang 已提交
1626
        **Notes**:
T
tianshuo78520a 已提交
1627
            **This API is ONLY available in Dygraph mode**
1628

1629
        Run backward of current Graph which starts from current Tensor.
1630

J
Jiabin Yang 已提交
1631
        Args:
1632 1633 1634 1635
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1636

J
Jiabin Yang 已提交
1637 1638
        Returns:
            NoneType: None
1639 1640 1641 1642 1643

        Examples:
            .. code-block:: python

                import numpy as np
1644 1645
                import paddle
                paddle.disable_static()
1646 1647

                x = np.ones([2, 2], np.float32)
1648 1649 1650 1651 1652 1653 1654
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1655 1656
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1657
                loss.backward()
1658 1659

        """
1660
        pass
1661

1662
    @fake_interface_only
1663
    def gradient(self):
1664
        """
J
Jiabin Yang 已提交
1665
        **Notes**:
T
tianshuo78520a 已提交
1666
            **This API is ONLY available in Dygraph mode**
1667 1668 1669

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1670
        Returns:
1671
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1672 1673 1674 1675

        Examples:
            .. code-block:: python

1676
                import paddle
1677 1678 1679
                import paddle.fluid as fluid
                import numpy as np

1680
                # example1: return ndarray
1681 1682 1683 1684 1685 1686 1687
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1688
                    ret2 = paddle.add_n(inputs2)
1689
                    loss2 = paddle.sum(ret2)
1690
                    loss2.backward()
1691 1692
                    print(loss2.gradient())

1693 1694
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1695 1696 1697 1698 1699
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1700 1701 1702 1703 1704 1705 1706
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1707
        """
1708
        pass
1709

1710
    @fake_interface_only
1711
    def clear_gradient(self):
1712
        """
J
Jiabin Yang 已提交
1713
        **Notes**:
T
tianshuo78520a 已提交
1714
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1715 1716

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1717

J
Jiabin Yang 已提交
1718
        Clear  (set to ``0`` ) the Gradient of Current Variable
1719 1720 1721 1722 1723 1724

        Returns:  None

        Examples:
            .. code-block:: python

1725
                import paddle
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1736
                    ret2 = paddle.add_n(inputs2)
1737
                    loss2 = paddle.sum(ret2)
1738
                    loss2.backward()
1739 1740 1741 1742 1743
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1744
        pass
X
Xin Pan 已提交
1745

1746 1747 1748 1749
    @fake_interface_only
    def register_hook(self, hook):
        pass

1750
    def __str__(self):
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1767 1768
                import paddle
                import paddle.static as static
1769

1770 1771 1772
                paddle.enable_static()

                cur_program = static.Program()
1773 1774 1775 1776 1777 1778
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1779 1780
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1781 1782 1783 1784
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1785
            dtype_str = str(self.dtype).split('.')[1]
1786 1787 1788 1789 1790 1791 1792
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1793
        else:
1794
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1795

1796
        if self.is_parameter:
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1807 1808 1809 1810
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1811
        dist_context = get_default_distributed_context()
1812 1813
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1814 1815 1816
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1817

1818
        return var_str
Y
Yang Yang(Tony) 已提交
1819

F
update  
fengjiayi 已提交
1820
    def to_string(self, throw_on_error, with_details=False):
1821 1822 1823
        """
        Get debug string.

J
Jiabin Yang 已提交
1824 1825 1826 1827 1828
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1829

1830 1831
        Returns:
            str: The debug string.
1832 1833 1834 1835 1836

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1837
                import paddle
1838

1839
                paddle.enable_static()
1840 1841 1842 1843 1844
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1845
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1846
                print("=============with detail===============")
1847
                print(new_variable.to_string(True, True))
1848
        """
1849
        assert isinstance(throw_on_error, bool) and isinstance(
1850 1851
            with_details, bool
        )
1852
        protostr = self.desc.serialize_to_string()
1853
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1854 1855
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1856
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1857
            for attr_name in additional_attr:
1858
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1859

F
update  
fengjiayi 已提交
1860
        return res_str
1861 1862 1863

    __repr__ = __str__

1864 1865 1866
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1867

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1891
    @property
1892
    def stop_gradient(self):
J
Jiabin Yang 已提交
1893 1894 1895
        """
        Indicating if we stop gradient from current Variable

1896
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1908 1909
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1910 1911 1912
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1913 1914
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1915 1916 1917 1918
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1919
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1920 1921
                assert (out1.gradient() == 0).all()
        """
1922
        return self.desc.stop_gradient()
1923

1924 1925
    @stop_gradient.setter
    def stop_gradient(self, s):
1926
        self.desc.set_stop_gradient(s)
1927

1928 1929
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1930 1931 1932 1933 1934 1935 1936 1937
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1938
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1951
        return self.desc.persistable()
1952

Y
Yu Yang 已提交
1953 1954
    @persistable.setter
    def persistable(self, p):
1955
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1956

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1982 1983
    @property
    def name(self):
J
Jiabin Yang 已提交
1984 1985 1986
        """
        Indicating name of current Variable

1987
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
2000
        return self.desc.name()
Y
Yu Yang 已提交
2001

2002 2003 2004 2005 2006 2007
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
2008 2009
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
2010

2011 2012 2013
        Examples:
          .. code-block:: python

2014
          import paddle
2015

2016
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
2017
          print(x.grad_name) # output is ``x@GRAD``
2018 2019 2020 2021

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
2022 2023
    @name.setter
    def name(self, new_name):
2024
        self.desc.set_name(new_name)
T
typhoonzero 已提交
2025

Y
Yu Yang 已提交
2026 2027
    @property
    def shape(self):
J
Jiabin Yang 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2045
        # convert to tuple, make it as same as numpy API.
2046
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2047 2048

    @property
F
fengjiayi 已提交
2049
    def dtype(self):
J
Jiabin Yang 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2066
        return self.desc.dtype()
Y
Yu Yang 已提交
2067 2068 2069

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2070 2071 2072 2073 2074 2075 2076 2077
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2078
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2079 2080 2081 2082

        Examples:
          .. code-block:: python

2083
            import paddle
J
Jiabin Yang 已提交
2084
            import paddle.fluid as fluid
2085 2086

            paddle.enable_static()
J
Jiabin Yang 已提交
2087 2088 2089 2090 2091 2092 2093
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2094 2095
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2096 2097
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2098
        return self.desc.lod_level()
Y
Yu Yang 已提交
2099

Y
Yu Yang 已提交
2100 2101
    @property
    def type(self):
J
Jiabin Yang 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2118
        return self.desc.type()
Y
Yu Yang 已提交
2119

2120 2121 2122
    @property
    def T(self):
        """
U
ustiniankw 已提交
2123

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2155 2156
            stop_gradient=False,
        )
2157 2158 2159 2160 2161
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2162 2163 2164 2165 2166 2167 2168 2169 2170
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2171 2172
        return out

2173 2174 2175
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2176
        Variable. It remains in the current graph, that is, the cloned Variable
2177 2178 2179 2180
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2181
            Variable, The cloned Variable.
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2201 2202
            stop_gradient=self.stop_gradient,
        )
2203

2204 2205 2206
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2207 2208
        return output

W
Wu Yi 已提交
2209
    def _set_error_clip(self, error_clip):
2210
        """
U
ustiniankw 已提交
2211

2212 2213 2214 2215 2216 2217 2218
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2219

2220
        """
2221 2222
        self.error_clip = error_clip

2223 2224
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2225

2226 2227 2228 2229 2230 2231
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2232
        Returns:
2233
            None
U
ustiniankw 已提交
2234

2235 2236 2237 2238 2239 2240 2241
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2242

2243 2244 2245 2246 2247
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2248
        Returns:
2249
            object
U
ustiniankw 已提交
2250

2251 2252 2253 2254 2255
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2256 2257
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2258

2259
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2260

2261 2262 2263 2264 2265 2266 2267 2268
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2269
            raise ValueError("slice step can not be zero")
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2280 2281 2282
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2328 2329 2330
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2331
                    raise IndexError("invalid index")
2332 2333 2334 2335 2336
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2350
    def _cloneVar(self, copy=False):
2351 2352
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2353
                name=unique_name.generate_with_ignorable_key(self.name),
2354 2355
                dtype=self.dtype,
            )
2356 2357 2358 2359
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2360
        new_var = self._cloneVar()
2361 2362 2363 2364 2365 2366
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2367 2368 2369
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2370
        new_var = self._cloneVar()
2371 2372 2373 2374 2375 2376 2377 2378
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2379 2380 2381 2382 2383
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2384
                return self._cloneVar(True)
2385 2386 2387 2388 2389 2390 2391
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2392 2393 2394
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2395 2396 2397
                        start += step
                else:
                    while start > stop:
2398 2399 2400
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2401 2402 2403 2404
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2405
                return self._cloneVar(True)
2406
            index = int(item)
2407 2408 2409
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2410 2411 2412 2413 2414 2415
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2416
        return _getitem_impl_(self, item)
2417

2418
    def __setitem__(self, item, value):
2419
        return _setitem_impl_(self, item, value)
2420

2421 2422
    def get_value(self, scope=None):
        """
2423
        Get the value of variable in given scope.
2424 2425

        Args:
2426
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2427 2428 2429 2430
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2431
            Tensor, the value in given scope.
2432 2433 2434 2435 2436

        Examples:
            .. code-block:: python

                import paddle
2437
                import paddle.static as static
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2462 2463
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2464 2465
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2466

2467 2468
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2469 2470 2471 2472
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2473 2474 2475 2476 2477

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2478 2479 2480
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2481 2482 2483 2484 2485
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2486

2487
        Set the value to the tensor in given scope.
2488 2489 2490

        Args:
            value(Tensor/ndarray) : The value to be set.
2491
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2492 2493 2494 2495 2496
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2497

2498 2499 2500 2501
        Examples:
            .. code-block:: python

                import paddle
2502
                import paddle.static as static
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2526

2527 2528 2529
        '''

        # The 'framework' is a low-level module, and 'executor'
2530
        # can not be imported at the begainning of this file.
2531 2532 2533 2534 2535
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2536 2537 2538 2539
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2540 2541 2542

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2543 2544 2545 2546
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2547 2548 2549 2550 2551 2552

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2553 2554 2555
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2566 2567 2568 2569
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2580 2581 2582 2583
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2584 2585 2586 2587 2588 2589 2590
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2591 2592
    def size(self):
        """
U
ustiniankw 已提交
2593

2594 2595 2596
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2597
            Variable, the number of elements for current Variable
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2611

2612 2613 2614 2615
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2616 2617
            dtype=core.VarDesc.VarType.INT64,
        )
2618

2619 2620 2621
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2622 2623
        return output

2624 2625
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2626

2627 2628 2629 2630 2631
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2632

2633 2634 2635 2636 2637
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2638

2639 2640 2641 2642 2643 2644
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2645 2646
            bool, True if has this attribute.

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2668
    def attr(self, name):
2669 2670 2671 2672 2673 2674 2675
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2676
            int|str|list, The attribute value. The return value
2677 2678 2679 2680 2681
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2682
    def dist_attr(self):
2683
        """
2684
        Get distributed attribute of this Variable.
2685
        """
2686
        return self.desc.dist_attr
2687

2688 2689
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2690
        """
2691
        Set distributed attribute of this Variable.
2692
        """
2693
        self.desc.dist_attr = dist_attr
2694

Y
Yu Yang 已提交
2695

F
fengjiayi 已提交
2696 2697 2698
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2699

2700 2701
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2702 2703 2704 2705
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2706
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2707 2708 2709 2710
        ret_values.append(op_proto)
    return ret_values


2711
class OpProtoHolder:
2712 2713 2714 2715
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2716 2717 2718 2719 2720 2721 2722 2723
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2724 2725
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2726 2727 2728 2729 2730 2731
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2732 2733 2734 2735 2736 2737 2738 2739
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2740 2741
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2742 2743
        return self.op_proto_map[type]

2744 2745
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2746
        custom_op_names = []
2747 2748 2749
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2750 2751 2752
                custom_op_names.append(proto.type)

        return custom_op_names
2753

2754 2755 2756
    def has_op_proto(self, type):
        return type in self.op_proto_map

2757 2758 2759 2760
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2761
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2762
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2763
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2764
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2765 2766
        }

F
fengjiayi 已提交
2767

2768
class Operator:
2769
    """
2770 2771 2772 2773 2774 2775 2776
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2777
        type(str): The type of operator. Default None.
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2798
        Block.append_op or Block._prepend_op instead.
2799 2800 2801 2802

    Examples:
        .. code-block:: python

2803
            import paddle.fluid as fluid
2804
            cur_program = fluid.Program()
2805 2806 2807 2808 2809
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2810
    """
2811

2812
    OP_WITHOUT_KERNEL_SET = {
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2844
    }
2845

2846 2847 2848
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2859
        if _non_static_mode():
2860 2861
            if type is None:
                raise ValueError(
2862 2863
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2864
            self._type = type
M
minqiyang 已提交
2865
            self.attrs = attrs if attrs else {}
2866
        else:
2867 2868
            self.legacy_attrs = attrs if attrs else {}

2869 2870 2871 2872 2873 2874 2875 2876 2877
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2878
            # attr for static graph mode cuda graph
2879 2880
            self._cuda_graph_attr = _current_cuda_graph_mode

2881 2882 2883
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2884
                op_attrs[
2885 2886
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2887 2888

            role_var_name = op_maker.kOpRoleVarAttrName()
2889 2890 2891 2892
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2893
                op_attrs[role_var_name] = self.block.program._op_role_var
2894 2895 2896 2897 2898

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2899 2900 2901 2902 2903
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2904 2905 2906
                return
            if type is None:
                raise ValueError(
2907 2908
                    "`type` to initialized an Operator can not be None."
                )
2909 2910
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2911 2912 2913
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2914
                        '  File "{}", line {}, in {}'.format(
2915 2916 2917 2918 2919 2920
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2921 2922 2923 2924 2925 2926 2927

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2928 2929 2930 2931 2932 2933 2934 2935
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2936 2937 2938
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2939
                if 'force_cpu' in op_attrs:
2940
                    if (
2941 2942
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2943
                    ) or op_attrs['force_cpu'] != False:
2944 2945 2946
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2947 2948
                            "used at the same time." % type
                        )
2949
            if _current_pipeline_stage is not None:
2950 2951 2952 2953 2954
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2955
                )
2956

2957 2958 2959 2960 2961 2962 2963 2964 2965
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2966 2967 2968
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2969 2970
                    if found:
                        in_args = inputs[in_proto.name]
2971
                        if not isinstance(in_args, (list, tuple)):
2972 2973 2974 2975
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2976 2977
                                % (in_proto.name, len(in_args))
                            )
2978
                        in_arg_names = []
2979
                        for index, arg in enumerate(in_args):
2980
                            if isinstance(arg, str):
2981
                                in_arg_names.append(arg)
2982
                            elif isinstance(arg, bytes):
2983
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2984
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2985
                                in_arg_names.append(arg.name)
2986
                            else:
2987
                                raise TypeError(
2988 2989
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2990
                                )
2991 2992 2993 2994 2995 2996 2997 2998 2999
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
3000
                        raise ValueError(
3001 3002 3003 3004 3005 3006
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
3007 3008 3009 3010 3011 3012 3013 3014 3015
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
3016 3017
                            % (out_proto.name, len(out_args))
                        )
3018 3019
                    out_arg_names = []
                    for arg in out_args:
3020
                        if isinstance(arg, str):
3021 3022
                            out_arg_names.append(arg)
                        else:
3023
                            out_arg_names.append(arg.name)
3024
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
J
Jiabin Yang 已提交
3025
                        if not _non_static_mode():
3026
                            if isinstance(arg, str):
3027 3028 3029
                                block.var(arg).op = self
                            else:
                                arg.op = self
3030 3031
                    self.desc.set_output(out_proto.name, out_arg_names)

3032
            extra_attrs_map = core.get_op_extra_attrs(type)
3033 3034 3035 3036 3037
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
3038 3039 3040
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3041 3042 3043
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3044
                for attr_name in extra_attrs_map.keys():
3045 3046 3047 3048 3049
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

3050 3051 3052 3053 3054 3055
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3056 3057
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3058

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
3087 3088
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3089
                if global_ipu_index >= 0:
3090 3091 3092
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3093
                if global_ipu_stage >= 0:
3094 3095 3096
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3097

3098
            self.desc.check_attrs()
3099 3100 3101 3102 3103

            # record all attrs needed by creating op
            for item in self.desc.attr_names():
                self.legacy_attrs[item] = self.desc.attr(item)

3104 3105 3106 3107
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3108
    def _has_kernel(self, op_type):
3109 3110
        return op_type not in self.OP_WITHOUT_KERNEL_SET

3111 3112 3113 3114
    def _get_runtime_attrs(self):
        """Record all attrs needed by creating op. This api is only for to_prim process."""
        return self.legacy_attrs

Y
Yang Yang(Tony) 已提交
3115
    def to_string(self, throw_on_error):
3116
        """
3117 3118
        Get debug string.

3119
        Args:
3120 3121
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3122

3123 3124
        Returns:
            str: The debug string.
3125 3126

        """
3127
        protostr = self.desc.serialize_to_string()
3128
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3129 3130
        return _debug_string_(proto, throw_on_error)

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3163
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3164 3165
            type(skip_op_callstack)
        )
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3192 3193 3194
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3195 3196 3197
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3208 3209
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3210 3211 3212 3213 3214
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3215 3216
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3217 3218
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3219 3220 3221 3222 3223 3224 3225
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3226 3227
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3228 3229 3230 3231 3232
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3233
            # it is bytes of serialized protobuf
3234 3235 3236 3237 3238
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3239 3240
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3241 3242 3243 3244 3245 3246 3247 3248 3249
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3250 3251 3252
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3253

3254 3255 3256 3257
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3258 3259 3260 3261
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3262
        dist_context = get_default_distributed_context()
3263 3264
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3265 3266 3267
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3268

3269
        if outputs_str != "{}":
3270 3271 3272 3273 3274 3275
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3276
        else:
3277 3278 3279
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3280 3281
        return op_str

Y
Yang Yang(Tony) 已提交
3282
    def __str__(self):
3283
        return self._to_readable_code()
3284 3285 3286

    __repr__ = __str__

F
fengjiayi 已提交
3287 3288
    @property
    def type(self):
3289
        return self.desc.type()
F
fengjiayi 已提交
3290 3291

    def input(self, name):
3292
        r"""
U
ustiniankw 已提交
3293

3294
        Get the input arguments according to the input parameter name.
3295

3296 3297
        Args:
            name(str): The input parameter name.
3298

3299
        Returns:
U
ustiniankw 已提交
3300
            list, return the list of argument names that associated with \
3301
                the specific parameter name.
U
ustiniankw 已提交
3302

3303
        """
F
fengjiayi 已提交
3304 3305
        return self.desc.input(name)

W
Wu Yi 已提交
3306
    def _rename_input(self, old_name, new_name):
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3317
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3318

W
Wu Yi 已提交
3319
    def _rename_output(self, old_name, new_name):
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3330
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3331

F
fengjiayi 已提交
3332 3333 3334 3335
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3336 3337 3338 3339 3340 3341 3342 3343
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3344
    def output(self, name):
3345
        r"""
3346
        Get output arguments by the output parameter name.
3347

3348 3349
        Args:
            name(str): The output parameter name.
3350

3351 3352 3353
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3354
        """
F
fengjiayi 已提交
3355 3356 3357 3358 3359 3360
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3361 3362 3363 3364 3365 3366
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3367 3368
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3369

F
fengjiayi 已提交
3370
    def has_attr(self, name):
3371
        """
3372 3373
        Whether this Operator has the attribute with name or not.

3374
        Args:
3375
            name(str): the attribute name.
3376

3377 3378
        Returns:
            bool: True if has this attribute.
3379 3380

        """
F
fengjiayi 已提交
3381 3382 3383
        return self.desc.has_attr(name)

    def attr_type(self, name):
3384
        """
3385
        Get the type of attribute by attribute's name.
3386

3387 3388
        Args:
            name(str): the attribute name.
3389

3390 3391
        Returns:
            core.AttrType: the attribute type.
3392
        """
3393
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3394

W
Wu Yi 已提交
3395
    def _set_attr(self, name, val):
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3406 3407
        self._update_desc_attr(name, val)

3408 3409 3410
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3422 3423 3424 3425 3426
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3427
            self.desc.set_block_attr(name, val.desc)
3428
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3429
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3430 3431 3432
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3433 3434
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3435 3436 3437 3438 3439 3440 3441 3442 3443
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3444 3445 3446 3447 3448 3449
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3450 3451 3452 3453 3454 3455 3456
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3457 3458
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3476

F
fengjiayi 已提交
3477 3478
    @property
    def attr_names(self):
3479
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3480 3481

    def attr(self, name):
3482
        """
3483 3484
        Get the attribute by name.

3485
        Args:
3486
            name(str): the attribute name.
3487

3488 3489
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3490 3491
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3492
        return self.desc.attr(name)
Y
Yu Yang 已提交
3493

W
Wu Yi 已提交
3494
    def _block_attr_id(self, name):
3495
        """
G
gongweibao 已提交
3496
        Get the block attribute's id by name.
3497

3498 3499
        Args:
            name(str): the attribute name.
3500

3501 3502
        Returns:
            int: the block index.
3503
        """
W
Wu Yi 已提交
3504
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3505

W
Wu Yi 已提交
3506
    def _block_attr(self, name):
G
gongweibao 已提交
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3517
        id = self._block_attr_id(name)
3518
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3519 3520
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3521
    def _blocks_attr(self, name):
G
gongweibao 已提交
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3532
        for i in self._blocks_attr_ids(name):
3533
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3534 3535 3536 3537
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3538
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3549
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3550

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3562 3563 3564 3565 3566
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3581 3582 3583 3584 3585
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3586 3587 3588 3589 3590 3591
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3592
    def all_attrs(self):
F
fengjiayi 已提交
3593
        """
3594 3595 3596
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3597
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3598 3599 3600 3601
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3602
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3603
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3604
                attr_map[n] = self._block_attr(n)
3605
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3606
                attr_map[n] = self._blocks_attr(n)
3607 3608 3609 3610 3611 3612
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3613

F
fengjiayi 已提交
3614 3615
        return attr_map

3616 3617 3618
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3619 3620 3621 3622

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3623 3624 3625
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3626 3627 3628 3629 3630 3631 3632 3633

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3634 3635
            return False

3636 3637 3638 3639 3640 3641
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3642
    @property
3643
    def dist_attr(self):
3644
        """
3645
        Get distributed attribute of this Variable.
3646
        """
3647
        return self.desc.dist_attr
3648

3649 3650
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3651
        """
3652
        Set distributed attribute of this Variable.
3653
        """
3654
        self.desc.dist_attr = dist_attr
3655

Y
Yu Yang 已提交
3656

3657
class Block:
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3672
        use `Program._create_block()` to create a block.
3673 3674 3675 3676

    Examples:
        .. code-block:: python

3677 3678 3679
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3680 3681 3682 3683 3684 3685 3686 3687 3688
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3689
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3690
        self.desc = program.desc.block(idx)
3691
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3692
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3693 3694
        self.program = program

3695
    def __str__(self):
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3730
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3731 3732
            type(skip_op_callstack)
        )
3733 3734 3735 3736 3737 3738 3739
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3740 3741
                op._to_readable_code(skip_op_callstack)
            )
3742 3743
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3744

F
fengjiayi 已提交
3745 3746
    def to_string(self, throw_on_error, with_details=False):
        """
3747 3748
        Get debug string.

F
fengjiayi 已提交
3749 3750
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3751
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3752
            with_details(bool): more details about variables and parameters
3753 3754
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3755

3756 3757
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3758
        """
3759
        assert isinstance(throw_on_error, bool) and isinstance(
3760 3761
            with_details, bool
        )
F
fengjiayi 已提交
3762
        if with_details:
F
fengjiayi 已提交
3763
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3764
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3765 3766 3767
                self.idx,
                self.parent_idx,
            )
3768
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3769
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3770 3771
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3772
            for op in self.ops:
F
fengjiayi 已提交
3773
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3774 3775
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3776 3777 3778
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3779
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3780 3781
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3782 3783 3784

    __repr__ = __str__

Y
Yu Yang 已提交
3785 3786
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3787
        return self.desc.parent
Y
Yu Yang 已提交
3788

Y
Yu Yang 已提交
3789 3790 3791 3792
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3793
    def _set_forward_block_idx(self, idx):
3794 3795 3796 3797 3798 3799 3800 3801 3802
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3803
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3804

3805 3806 3807 3808 3809 3810 3811 3812
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3813 3814
    @property
    def idx(self):
Y
Yu Yang 已提交
3815
        return self.desc.id
Y
Yu Yang 已提交
3816

Q
Qiao Longfei 已提交
3817
    def var(self, name):
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3831
        if not isinstance(name, str):
M
minqiyang 已提交
3832
            raise TypeError(
3833 3834 3835
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3836 3837
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3838
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3839
        return v
Q
Qiao Longfei 已提交
3840

X
Xin Pan 已提交
3841
    def _find_var_recursive(self, name):
3842 3843 3844 3845 3846 3847 3848
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3849
            Variable: the Variable with the giving name. Or None if not found.
3850
        """
Y
Yu Yang 已提交
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3875
        return None
Y
Yu Yang 已提交
3876

X
Xin Pan 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3896

Q
Qiao Longfei 已提交
3897
    def all_parameters(self):
3898
        return list(self.iter_parameters())
3899

3900
    def iter_parameters(self):
3901 3902 3903 3904 3905
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3906

Y
Yu Yang 已提交
3907
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3908
        if _non_static_mode():
L
Leo Chen 已提交
3909 3910
            var = _varbase_creator(*args, **kwargs)
        else:
3911 3912 3913
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3914
        return var
Y
Yu Yang 已提交
3915

Q
Qiao Longfei 已提交
3916 3917 3918
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3919
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3920 3921
        """
        Rename variable in vars and ops' inputs and outputs
3922 3923

        Args:
3924 3925
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3926 3927 3928 3929 3930 3931 3932 3933

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3934
        """
3935 3936
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3937 3938 3939
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3940

T
typhoonzero 已提交
3941
        if not self.has_var(name):
3942
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3943 3944
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3945
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3946 3947 3948 3949 3950 3951
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3952
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3953 3954 3955 3956
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3957
        orig_var_type = v.type
3958
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3959
        # NOTE: v is destroyed by C++ after calling _rename_var.
3960
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3961
        if var_type == "Parameter":
L
Leo Chen 已提交
3962
            if in_dygraph_mode():
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3974
            else:
姜永久 已提交
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3987
        elif var_type == "Variable":
3988 3989 3990 3991 3992 3993 3994
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3995

W
Wu Yi 已提交
3996
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3997 3998 3999
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
4000
        self._sync_with_cpp()
4001
        return var
T
typhoonzero 已提交
4002

4003 4004 4005
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
4006
        self.desc._remove_var(name.encode())
4007 4008
        del self.vars[name]

Y
Yu Yang 已提交
4009 4010
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
4011
        param = None
L
Leo Chen 已提交
4012
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4013
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
4014
        else:
姜永久 已提交
4015
            param = Parameter(global_block, *args, **kwargs)
4016 4017 4018
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
4019

4020
        if 'initializer' in kwargs:
4021 4022 4023 4024 4025

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
4026
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
4027
                        # are treated as initialization ops that cause error.
4028
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
4029 4030
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
4031 4032 4033
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
4034
                        ]:
4035
                            continue
4036 4037 4038 4039 4040 4041 4042
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
4043 4044 4045 4046 4047 4048
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
4049
            elif init_ops_len == 1:
4050
                # TODO already inited, do nothing, should log a warning
4051 4052 4053
                pass
            else:
                initializer(param, self)
4054
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
4055
        return param
Y
Yu Yang 已提交
4056

Y
Yu Yang 已提交
4057
    def append_op(self, *args, **kwargs):
4058 4059 4060 4061 4062 4063
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
4064
        op_type = kwargs.get("type", None)
J
Jiabin Yang 已提交
4065
        if _non_static_mode():
4066
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
4067
            inplace_map = kwargs.get("inplace_map", None)
4068 4069 4070
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4071 4072 4073 4074 4075 4076
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
4077
                type=op_type,
4078 4079 4080 4081
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4082

M
minqiyang 已提交
4083 4084
            # record ops in tracer rather than blocks
            #
4085
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4086
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4087

4088
            _dygraph_tracer().trace_op(
4089
                op_type,
4090 4091 4092 4093 4094 4095
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4096
        else:
4097
            from paddle.fluid.dygraph.base import param_guard
4098
            from paddle.utils import flatten
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4113

4114
            op_desc = self.desc.append_op()
4115 4116
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4117
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4118 4119
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4130
            with param_guard(inputs), param_guard(outputs):
4131 4132 4133
                op = Operator(
                    block=self,
                    desc=op_desc,
4134
                    type=op_type,
4135 4136 4137 4138
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4139

M
minqiyang 已提交
4140
            self.ops.append(op)
M
minqiyang 已提交
4141

4142 4143
        return op

W
Wu Yi 已提交
4144
    def _insert_op(self, index, *args, **kwargs):
4145 4146 4147 4148 4149 4150 4151 4152 4153
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4154
        self._sync_with_cpp()
F
fangshuixun007 已提交
4155
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4156

4157 4158
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4159
        Insert an Operator according to the giving arguments,
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4174 4175 4176 4177 4178 4179 4180 4181 4182
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4183 4184
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4185
        self.desc._remove_op(index, index + 1)
4186 4187
        del self.ops[index]

W
Wu Yi 已提交
4188
    def _slice_ops(self, start, end):
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4199
        return self.ops[start:end]
Y
Yancey1989 已提交
4200

W
Wu Yi 已提交
4201
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4202
        if _non_static_mode():
J
Jiabin Yang 已提交
4203 4204
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4216
        else:
4217
            op_desc = self.desc._prepend_op()
4218 4219 4220 4221 4222 4223 4224 4225
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4226
            self.ops.insert(0, op)
4227

Y
Yu Yang 已提交
4228 4229
        return op

W
Wu Yi 已提交
4230
    def _sync_with_cpp(self):
4231
        """
4232 4233
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4234
        """
Q
Qiao Longfei 已提交
4235 4236 4237
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4238 4239 4240 4241
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4242 4243 4244 4245 4246 4247 4248 4249
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4250
                else:
4251 4252 4253 4254 4255 4256
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4257

4258
        # sync variables removed from c++ end
4259
        for var in list(self.vars.keys()):
4260
            if not self.desc.find_var(var.encode()):
4261 4262
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4263
        # sync operators from cpp
4264 4265 4266 4267
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4284 4285 4286 4287 4288

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4289
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4290 4291 4292 4293 4294 4295 4296

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4297 4298 4299 4300 4301
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4302 4303 4304 4305 4306 4307
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4308 4309 4310 4311 4312
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4313 4314 4315 4316
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4317
    def _copy_param_info_from(self, other):
4318
        """
4319 4320
        Copy the information of parameters from the other block.

4321
        Args:
4322 4323 4324 4325 4326
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4327 4328 4329 4330 4331

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4332
            raise TypeError(
4333 4334
                "_copy_param_info_from should be invoked with Block"
            )
4335
        for p in other.iter_parameters():
4336 4337 4338
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4339 4340
                # if the Parameter is pruned, v may be None
                continue
4341
            assert isinstance(v, Variable)
4342
            new_p = None
L
Leo Chen 已提交
4343
            if in_dygraph_mode():
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4356
            else:
姜永久 已提交
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4372 4373
            self.vars[new_p.name] = new_p

4374
    def _clone_variable(self, var, force_persistable=True):
4375 4376
        """
        Clone a variable into current block.
4377

4378 4379
        Args:
            var: the variable to be cloned.
4380 4381 4382
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4383 4384

        Returns:
4385
            Variable: the new  variable cloned from 'var' in current block.
4386 4387
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4388 4389 4390
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4391 4392 4393
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4394
        elif var.type == core.VarDesc.VarType.RAW:
4395 4396 4397
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4398 4399 4400 4401 4402 4403
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4404
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4405
                is_data=var.is_data,
4406 4407
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4408 4409 4410 4411 4412 4413 4414
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4415
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4416
                is_data=var.is_data,
4417 4418
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4419
        return ret_var
4420

Y
Yu Yang 已提交
4421

4422 4423 4424 4425
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4426
# of some old Python Variables(all old Python Operators) may have
4427
# been destructed.
4428 4429 4430
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4431 4432 4433 4434
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4435 4436 4437 4438 4439 4440 4441
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4442 4443 4444 4445 4446
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4447
class IrNode:
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4459 4460 4461
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4543
    def remove_input_by_id(self, node_id):
4544 4545 4546 4547 4548 4549
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4550
        self.node.remove_input(node_id)
4551

4552
    def remove_input(self, node):
4553 4554 4555 4556
        """
        Remove a node from inputs.

        Args:
4557
            node(IrNode): the node being removed.
4558
        """
4559
        self.node.remove_input(node.node)
4560

4561
    def append_input(self, node):
4562 4563 4564 4565
        """
        Append a node in inputs.

        Args:
4566
            node(IrNode): the node being appended.
4567
        """
4568
        self.node.append_input(node.node)
4569 4570 4571 4572 4573 4574 4575 4576

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4577
    def remove_output_by_id(self, node_id):
4578 4579 4580 4581 4582 4583
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4584
        self.node.remove_output(node_id)
4585

4586
    def remove_output(self, node):
4587 4588 4589 4590
        """
        Remove a node from outputs.

        Args:
4591
            node(IrNode): the node being removed.
4592
        """
4593
        self.node.remove_output(node.node)
4594

4595
    def append_output(self, node):
4596 4597 4598 4599
        """
        Append a node in outputs.

        Args:
4600
            node(IrNode): the node being appended.
4601
        """
4602
        self.node.append_output(node.node)
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4637 4638 4639
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4640
        super().__init__(node)
4641 4642 4643 4644 4645 4646 4647 4648 4649
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4650 4651 4652
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4653 4654 4655 4656 4657 4658 4659 4660 4661
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4662 4663 4664
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4665 4666
        return self.node.var().persistable()

4667 4668 4669 4670 4671 4672 4673
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4674 4675 4676
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4677 4678 4679 4680 4681 4682 4683 4684 4685
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4686 4687 4688
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4689 4690 4691 4692 4693 4694 4695 4696 4697
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4698 4699 4700
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4701 4702
        return self.node.var().shape()

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4736 4737 4738
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4739
        super().__init__(node)
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4750 4751 4752
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4753 4754
        self.node.op()._rename_input(old_input_name, new_input_name)

4755 4756 4757 4758 4759 4760 4761 4762
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4763 4764 4765
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4766 4767
        self.node.op()._rename_output(old_output_name, new_output_name)

4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4778 4779 4780
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4793 4794 4795
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4796 4797 4798 4799 4800 4801 4802 4803 4804
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4805 4806 4807
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4808 4809
        return self.node.op().set_type(new_type)

4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4824 4825 4826
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4827
        desc = self.node.op()
4828 4829 4830 4831 4832
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4833
            desc.set_block_attr(name, val.desc)
4834
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4835
            desc.set_blocks_attr(name, [v.desc for v in val])
4836 4837 4838
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4839 4840 4841 4842
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4843 4844 4845 4846 4847 4848 4849
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4850 4851 4852
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4853 4854 4855 4856 4857 4858 4859 4860 4861
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4862 4863 4864
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4865 4866
        return self.node.op().output_arg_names()

4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4888
class IrGraph:
4889
    """
4890
    Python IrGraph. Beneath it is a core.Graph, which is used for
4891
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4892 4893
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4894 4895 4896 4897
    """

    def __init__(self, graph, for_test=False):
        """
4898 4899
        Construct an IrGraph using core.Graph.

4900 4901 4902 4903 4904
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4905 4906
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4907 4908 4909
        self.graph = graph
        self._for_test = for_test

4910 4911 4912 4913
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4914 4915 4916
        Warns:
            The method only clones the graph structure, not its attributes.

4917 4918 4919
        Returns:
            IrGraph: A new and duplicated graph.
        """
4920
        g = self.graph.clone()
4921 4922
        return IrGraph(g, self._for_test)

4923
    def is_test(self):
4924 4925 4926
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4927 4928
        return self._for_test

W
WangZhen 已提交
4929
    def all_nodes(self):
4930 4931 4932
        """
        Return all nodes included in the graph as a set.
        """
4933
        return {IrNode(node) for node in self.graph.nodes()}
4934

4935
    def all_var_nodes(self):
4936 4937 4938
        """
        Return all variable nodes included in the graph as a set.
        """
4939
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4940

4941
    def all_persistable_nodes(self):
4942 4943 4944
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4945 4946
        persistable_nodes = set()
        for node in self.graph.nodes():
4947 4948 4949 4950 4951
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4952
                persistable_nodes.add(node)
4953
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4954

4955
    def all_op_nodes(self):
4956 4957 4958
        """
        Return all operator nodes included in the graph as a set.
        """
4959
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4960

4961 4962 4963 4964 4965 4966
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4967
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4968 4969 4970 4971 4972 4973 4974 4975 4976
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4977
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4989
            IrVarNode: the created persistable variable node.
4990
        """
4991 4992 4993 4994 4995
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4996
        return IrVarNode(self.graph.create_var_node(var_desc))
4997 4998

    def create_var_node(self, name, var_type, shape, var_dtype):
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
5010
            IrVarNode: the created variable node.
5011 5012
        """

5013 5014 5015 5016
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
5017
        return IrVarNode(self.graph.create_var_node(var_desc))
5018

5019 5020 5021 5022 5023 5024
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

5025
    def create_var_node_from_desc(self, var_desc):
5026 5027 5028 5029 5030 5031 5032 5033
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
5034
            IrVarNode: the created variable node.
5035
        """
5036
        return IrVarNode(self.graph.create_var_node(var_desc))
5037 5038

    def create_op_node(self, op_type, attrs, inputs, outputs):
5039 5040 5041 5042 5043 5044 5045
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
5046
            outputs(dict): the outputs of the operator node.
5047 5048

        Returns:
5049
            IrOpNode: the created operator node.
5050
        """
5051 5052
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
5053
        for attr, value in attrs.items():
5054
            self._update_desc_attr(op_desc, attr, value)
5055
        for input_name, var_nodes in inputs.items():
5056 5057
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5058 5059 5060
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
5061
        for output_name, var_nodes in outputs.items():
5062 5063
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5064 5065 5066
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
5067
        return IrOpNode(self.graph.create_op_node(op_desc))
5068 5069

    def create_op_node_from_desc(self, op_desc):
5070 5071 5072 5073 5074 5075 5076
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5077
            IrOpNode: the created operator node.
5078
        """
5079
        return IrOpNode(self.graph.create_op_node(op_desc))
5080 5081

    def update_input_link(self, old_input_node, new_input_node, op_node):
5082 5083 5084 5085
        """
        Update the input's link of a operator node.

        Args:
5086 5087 5088
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5089
        """
5090 5091 5092 5093 5094
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5095 5096 5097 5098
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5099
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5100

5101 5102 5103 5104 5105 5106 5107 5108 5109
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5110 5111 5112 5113 5114
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5115 5116 5117 5118 5119 5120
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5121
    def link_to(self, node_in, node_out):
5122 5123 5124 5125
        """
        Connect two nodes.

        Args:
5126 5127
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5128
        """
5129
        assert node_in.node in self.graph.nodes(), (
5130 5131
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5132
        assert node_out.node in self.graph.nodes(), (
5133 5134
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5135 5136
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5137 5138

    def safe_remove_nodes(self, remove_nodes):
5139 5140 5141 5142 5143 5144 5145
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5146
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5147 5148 5149 5150
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5151 5152
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5153

Z
Zhen Wang 已提交
5154 5155 5156 5157 5158 5159 5160 5161
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5162
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5163 5164 5165 5166
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5167
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5168 5169 5170
                        ]
                    else:
                        var_nodes[each_var_name].append(
5171 5172
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5173 5174
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5175
    def has_circle(self):
5176 5177 5178 5179 5180 5181
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5182 5183 5184
        return core.has_circle(self.graph)

    def graph_num(self):
5185 5186 5187 5188 5189 5190
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5191 5192 5193
        return core.graph_num(self.graph)

    def topology_sort(self):
5194 5195 5196
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5197
        Notes: the `graph` can not contain a circle.
5198 5199

        Returns:
Z
Zhen Wang 已提交
5200
            list(IrNode): nodes in topology order.
5201
        """
5202
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5203
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5204 5205

    def build_adjacency_list(self):
5206 5207 5208 5209
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5210
            dict{IrNode: set(IrNode)}: the adjacency list.
5211
        """
5212 5213
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5214
        for k, v in adj_list.items():
5215 5216
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5217

5218 5219 5220 5221 5222 5223 5224 5225
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5226
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5227 5228 5229 5230 5231
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5232 5233
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5234 5235 5236 5237
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5238 5239
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5240 5241 5242
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5243

5244
        remove_ctr_vars = set()
5245
        if remove_ctr_var:
5246
            for node in self.all_var_nodes():
5247 5248 5249
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5250 5251
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5252 5253
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5254 5255 5256 5257 5258 5259
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5260 5261 5262 5263
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5264 5265
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5266 5267 5268 5269 5270 5271 5272
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5273 5274 5275
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5276
        WARN: When the graph includes backward operator nodes, the
5277 5278 5279 5280 5281 5282
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5283
        convert_pass = core.get_pass('graph_to_program_pass')
5284 5285
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5286 5287 5288 5289
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5290 5291 5292 5293 5294 5295 5296 5297
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5298
        assert target_node is not None, (
5299 5300
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5301 5302
        return target_node

5303 5304 5305 5306
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5307 5308 5309 5310 5311
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5312
            desc.set_block_attr(name, val.desc)
5313
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5314
            desc.set_blocks_attr(name, [v.desc for v in val])
5315 5316 5317
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5318 5319 5320 5321 5322
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5323
class Program:
D
dzhwinter 已提交
5324
    """
5325
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5326
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5327
    it will contain nested block.
5328

J
Jiabin Yang 已提交
5329 5330 5331
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5332

J
Jiabin Yang 已提交
5333
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5334
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5335 5336 5337 5338 5339 5340 5341
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5342
    **Notes**:
5343 5344 5345
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5346 5347

    Returns:
J
Jiabin Yang 已提交
5348
        Program: An empty Program.
D
dzhwinter 已提交
5349 5350

    Examples:
5351 5352
        .. code-block:: python

5353 5354 5355 5356
            import paddle
            import paddle.static as static

            paddle.enable_static()
5357

5358 5359 5360 5361 5362
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5363
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5364 5365 5366

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5367 5368 5369

    """

5370 5371
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5372 5373
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5374 5375
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5376
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5377
        self.__op_role_var = []
T
tangwei12 已提交
5378

5379 5380
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5381
        self._is_distributed = False
5382
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5383
        self._is_chief = False
5384 5385 5386
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5387
        self._endpoints = []
5388 5389 5390
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5391
        self._trainers_endpoints = []
5392
        # the distributed lookup table names
T
tangwei12 已提交
5393
        self._distributed_lookup_table = None
5394 5395 5396

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5397 5398
        self._use_lamb = False

5399 5400 5401
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5402

5403 5404 5405
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5406
        self._program_config = None
5407

H
hutuxian 已提交
5408 5409 5410
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5411 5412 5413
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5414 5415 5416
        # appending gradients times
        self._appending_grad_times = 0

5417 5418
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5419 5420
            "__auto_checkpoint_program__"
        )
5421

5422 5423
        # compiled program, i.e. Graph
        self._graph = None
5424 5425
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5426

5427
    def _find_var_class_kwargs(self, new_desc):
5428 5429 5430 5431 5432 5433 5434 5435
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5436 5437 5438 5439
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5440
            if idx > (len(self.blocks) - 1):
5441
                self._create_block()
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5493 5494 5495
                }

                if isinstance(old_var, Parameter):
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5513 5514
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5515 5516 5517 5518 5519 5520
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5521 5522 5523 5524 5525 5526 5527

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5528
        assert block_num == self.desc.num_blocks()
5529 5530

        # clear old blocks and desc
5531 5532 5533 5534 5535 5536 5537 5538 5539
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5540

5541
        del desc
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5571 5572
                import paddle
                import paddle.static as static
5573

5574 5575 5576
                paddle.enable_static()

                prog = static.default_main_program()
5577 5578 5579 5580 5581
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5582
                prog1 = static.default_main_program()
5583 5584 5585 5586 5587 5588 5589 5590
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5591
    @property
5592
    def _op_role(self):
Y
yuyang18 已提交
5593 5594 5595 5596 5597 5598 5599 5600
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5601
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5602 5603 5604 5605
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5606 5607
        return self._current_role

5608 5609
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5610 5611 5612
        self._current_role = role

    @property
5613
    def _op_role_var(self):
Y
yuyang18 已提交
5614
        """
5615
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5616

5617
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5618 5619 5620

        Notes: This is a very low-level API. Users should not use it directly.
        """
5621
        return self.__op_role_var
Y
yuyang18 已提交
5622

5623
    @signature_safe_contextmanager
5624 5625 5626 5627 5628
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5629 5630 5631 5632
        try:
            yield
        finally:
            self._current_role = tmp_role
5633

S
rename  
sneaxiy 已提交
5634
    @signature_safe_contextmanager
W
Wu Yi 已提交
5635
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5636 5637 5638 5639 5640 5641 5642
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5643
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5644 5645 5646

        Examples:

5647
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5648
            >>> p, g = backward(...)
W
Wu Yi 已提交
5649
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5650 5651
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5652
        tmp_role = self._current_role
5653
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5654

Y
yuyang18 已提交
5655 5656
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5657
        self.__op_role_var = [
5658 5659 5660
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5661 5662 5663 5664 5665
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5666

S
rename  
sneaxiy 已提交
5667
    @signature_safe_contextmanager
X
Xin Pan 已提交
5668
    def _lr_schedule_guard(self, is_with_opt=False):
5669 5670 5671 5672 5673 5674 5675
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5676 5677 5678 5679
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5680 5681 5682

        Examples:

5683
            >>> import paddle.fluid as fluid
5684 5685 5686 5687
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5688 5689

        tmp_role = self._current_role
5690
        tmp_var = self.__op_role_var
5691

5692 5693
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5694 5695
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5696
        # TODO(typhoonzero): how to set target learning rate var
5697
        self.__op_role_var = []
5698 5699 5700 5701 5702
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5703

5704
    def __str__(self):
Y
yuyang18 已提交
5705 5706 5707 5708 5709 5710 5711 5712 5713
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5734 5735
            import paddle
            import paddle.static as static
5736

5737 5738 5739
            paddle.enable_static()

            cur_program = static.Program()
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5751
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5752 5753
            type(skip_op_callstack)
        )
5754 5755 5756
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5757
            program_str += '\n'
5758
        return program_str
Y
Yang Yang(Tony) 已提交
5759

F
fengjiayi 已提交
5760 5761 5762
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5763

J
Jiabin Yang 已提交
5764 5765 5766
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5767

J
Jiabin Yang 已提交
5768
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5769

H
haowang101779990 已提交
5770
        Returns:
J
Jiabin Yang 已提交
5771
            str: The debug string describe current Program.
Y
yuyang18 已提交
5772 5773

        Raises:
J
Jiabin Yang 已提交
5774
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5775

5776 5777 5778
        Examples:
            .. code-block:: python

5779 5780 5781 5782
                import paddle
                import paddle.static as static

                paddle.enable_static()
5783

5784 5785 5786
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5787
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5788
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5789
                print("program string without detail: {}".format(prog_string))
5790
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5791
        """
5792 5793 5794
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5795 5796
            type(throw_on_error)
        )
5797 5798 5799
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5800 5801
            type(with_details)
        )
5802

F
fengjiayi 已提交
5803 5804 5805 5806 5807 5808
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5809
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5810 5811
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5812

W
Wu Yi 已提交
5813
    def _get_desc(self):
Y
yuyang18 已提交
5814 5815 5816 5817 5818 5819 5820
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5821 5822
        return self.desc

X
version  
Xin Pan 已提交
5823 5824 5825
    def _version(self):
        return self.desc._version()

5826
    def clone(self, for_test=False):
Y
yuyang18 已提交
5827
        """
5828
        .. note:::
5829 5830
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5831
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5832

5833
        Create a new Program with forward content of original one when ``for_test=True``.
5834
        Create a new Program as same as the original one when ``for_test=False``.
5835

5836
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5837 5838 5839
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5840

5841 5842
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5843 5844
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5845
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5846

J
Jiabin Yang 已提交
5847
        For Example:
5848
          ::
L
Luo Tao 已提交
5849

5850 5851 5852 5853 5854 5855
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5856
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5857
            loss = paddle.mean(pred)
5858
            # Here we use clone before Momentum
5859 5860
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5861
            optimizer.minimize(loss)
5862

J
Jiabin Yang 已提交
5863
        Args:
5864

5865 5866
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5867

J
Jiabin Yang 已提交
5868
        Returns:
5869
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5870

Y
yuyang18 已提交
5871 5872 5873

        Examples:

5874 5875 5876 5877 5878 5879 5880
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5881 5882
            .. code-block:: python

5883
                import paddle
5884 5885

                def print_prog(prog):
5886
                    for name, value in sorted(prog.block(0).vars.items()):
5887 5888 5889 5890 5891
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5892
                        for key, value in sorted(op.all_attrs().items()):
5893 5894 5895 5896
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5897
            1. To clone a test program, the sample code is:
5898 5899
                .. code-block:: python

5900 5901 5902 5903 5904 5905
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5906 5907

                    def print_prog(prog):
5908
                        for name, value in sorted(prog.block(0).vars.items()):
5909 5910 5911 5912 5913
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5914
                            for key, value in sorted(op.all_attrs().items()):
5915 5916 5917
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5918 5919
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5920 5921 5922

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5923 5924 5925
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5926
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5927 5928
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5929
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5930 5931
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5932
                            test_program = train_program.clone(for_test=True)
5933
                    print_prog(test_program)
J
Jiabin Yang 已提交
5934 5935 5936 5937

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5938
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5939 5940 5941 5942
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5943 5944 5945
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5946 5947 5948
                            sgd.minimize(avg_loss)


5949
            2. The clone method can be avoid if you create program for training and program for testing individually.
5950 5951
                .. code-block:: python

5952 5953 5954 5955 5956 5957
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5958 5959

                    def print_prog(prog):
5960
                        for name, value in sorted(prog.block(0).vars.items()):
5961 5962 5963 5964 5965
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5966
                            for key, value in sorted(op.all_attrs().items()):
5967 5968
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5969

5970
                    def network():
5971
                        img = static.data(name='image', shape=[None, 784])
5972
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5973 5974
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5975
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5976 5977
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5978 5979
                        return avg_loss

5980 5981 5982 5983 5984
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5985
                            avg_loss = network()
5986
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5987
                            sgd.minimize(avg_loss)
5988
                    # the test startup program is not used.
5989 5990
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5991 5992
                            avg_loss = network()
                    print_prog(test_program_2)
5993

5994
            The two code snippets above will generate and print same programs.
5995
        """
5996

T
tangwei12 已提交
5997
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5998 5999 6000
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6001
        pruned_origin_block_id_map = None
6002
        if for_test:
6003 6004
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
6005 6006
                self.desc
            )
6007 6008
            forward_prog.blocks = [
                Block(forward_prog, i)
6009
                for i in range(forward_prog.desc.num_blocks())
6010 6011 6012
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
6013
        else:
6014
            p = Program()
G
gongweibao 已提交
6015 6016
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
6017
            p.desc = core.ProgramDesc(self.desc)
6018
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
6019 6020

            p._current_role = self._current_role
6021
            p.__op_role_var = self.__op_role_var
6022
            p._appending_grad_times = self._appending_grad_times
6023 6024
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
G
gongweibao 已提交
6025

T
tangwei12 已提交
6026
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
6027
            # its desc.
W
Wu Yi 已提交
6028
            p._sync_with_cpp()
6029

W
Wu Yi 已提交
6030
        p._copy_param_info_from(self)
6031
        p._copy_data_info_from(self, pruned_origin_block_id_map)
6032
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
6033
        return p
6034

6035
    def _prune(self, targets):
Y
yuyang18 已提交
6036 6037 6038 6039 6040 6041 6042 6043
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
6044
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
6045 6046 6047 6048
                need to be pruned

        Returns:
            Program:  A new, pruned program.
6049
        """
6050
        return self._prune_with_input([], targets)
6051 6052

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
6053
        """
6054
        Prune operators and variables which are not needed to generate
6055 6056
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
6057 6058 6059 6060 6061 6062 6063

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
6064
            targets(list|Variable|Operator): A list of variables, operators, or variable names
6065 6066 6067 6068 6069 6070
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6071
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6072 6073 6074
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6075 6076
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6077 6078
        if not isinstance(targets, list):
            targets = [targets]
6079 6080

        for var in feeded_var_names:
6081
            if not isinstance(var, str):
6082 6083
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6084 6085
                    "str, but received %s." % type(var)
                )
6086

6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6103 6104 6105 6106
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6107
                    name = t.name
6108
                elif isinstance(t, str):
6109
                    name = str(t)
6110
                else:
6111 6112
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6113 6114
                        "Variable or Operator, but received %s." % type(t)
                    )
6115 6116 6117 6118 6119 6120

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6121 6122 6123
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6124

6125 6126 6127 6128 6129 6130 6131 6132 6133
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6134
                        # Skip optimize op except for optimize op in targets,
6135 6136 6137 6138 6139
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6140

6141
                if target_op is not None:
6142 6143 6144
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6145

6146
        res = Program()
6147
        res.desc, pruned_origin_block_id_map = core.prune(
6148 6149
            self.desc, set(feeded_var_names), targets_idx
        )
6150
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6151
        res._sync_with_cpp()
6152 6153 6154 6155 6156

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6157 6158
        return res

X
Xin Pan 已提交
6159
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6160
        """
F
fengjiayi 已提交
6161 6162 6163 6164 6165
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6166
        3. change the :code:`is_test`
Y
yuyang18 已提交
6167 6168 6169
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6170
        Args:
X
Xin Pan 已提交
6171 6172
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6173

Y
yuyang18 已提交
6174 6175 6176 6177 6178 6179
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6180
        res = Program()
6181
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6182 6183 6184 6185

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6186
        if prune_read_op:
6187
            while True:
6188 6189 6190 6191
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6192 6193 6194 6195 6196 6197
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6198
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6199 6200

        # change all `is_test` attributes to True
6201
        for i in range(res.desc.num_blocks()):
6202
            block = res.desc.block(i)
6203
            for j in range(block.op_size()):
6204 6205
                op = block.op(j)
                if op.has_attr('is_test'):
6206
                    op._set_bool_attr('is_test', True)
6207 6208 6209
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6210
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6211
        res._sync_with_cpp()
6212 6213
        return res

6214
    def _remove_training_info(self, clip_extra=True):
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6229
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6230 6231
        res._sync_with_cpp()

6232 6233
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6234
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6235

6236
        for i in range(res.desc.num_blocks()):
6237 6238 6239 6240
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6241 6242
            if not clip_extra:
                continue
6243 6244 6245 6246
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6247 6248 6249

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6263 6264 6265
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6279
                # The extra output of op will be removed in the future
6280 6281
                for name in remove_output_list:
                    op.remove_output(name)
6282

6283 6284 6285 6286 6287 6288 6289
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6290 6291
                )
                quant_attrs = [
6292 6293 6294 6295 6296 6297 6298
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6299
                ]
6300 6301
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6302
                remove_attr_list = []
6303 6304 6305 6306 6307 6308
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6309
                    if len(extra_attrs_map) > 0:
6310
                        if name in common_clipped_attrs_list:
6311
                            op.remove_attr(name)
6312
                        continue
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6323 6324
        return res

6325 6326
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6327
        """
6328
        .. note::
6329
            1. All information about parameters will be lost after serialization;
6330
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6331

6332 6333
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6334

J
Jiabin Yang 已提交
6335
        Args:
Y
yuyang18 已提交
6336

J
Jiabin Yang 已提交
6337
            binary_str_type (str): the binary prootbuf string.
6338

J
Jiabin Yang 已提交
6339 6340
        Returns:
            Program: A deserialized Program.
6341 6342 6343 6344

        Examples:
            .. code-block:: python

6345 6346 6347 6348
                import paddle
                import paddle.static as static

                paddle.enable_static()
6349

6350 6351 6352 6353
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6354

6355
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6356

6357
                    z = paddle.matmul(x=x, y=y)
6358

6359 6360
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6361

6362
                    print(static.default_main_program())
6363
                    print(prog_restored)
Y
yuyang18 已提交
6364
        """
6365 6366
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6367
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6368
        p._sync_with_cpp()
6369
        return p
Y
Yu Yang 已提交
6370

6371
    @staticmethod
6372
    def _construct_from_desc(desc):
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6384
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6385 6386 6387
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6388 6389
    @property
    def random_seed(self):
Y
yuyang18 已提交
6390
        """
J
Jiabin Yang 已提交
6391
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6392 6393
        the random seed from random device.

6394
        .. note::
6395
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6396 6397 6398

        Returns:
            int64: Random seed in current Program
6399

6400 6401 6402 6403

        Examples:
            .. code-block:: python

6404 6405 6406
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6407

6408 6409 6410
                paddle.enable_static()

                prog = static.default_main_program()
6411
                random_seed = prog.random_seed
6412
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6413 6414 6415
                print(random_seed)
                ## 0
                ## the default random seed is 0
6416

6417
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6418
                prog.random_seed = 1
6419
                z_var = F.dropout(x_var, 0.7)
6420

6421
                print(prog.random_seed)
6422 6423
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6424
        """
D
dzhwinter 已提交
6425 6426
        return self._seed

Q
qiaolongfei 已提交
6427 6428
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6429
        """
6430 6431
        The number of :ref:`api_guide_Block_en`  in this Program.

6432
        .. note::
6433
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6434 6435 6436

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6437

6438 6439 6440 6441

        Examples:
            .. code-block:: python

6442 6443 6444 6445
                import paddle
                import paddle.static as static

                paddle.enable_static()
6446

6447
                prog = static.default_main_program()
6448 6449
                num_blocks = prog.num_blocks
                print(num_blocks)
6450

6451 6452
                # print result:
                # 1
Y
yuyang18 已提交
6453
        """
Q
qiaolongfei 已提交
6454 6455
        return self.desc.num_blocks()

D
dzhwinter 已提交
6456 6457 6458
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6459 6460
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6461 6462
                % type(seed)
            )
D
dzhwinter 已提交
6463 6464
        self._seed = seed

Y
Yu Yang 已提交
6465
    def __repr__(self):
6466
        return self.__str__()
6467

Y
Yu Yang 已提交
6468
    def global_block(self):
Y
yuyang18 已提交
6469
        """
6470 6471
        .. note::
            This API has no effect in Dygraph mode.
6472 6473 6474

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6475 6476
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6477

6478 6479 6480 6481

        Examples:
            .. code-block:: python

6482 6483 6484 6485
                import paddle
                import paddle.static as static

                paddle.enable_static()
6486

6487
                prog = static.default_main_program()
6488 6489
                gb_block = prog.global_block()
                print(gb_block)
6490

Y
yuyang18 已提交
6491
        """
Y
Yu Yang 已提交
6492 6493
        return self.blocks[0]

Q
Qiao Longfei 已提交
6494
    def block(self, index):
Y
yuyang18 已提交
6495
        """
6496 6497
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6498

6499 6500
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6501 6502
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6503

J
Jiabin Yang 已提交
6504 6505
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6506 6507 6508 6509

        Examples:
            .. code-block:: python

6510 6511 6512 6513
                import paddle
                import paddle.static as static

                paddle.enable_static()
6514

6515
                prog = static.default_main_program()
6516 6517
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6518
        """
Q
Qiao Longfei 已提交
6519 6520
        return self.blocks[index]

Y
Yu Yang 已提交
6521
    def current_block(self):
Y
yuyang18 已提交
6522
        """
6523 6524
        .. note::
            This API has no effect in Dygraph mode.
6525

J
Jiabin Yang 已提交
6526 6527
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6528

J
Jiabin Yang 已提交
6529 6530
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6531

6532 6533 6534
        Examples:
            .. code-block:: python

6535 6536 6537 6538
                import paddle
                import paddle.static as static

                paddle.enable_static()
6539

6540
                prog = static.default_main_program()
6541 6542
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6543
        """
Y
Yu Yang 已提交
6544 6545
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6546
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6547 6548 6549 6550 6551
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6552

Y
yuyang18 已提交
6553 6554 6555 6556 6557
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6558
        new_block_idx = len(self.blocks)
6559 6560 6561 6562 6563
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6564
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6565 6566 6567 6568
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6569
    def _rollback(self):
Y
yuyang18 已提交
6570 6571 6572 6573 6574
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6575 6576
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6577
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6588 6589 6590
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6591
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6592

W
Wu Yi 已提交
6593
    def _copy_param_info_from(self, other):
6594
        """
6595
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6596

Y
yuyang18 已提交
6597 6598 6599
        Notes: This is a very low level API. Users should not invoke it
        directly.

6600 6601 6602 6603 6604 6605 6606
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6607 6608
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6609 6610
                % type(other)
            )
6611

W
Wu Yi 已提交
6612
        self.global_block()._copy_param_info_from(other.global_block())
6613

6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6625 6626
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6627 6628
                % type(other)
            )
6629 6630
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6631
        self._parameters_on_pservers = other._parameters_on_pservers
6632
        self._endpoints = other._endpoints
6633
        self._ps_endpoint = other._ps_endpoint
6634 6635
        self._distributed_lookup_table = other._distributed_lookup_table

6636
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6637 6638
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6639

Y
yuyang18 已提交
6640 6641 6642
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6643 6644
        Args:
            other(Program): Other program
6645
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6646 6647
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6648
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6649 6650 6651 6652 6653

        Returns:
            None
        """
        if not isinstance(other, Program):
6654 6655
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6656 6657
                % type(other)
            )
F
fengjiayi 已提交
6658

6659 6660
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6661
                i: i for i in range(self.desc.num_blocks())
6662
            }
6663 6664 6665

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6666 6667
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6668
            for var in list(block.vars.values()):
6669 6670 6671 6672 6673 6674 6675
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6676

6677
    def list_vars(self):
Y
yuyang18 已提交
6678
        """
6679
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6680

J
Jiabin Yang 已提交
6681
        Returns:
6682
            iterable Tensors: The Generator will yield every Tensor in this program.
6683 6684 6685 6686

        Examples:
            .. code-block:: python

6687 6688
                import paddle
                import paddle.static as static
6689

6690 6691 6692 6693 6694
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6695 6696
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6697

6698 6699
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6700
        """
6701
        for each_block in self.blocks:
6702
            for each_var in list(each_block.vars.values()):
6703 6704
                yield each_var

6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6715 6716 6717 6718
                import paddle
                import paddle.static as static

                paddle.enable_static()
6719

6720 6721
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6722
                hidden = static.nn.fc(x=data, size=10)
6723 6724
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6725 6726 6727 6728 6729 6730 6731

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6732 6733
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6744 6745 6746 6747 6748 6749 6750 6751 6752
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6753 6754 6755
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6756 6757
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6758
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6786
        # can not be imported at the begainning of this file.
6787 6788
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6789

6790 6791
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6792 6793 6794 6795
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6796 6797 6798 6799 6800

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6801 6802
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6803 6804 6805
                    type(mode)
                )
            )
6806 6807 6808 6809 6810

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6811 6812 6813 6814 6815
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6834 6835 6836 6837
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6838 6839 6840 6841 6842 6843 6844 6845

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6846 6847 6848 6849
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6850 6851 6852 6853 6854 6855
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6856
        Set parameters and persistable buffers in state_dict to program.
6857
        An exception will throw if shape or dtype of the parameters is not match.
6858

6859 6860 6861 6862
        .. note::
            This function MUST called after run start_up_program

        Args:
6863
            state_dict(dict): the dict store parameters and persistable buffers.
6864 6865
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6866
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6867 6868
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6869

6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6899 6900 6901
                    type(state_dict)
                )
            )
6902 6903

        vars_dict = {var.name: var for var in self.list_vars()}
6904 6905 6906
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6918 6919
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6920 6921
                except TypeError as err:
                    warnings.warn(
6922 6923
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6924
            else:
6925
                warnings.warn(
6926 6927 6928 6929 6930 6931
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6932

Y
Yu Yang 已提交
6933

6934
class Parameter(Variable, metaclass=ParameterMetaClass):
6935
    """
6936
    Parameter is derived from Variable. A parameter is a persistable
6937
    Variable, and will be updated by optimizers after each iteration.
6938
    The training of a neural network is essentially the updating of
6939 6940
    its parameters.

6941
    Relative to a general Variable, a Parameter has several its own
6942 6943
    member variables:

6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6954
        need_clip (bool): Whether the parameter gradient need to be cliped
6955
            in optimizer. Default is True.
6956 6957
    """

6958 6959 6960 6961 6962 6963
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6964
        **kwargs,
6965
    ):
6966 6967 6968 6969 6970
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6971 6972
        for each in shape:
            if each < 0:
6973 6974
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6985
            **kwargs,
6986
        )
Y
Yu Yang 已提交
6987 6988 6989 6990
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6991 6992
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6993
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6994

6995 6996
        self.need_clip = kwargs.get('need_clip', True)

6997 6998
        self.is_distributed = False

6999 7000
        self.is_parameter = True

F
fengjiayi 已提交
7001
    def __str__(self):
7002
        return self._to_readable_code()
F
fengjiayi 已提交
7003

F
update  
fengjiayi 已提交
7004 7005 7006
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
7007

F
update  
fengjiayi 已提交
7008 7009 7010 7011 7012 7013 7014 7015
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

7016 7017 7018 7019
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
7020
                import paddle
7021 7022

                prog = fluid.default_main_program()
G
GGBond8488 已提交
7023
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
7024 7025
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
7026
        """
7027
        assert isinstance(throw_on_error, bool) and isinstance(
7028 7029
            with_details, bool
        )
F
update  
fengjiayi 已提交
7030 7031
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
7032 7033 7034 7035 7036 7037 7038
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
7039
            for attr_name in additional_attr:
7040
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
7041 7042
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
7043 7044 7045 7046
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
7047

W
wanghuancoder 已提交
7048
class EagerParamBase(core.eager.Tensor):
7049
    """
7050 7051
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7069
        need_clip (bool): Whether the parameter gradient need to be cliped
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7084 7085
                    % list(shape)
                )
7086 7087 7088 7089 7090 7091 7092

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7093 7094 7095
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7096
        super().__init__(
7097 7098 7099 7100 7101 7102
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7117 7118 7119
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7120 7121

    def set_init_func(self, obj):
7122
        self._init_func = obj
7123 7124 7125

    @dygraph_only
    def initialize(self):
7126 7127 7128
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7129
        self._init_func(self, None)
7130
        # clear function handle to release resource
7131
        self._init_func = None
7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7144 7145
                type(trainable),
            )
7146

7147 7148 7149 7150
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7151 7152 7153
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7154
        self._init_op_creator(self, block)
7155

7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7175
            tensor=super().__str__()
7176
        )
7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7206 7207
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7208 7209 7210 7211 7212 7213
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7214 7215
        return new_param

7216 7217 7218
    __repr__ = __str__


Y
Yu Yang 已提交
7219
# program is a global instance.
Y
Yu Yang 已提交
7220 7221
_main_program_ = Program()
_startup_program_ = Program()
7222
_startup_program_._is_start_up_program_ = True
7223

7224

7225
def default_startup_program():
Y
Yu Yang 已提交
7226
    """
Y
yuyang18 已提交
7227 7228
    Get default/global startup program.

7229
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7230
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7231

7232 7233
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7234

7235 7236
    Returns:
        Program: current default startup program.
7237

7238
    Returns type:
7239 7240 7241 7242

    Examples:
        .. code-block:: python

7243
            import paddle
7244

7245
            paddle.enable_static()
7246 7247 7248 7249
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7250
    """
Y
Yu Yang 已提交
7251
    return _startup_program_
7252

7253

7254
def default_main_program():
Y
Yu Yang 已提交
7255
    """
7256
    This API can be used to get ``default main program`` which store the
7257
    descriptions of Ops and tensors.
T
tangwei12 已提交
7258

7259 7260
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7261

7262
    The ``default main program`` is the default value for ``Program`` parameter in
7263
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7264
    :code:`default_main_program` when the program is not specified.
7265

7266
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7267

Y
Yu Yang 已提交
7268
    Returns:
7269
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7270 7271 7272 7273

    Examples:
        ..  code-block:: python

7274
            import paddle
7275

7276
            paddle.enable_static()
7277
            # Sample Network:
7278 7279 7280
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7281

7282 7283 7284
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7285
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7286
    """
Y
Yu Yang 已提交
7287
    return _main_program_
Y
Yu Yang 已提交
7288 7289 7290 7291 7292


def switch_main_program(program):
    """
    Switch the main program to a new program.
7293

Y
Yu Yang 已提交
7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7308
    Switch the startup program to a new program
Y
Yu Yang 已提交
7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7321
@signature_safe_contextmanager
Y
Yu Yang 已提交
7322 7323
def program_guard(main_program, startup_program=None):
    """
7324 7325
    :api_attr: Static Graph

7326 7327 7328
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7329

G
guofei 已提交
7330
    Args:
7331
        main_program(Program): New main program inside ``with`` statement.
7332 7333
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7334 7335 7336
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7337
    Examples:
7338
       .. code-block:: python
T
tangwei12 已提交
7339

7340
          import paddle
Y
yuyang18 已提交
7341

7342 7343 7344 7345 7346
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7347
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7348 7349 7350

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7351

Y
Yu Yang 已提交
7352
    Examples:
7353
       .. code-block:: python
Y
yuyang18 已提交
7354

7355
          import paddle
7356

7357 7358 7359 7360 7361
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7362

Y
Yu Yang 已提交
7363
    """
7364
    from .data_feeder import check_type
7365 7366 7367 7368

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7369 7370
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7371 7372 7373 7374 7375 7376
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7377 7378
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7379
        startup_program = switch_startup_program(startup_program)
7380 7381 7382 7383 7384 7385
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7386 7387


W
Wu Yi 已提交
7388
def _get_var(name, program=None):
X
xuwei06 已提交
7389
    """
Y
yuyang18 已提交
7390
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7391

X
xuwei06 已提交
7392 7393 7394
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7395
        If None, default_global_program() will be used.
X
xuwei06 已提交
7396 7397 7398 7399 7400 7401 7402

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7403
    assert isinstance(program, Program)
X
xuwei06 已提交
7404 7405

    return program.global_block().var(name)
7406 7407


S
rename  
sneaxiy 已提交
7408
@signature_safe_contextmanager
L
lujun 已提交
7409
def _dygraph_guard(tracer):
7410 7411 7412 7413
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7414

C
Charles-hit 已提交
7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7427 7428 7429
    try:
        yield
    finally:
7430 7431 7432
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7433 7434


S
rename  
sneaxiy 已提交
7435
@signature_safe_contextmanager
L
lujun 已提交
7436
def _dygraph_place_guard(place):
7437 7438 7439
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7440 7441
    _set_dygraph_tracer_expected_place(place)

7442 7443 7444
    try:
        yield
    finally:
7445
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7446
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7447 7448


7449 7450 7451 7452 7453 7454 7455 7456 7457 7458
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7459

7460
    Note:
7461
        The API only supports static graph mode.
7462 7463 7464 7465

    A context manager that specifies the device on which the OP will be placed.

    Args:
7466
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7467
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7468 7469 7470 7471 7472 7473 7474
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7475

7476
        .. code-block:: python
7477

7478
            # required: gpu
Z
Zhang Ting 已提交
7479
            import paddle
7480

Z
Zhang Ting 已提交
7481 7482 7483
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7484
            if support_gpu:
Z
Zhang Ting 已提交
7485
                place = paddle.CUDAPlace(0)
7486 7487

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7488 7489 7490
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7491

Z
Zhang Ting 已提交
7492
            with paddle.static.device_guard("cpu"):
7493
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7494 7495
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7496
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7497
                out = paddle.reshape(data1, shape=shape)
7498

Z
Zhang Ting 已提交
7499 7500
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7501 7502 7503
            result = exe.run(fetch_list=[out])
    """

7504 7505 7506 7507 7508
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
K
Kim Yann 已提交
7509
    if device not in ['cpu', 'gpu', 'npu', 'xpu', '', None]:
7510
        raise ValueError(
K
Kim Yann 已提交
7511
            "The Attr(device) should be 'cpu' 'npu' 'xpu' or 'gpu', and it can also be empty string or None "
7512 7513
            "when there is no need to specify device. But received %s" % device
        )
7514 7515
    if index:
        device = ":".join([device, index])
7516
    pre_device = switch_device(device)
7517 7518 7519 7520
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7521 7522


7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7535
        The API only supports static graph mode.
7536

7537
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7538 7539 7540 7541 7542

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7543 7544
    assert (
        not _non_static_mode()
7545
    ), "cuda_graph_guard only works under static graph mode"
7546 7547
    assert (
        core.is_compiled_with_cuda()
7548 7549 7550 7551 7552 7553 7554 7555
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7556 7557 7558
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7559
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7560 7561 7562 7563 7564 7565 7566

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7567 7568
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7569 7570 7571 7572
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7573 7574
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7575 7576
        else:
            raise ValueError(
7577 7578
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7579 7580 7581 7582 7583


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7584
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7585 7586 7587 7588 7589 7590 7591 7592 7593 7594

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7595
            import paddle
G
guofei 已提交
7596 7597

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7598
            res = paddle.get_flags(flags)
G
guofei 已提交
7599 7600 7601 7602 7603 7604
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7605
            if _global_flags().is_public(key):
7606
                value = _global_flags()[key]
G
guofei 已提交
7607 7608 7609 7610
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7611 7612 7613
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7614
    elif isinstance(flags, str):
7615
        if _global_flags().is_public(flags):
7616
            value = _global_flags()[flags]
G
guofei 已提交
7617 7618 7619 7620
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7621 7622
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7623 7624 7625
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7626 7627 7628 7629 7630 7631


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7645 7646 7647 7648
        return place

    if not isinstance(place, str):
        raise ValueError(
7649 7650
            "place only support string which is 'Place' and so on."
        )
7651 7652

    place = place.lower()
7653
    if place == "cpu":
7654
        return core.CPUPlace()
7655

7656
    if place == "device":
7657 7658
        return core.Place()

7659
    # GPU
7660 7661 7662 7663
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7664
                "The device should not be {}, since PaddlePaddle is "
7665
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7666
            )
7667 7668 7669 7670 7671 7672 7673 7674 7675
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7676 7677

    # XPU
7678 7679 7680 7681
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7682
                "The device should not be {}, since PaddlePaddle is "
7683
                "not compiled with XPU".format(avaliable_xpu_place.group())
7684
            )
7685 7686 7687 7688
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7689 7690 7691 7692 7693 7694

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
7695
                "The device should not be {}, since PaddlePaddle is "
7696
                "not compiled with NPU".format(avaliable_npu_place.group())
7697
            )
7698 7699 7700 7701 7702
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7703 7704 7705 7706 7707
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7708
                "The device should not be {}, since PaddlePaddle is "
7709
                "not compiled with IPU".format(avaliable_ipu_place.group())
7710
            )
J
jianghaicheng 已提交
7711 7712 7713 7714 7715
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7716
    raise ValueError(
K
Kim Yann 已提交
7717
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace and NPUPlace, but received {}.".format(
7718 7719 7720
            place
        )
    )
7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret