test_layers.py 162.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib
import inspect
Q
Qiao Longfei 已提交
17 18
import unittest

19
import numpy as np
20
from decorator_helper import prog_scope
21
from test_imperative_base import new_program_scope
22 23 24

import paddle
import paddle.fluid as fluid
25
import paddle.fluid.layers as layers
26
import paddle.fluid.nets as nets
27
import paddle.nn.functional as F
28
from paddle.fluid import core
29 30 31 32 33 34 35
from paddle.fluid.dygraph import base, nn, to_variable
from paddle.fluid.framework import (
    Program,
    _test_eager_guard,
    default_main_program,
    program_guard,
)
J
jerrywgz 已提交
36
from paddle.fluid.initializer import Constant
37 38
from paddle.fluid.layers.device import get_places
from paddle.fluid.param_attr import ParamAttr
39
from paddle.tensor import random
40 41 42 43 44 45 46 47 48 49 50


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

51 52 53 54 55 56 57 58
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
59 60 61 62

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
63
            paddle.seed(self.seed)
L
Leo Chen 已提交
64
            paddle.framework.random._manual_program_seed(self.seed)
65 66
            yield

67 68 69
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
70
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
71
        exe.run(fluid.default_startup_program())
72 73 74 75 76 77
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
78 79

    @contextlib.contextmanager
80
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
81
        with fluid.dygraph.guard(
82 83
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
84
            paddle.seed(self.seed)
L
Leo Chen 已提交
85
            paddle.framework.random._manual_program_seed(self.seed)
86 87 88 89
            yield


class TestLayer(LayerTest):
90 91
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
92
            def __init__(self, input_size, linear1_size=4):
93
                super().__init__()
94
                self.linear1 = paddle.nn.Linear(
95 96
                    input_size, linear1_size, bias_attr=False
                )
97 98 99
                self.linear2 = paddle.nn.Linear(
                    linear1_size, 1, bias_attr=False
                )
100 101 102 103 104

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
105 106 107
                return ret

        with self.dynamic_graph():
108 109 110 111 112
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
113
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
114
                ret = custom(x, do_linear2=True)
115
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
116 117
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
118 119
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
120
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
121
            ret = custom(x, do_linear2=True)
122
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
123

124 125 126
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
127 128 129 130 131 132
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
133 134
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
135 136 137
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
138
            static_ret, static_ret2 = self.get_static_graph_result(
139 140
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
141
        with self.dynamic_graph():
142 143 144 145
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
146 147 148
                dy_eager_ret2 = fluid.layers.dropout(
                    t, dropout_prob=0.35, seed=1, is_test=False
                )
149 150 151
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

152 153 154
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
155 156 157
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
158 159 160
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

161 162
        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
163

164 165 166
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
167

S
songyouwei 已提交
168 169 170
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
171 172 173 174 175 176
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
177
            linear = paddle.nn.Linear(
178 179
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
180
            ret = linear(t)
181 182 183
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
184
        with self.dynamic_graph():
185 186
            with _test_eager_guard():
                t = base.to_variable(inp)
187
                linear = paddle.nn.Linear(
188 189
                    32,
                    4,
190 191
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
192 193 194
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
195
            t = base.to_variable(inp)
196
            linear = paddle.nn.Linear(
197 198
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
199 200 201
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

202 203
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
204

205 206 207 208 209
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
210
                linear = paddle.nn.Linear(
211 212
                    32,
                    4,
213 214
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
215 216 217 218 219 220 221 222
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
223
                linear = paddle.nn.Linear(
224 225
                    32,
                    4,
226 227
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
228 229 230 231 232 233 234
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
235 236 237 238 239 240
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
241 242
            flatten = nn.Flatten()
            ret = flatten(t)
243 244 245
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
246
        with self.dynamic_graph():
247 248 249 250 251 252
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

253 254 255 256 257
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

258 259
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
260 261 262 263 264 265

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
266
                linear = paddle.nn.Linear(
267 268
                    32,
                    4,
269 270
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
271 272 273 274 275 276 277 278
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
279
                linear = paddle.nn.Linear(
280 281
                    32,
                    4,
282 283
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
284 285 286 287
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

288 289 290
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
291 292 293 294 295 296
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
297 298 299
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
300 301 302 303 304
                act='sigmoid',
            )
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
305
        with self.static_graph():
306 307 308 309 310 311
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
312
            lm = nn.LayerNorm(
313
                normalized_shape=[32, 32],
314
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
315 316
                act='sigmoid',
            )
317
            ret = lm(t)
318 319 320
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
321
        with self.dynamic_graph():
322 323 324 325
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
326 327
                    act='sigmoid',
                )
328 329 330
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

331
            lm = nn.LayerNorm(
332
                normalized_shape=[32, 32],
333
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
334 335
                act='sigmoid',
            )
336
            dy_ret = lm(base.to_variable(inp))
337
            dy_ret_value = dy_ret.numpy()
338

339
        with self.dynamic_graph():
340 341 342 343 344 345 346
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
347 348
                    act='sigmoid',
                )
349 350 351 352 353
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

354
            lm = nn.LayerNorm(
355
                normalized_shape=[32, 32],
356 357 358 359
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
360 361
                act='sigmoid',
            )
362 363 364 365
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
366

367 368 369
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_eager_ret_value, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, static_ret2)
370

371
        with self.dynamic_graph():
372 373 374 375
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
376 377
                    act='sigmoid',
                )
378 379 380
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

381 382 383
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
384 385
                act='sigmoid',
            )
386 387 388
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
389 390 391 392
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
393
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
394 395
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
396
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
397 398
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
399 400

            with self.dynamic_graph():
401 402 403 404 405 406
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
407 408 409 410
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
411 412
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
413

414 415 416 417 418
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
419 420
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
421 422

        with self.dynamic_graph():
423 424 425 426 427
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

428 429
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
430
            dy_ret_value = dy_ret.numpy()
431

432 433
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
434

435 436 437 438 439
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
440 441 442 443 444 445 446
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
447 448

        with self.dynamic_graph():
449 450 451
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
452 453 454
                dy_eager_ret = layers.matmul(
                    base.to_variable(t), base.to_variable(t2)
                )
455 456
                dy_eager_ret_value = dy_eager_ret.numpy()

457 458
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
459
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
460
            dy_ret_value = dy_ret.numpy()
461

462 463
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
464

M
minqiyang 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
478 479
                input=x, hidden=hidden, size=D * 3
            )
M
minqiyang 已提交
480
            static_ret = self.get_static_graph_result(
481 482 483
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
484 485 486 487 488

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
489 490
                input=x, hidden=hidden, size=D * 3
            )
491
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
492 493 494
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
495 496 497
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
498 499

        with self.dynamic_graph():
500 501
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
502 503 504
                dy_eager_ret = gru(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
505 506 507 508
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

509
            gru = nn.GRUUnit(size=D * 3)
510 511 512
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input)
            )
513 514 515
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
516 517

        for i in range(len(static_ret)):
518 519 520 521 522 523 524 525 526
            np.testing.assert_allclose(
                static_ret[i], static_ret2[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_ret_value[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_eager_ret_value[i], rtol=1e-05
            )
M
minqiyang 已提交
527

528
        with self.dynamic_graph():
529 530 531 532
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
533 534 535
                        custom_weight
                    )
                )
536 537
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
538 539 540 541 542 543
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
544
                self.assertFalse(
545 546
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
                )
547 548 549 550
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
551 552 553 554 555 556
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
557
                for o1, o2 in zip(dy_ret1, dy_ret2):
558
                    np.testing.assert_array_equal(o1.numpy(), o2.numpy())
559 560 561

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
562 563 564 565 566 567
                np.testing.assert_array_equal(
                    gru1.weight.numpy(), gru2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    gru1.bias.numpy(), gru2.bias.numpy()
                )
568

569
            custom_weight = np.random.randn(D, D * 3).astype("float32")
570 571 572 573 574
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
575 576
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
577 578 579 580 581 582
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
583
            self.assertFalse(
584 585
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
            )
586 587 588 589
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
590 591 592 593 594 595
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
596
            for o1, o2 in zip(dy_ret1, dy_ret2):
597
                np.testing.assert_array_equal(o1.numpy(), o2.numpy())
598 599 600

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
601 602 603
            np.testing.assert_array_equal(
                gru1.weight.numpy(), gru2.weight.numpy()
            )
604
            np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy())
605

X
Xin Pan 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
623
            ret = paddle.pow(ret, t3)
X
Xin Pan 已提交
624 625 626 627
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

628 629 630 631
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
632 633

        with self.dynamic_graph():
634 635
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
636
                ret = paddle.pow(ret, to_variable(n3))
637 638 639 640 641
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

642
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
643
            ret = paddle.pow(ret, to_variable(n3))
644 645 646
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
647
            dy_ret_value = dy_ret.numpy()
648

649 650
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
651 652 653 654 655 656

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
657
            with _test_eager_guard():
658
                min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
659
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
660 661 662
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

663
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
664
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
665 666
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
667

668 669 670 671
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
672

673 674 675 676 677 678 679
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
680 681 682 683 684 685 686
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
687
            out = layers.sequence_conv(seq, 2, act='sigmoid')
688 689 690 691 692 693 694 695 696
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
697 698

        with self.static_graph():
699 700 701 702 703 704 705
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
706
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
707
            out = seq_conv(seq)
708 709 710 711 712 713 714 715 716 717 718 719
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
        np.testing.assert_array_equal(
            np.array(static_rlt), np.array(static_rlt2)
        )
720 721 722 723 724

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
725
            out = paddle.static.nn.conv2d_transpose(
726 727
                input=img,
                num_filters=10,
728
                filter_size=27,
729
                act='sigmoid',
730 731 732 733 734
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
735 736 737
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
738
                num_channels=3,
739
                num_filters=10,
740
                filter_size=27,
741
                act='sigmoid',
742 743
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
744
            out = conv2d_transpose(img)
745 746 747
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
748
        with self.dynamic_graph():
749 750 751 752 753 754
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
755 756
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
757 758 759
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

760
            conv2d_transpose = nn.Conv2DTranspose(
761
                num_channels=3,
762
                num_filters=10,
763
                filter_size=27,
764
                act='sigmoid',
765 766
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
767
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
768
            dy_rlt_value = dy_rlt.numpy()
769 770 771
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
772

773
        with self.dynamic_graph():
774 775 776 777 778
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
779 780 781 782 783 784 785 786 787 788 789 790
                        custom_weight
                    )
                )
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr,
                )
791 792 793
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
794 795
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
796 797 798 799

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
800 801
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
802
                conv2d2.weight.set_value(conv2d1_weight_np)
803 804 805
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
806 807 808
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
809
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
810 811 812

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
813 814 815 816 817 818
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
819

820 821
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
822 823 824 825 826 827 828 829 830 831 832 833 834 835
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv2d1 = nn.Conv2DTranspose(
                num_channels=3, num_filters=3, filter_size=[2, 2]
            )
            conv2d2 = nn.Conv2DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr,
            )
836 837 838 839 840 841 842
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
843 844
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
845
            conv2d2.weight.set_value(conv2d1_weight_np)
846 847 848
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
849 850 851
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
852
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
853 854 855

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
856 857 858 859 860 861
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
862

863 864 865 866 867
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
868 869 870
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
871 872 873 874 875 876 877
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
878 879 880 881 882 883
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
884 885 886 887
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

888 889 890 891 892
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
893 894 895 896 897 898
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
899 900 901 902 903
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
904 905
                act='sigmoid',
            )
906

907 908 909
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
910

911
        with self.static_graph():
912 913 914 915 916 917
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
918
            btp = nn.BilinearTensorProduct(
919 920
                3,
                3,
921 922
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
923 924
                act='sigmoid',
            )
925
            out = btp(data_x, data_y)
926 927 928
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
929
        with self.dynamic_graph():
930 931 932 933 934 935
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
936 937 938 939 940
                    act='sigmoid',
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
941 942
                dy_eager_rlt_value = dy_eager_rlt.numpy()

943
            btp = nn.BilinearTensorProduct(
944 945
                3,
                3,
946 947
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
948 949
                act='sigmoid',
            )
950
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
951
            dy_rlt_value = dy_rlt.numpy()
952

953
        with self.dynamic_graph():
954 955
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
956 957 958
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
959 960
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

961
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
962 963 964
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
965
            dy_rlt2_value = dy_rlt2.numpy()
966

967
        with self.static_graph():
968 969 970 971 972 973 974 975 976 977 978 979 980
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
981

982 983 984 985 986
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
987

988
        with self.dynamic_graph():
989 990 991 992
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
993 994 995
                        custom_weight
                    )
                )
996
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
997 998 999 1000 1001 1002 1003 1004 1005
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr
                )
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1006
                self.assertFalse(
1007 1008
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1009 1010
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1011 1012 1013 1014 1015 1016
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1017
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1018 1019 1020

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
1021 1022 1023 1024 1025 1026
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
1027

1028
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1029 1030 1031 1032 1033
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1034
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1035 1036 1037 1038 1039 1040 1041 1042 1043
            btp2 = nn.BilinearTensorProduct(
                3, 3, 6, act='sigmoid', param_attr=weight_attr
            )
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1044 1045 1046
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1047 1048 1049 1050 1051 1052
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1053
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1054 1055 1056

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
1057 1058 1059
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
1060
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
1061

1062
    def prelu_test(self, mode):
1063 1064
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1065 1066 1067 1068 1069 1070
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
1071
            out = paddle.static.nn.prelu(
1072 1073 1074 1075 1076
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0))
            )
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1077 1078

        with self.static_graph():
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=data_t.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1091
            out = prelu(data_t)
1092 1093 1094
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1095 1096

        with self.dynamic_graph():
1097 1098 1099 1100 1101
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1102 1103
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1104 1105 1106
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1107 1108 1109 1110 1111 1112
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1113
            dy_rlt = prelu(base.to_variable(inp_np))
1114
            dy_rlt_value = dy_rlt.numpy()
1115

1116 1117 1118
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1119

1120
        with self.dynamic_graph():
1121 1122 1123 1124 1125 1126 1127
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1128 1129
                    param_attr=ParamAttr(initializer=Constant(2.0)),
                )
1130 1131 1132 1133
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1134 1135
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1136 1137 1138
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1139 1140
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
                )
1141
                self.assertFalse(
1142 1143
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1144 1145 1146
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1147
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1148 1149

                prelu2.weight = prelu1.weight
1150 1151 1152
                np.testing.assert_array_equal(
                    prelu1.weight.numpy(), prelu2.weight.numpy()
                )
1153

1154 1155
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
            prelu1 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(2.0)),
            )
            prelu2 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1168 1169 1170
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
1171 1172
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
            )
1173 1174 1175 1176
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
1177
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1178 1179

            prelu2.weight = prelu1.weight
1180 1181 1182
            np.testing.assert_array_equal(
                prelu1.weight.numpy(), prelu2.weight.numpy()
            )
1183

1184 1185 1186 1187 1188
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1189 1190 1191 1192 1193
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1194 1195 1196 1197 1198 1199 1200 1201 1202
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
1203 1204
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1205 1206 1207
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1208
            emb_rlt = emb2(data_t)
1209 1210 1211
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
1212
        with self.dynamic_graph():
1213
            with _test_eager_guard():
1214 1215 1216 1217 1218
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
1219 1220 1221
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1222 1223 1224
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1225 1226
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1227 1228

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1229
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1230
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1231

1232
        with self.dynamic_graph():
1233 1234 1235 1236
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1237 1238 1239
                        custom_weight
                    )
                )
1240
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1241 1242 1243 1244 1245
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
1246 1247 1248
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
1249 1250 1251 1252 1253
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
1254 1255 1256
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
1257
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1258 1259

                emb2.weight = emb1.weight
1260 1261 1262
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
1263

1264
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1265 1266 1267 1268 1269
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1270
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1271 1272 1273
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
1274 1275 1276
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
1277
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
1278 1279 1280
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
1281
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1282 1283

            emb2.weight = emb1.weight
1284 1285 1286
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
1287

1288 1289 1290 1291
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1292
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1293 1294 1295 1296 1297 1298
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1299 1300 1301 1302 1303 1304 1305
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
1306 1307 1308 1309 1310
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1311 1312 1313 1314 1315 1316
                emb = fluid.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False,
                )
1317 1318 1319
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1320
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1321
            nce_loss = paddle.static.nn.nce(
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
                input=embs,
                label=wl,
                num_total_classes=dict_size,
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1333 1334 1335
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1336 1337 1338
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss]
            )[0]
W
Weilong Wu 已提交
1339

1340 1341 1342 1343
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs2.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1375

1376 1377
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1378 1379 1380 1381
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1382 1383 1384
            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2]
            )[0]
1385

L
Leo Chen 已提交
1386
        with self.dynamic_graph():
W
Weilong Wu 已提交
1387 1388 1389 1390
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1391 1392 1393 1394 1395 1396 1397 1398
                sample_weights = layers.fill_constant(
                    shape=[5, 1], dtype='float32', value=1
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
                embs3 = layers.concat(
                    input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
                )
                nce = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce.w',
                    bias_attr='eager_nce.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1422 1423 1424 1425 1426

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1427 1428 1429
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1430 1431 1432 1433 1434 1435
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1436 1437 1438 1439 1440 1441 1442 1443 1444

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
            )
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1459

1460 1461
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1462
            dy_rlt_value = dy_rlt.numpy()
1463

1464 1465 1466
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1467

L
Leo Chen 已提交
1468
        with self.dynamic_graph():
W
Weilong Wu 已提交
1469
            with _test_eager_guard():
1470 1471 1472
                custom_weight = np.random.randn(dict_size, 128).astype(
                    "float32"
                )
W
Weilong Wu 已提交
1473 1474
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1475 1476 1477
                        custom_weight
                    )
                )
W
Weilong Wu 已提交
1478 1479 1480 1481 1482 1483
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
1484 1485 1486 1487 1488 1489 1490
                    value=1,
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
                nce1 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce1.w',
                    bias_attr='eager_nce1.b',
                    sample_weight=sample_weights,
                )

                nce2 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr=weight_attr,
                    bias_attr='eager_nce2.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1524 1525 1526 1527 1528

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
1529 1530
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
                )
W
Weilong Wu 已提交
1531 1532 1533 1534
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
1535 1536 1537
                np.testing.assert_array_equal(
                    nce1_loss.numpy(), nce2_loss.numpy()
                )
W
Weilong Wu 已提交
1538 1539 1540

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
1541 1542 1543 1544 1545 1546
                np.testing.assert_array_equal(
                    nce1.weight.numpy(), nce2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    nce1.bias.numpy(), nce2.bias.numpy()
                )
W
Weilong Wu 已提交
1547

1548
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1549 1550 1551 1552 1553
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1554 1555 1556 1557
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1558 1559
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
1560 1561 1562 1563 1564
                value=1,
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
            nce1 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce1.w',
                bias_attr='nce1.b',
                sample_weight=sample_weights,
            )

            nce2 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr=weight_attr,
                bias_attr='nce2.b',
                sample_weight=sample_weights,
            )
1598

1599 1600 1601
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1602
            self.assertFalse(
1603 1604
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
            )
1605 1606
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1607 1608
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1609
            np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy())
1610 1611 1612

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
1613 1614 1615
            np.testing.assert_array_equal(
                nce1.weight.numpy(), nce2.weight.numpy()
            )
1616
            np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy())
1617

S
songyouwei 已提交
1618 1619
    def test_one_hot(self):
        with self.dynamic_graph():
1620
            with _test_eager_guard():
1621 1622 1623
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
1624 1625
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1626 1627 1628 1629 1630
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
1631

S
songyouwei 已提交
1632 1633 1634
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
1635 1636 1637 1638 1639
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
1640 1641 1642

    def test_split(self):
        with self.dynamic_graph():
1643 1644 1645
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1646 1647 1648 1649 1650
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
1651 1652
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1653

S
songyouwei 已提交
1654 1655
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1656 1657 1658 1659 1660
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
1661 1662
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1663 1664 1665

    def test_topk(self):
        with self.dynamic_graph():
1666 1667 1668 1669
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
1670 1671 1672 1673 1674 1675 1676 1677
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
1678

S
songyouwei 已提交
1679 1680 1681
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
1682 1683 1684 1685 1686 1687 1688 1689
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
1690

L
lujun 已提交
1691 1692
    def test_conv3d(self):
        with self.static_graph():
1693 1694 1695
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1696 1697 1698
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
1699
            static_ret = self.get_static_graph_result(
1700
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1701 1702
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1703 1704

        with self.static_graph():
1705 1706 1707
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1708 1709 1710
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
1711 1712
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1713
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1714 1715
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1716 1717

        with self.dynamic_graph():
1718 1719
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1720 1721 1722
                conv3d = paddle.nn.Conv3D(
                    in_channels=3, out_channels=3, kernel_size=2
                )
1723 1724 1725
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1726
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1727 1728 1729
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
1730
            dy_ret = conv3d(base.to_variable(images))
1731
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1732

1733 1734 1735
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1736

1737
        with self.dynamic_graph():
1738 1739 1740 1741 1742
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1743 1744 1745
                        custom_weight
                    )
                )
1746 1747
                conv3d1 = paddle.nn.Conv3D(
                    in_channels=3, out_channels=3, kernel_size=2
1748
                )
1749 1750 1751 1752 1753
                conv3d2 = paddle.nn.Conv3D(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
                    weight_attr=weight_attr,
1754
                )
1755 1756 1757
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1758 1759
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1760 1761 1762 1763

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1764 1765
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1766
                conv3d2.weight.set_value(conv3d1_weight_np)
1767 1768 1769
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1770 1771 1772
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1773
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1774 1775 1776

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1777 1778 1779 1780 1781 1782
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1783

1784 1785
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1786 1787 1788 1789 1790
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1791 1792 1793 1794 1795 1796 1797 1798
            conv3d1 = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
            conv3d2 = paddle.nn.Conv3D(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
1799
            )
1800 1801 1802 1803 1804 1805 1806
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1807 1808
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1809
            conv3d2.weight.set_value(conv3d1_weight_np)
1810 1811 1812
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1813 1814 1815
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1816
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1817 1818 1819

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1820 1821 1822 1823 1824 1825
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1826

L
lujun 已提交
1827 1828 1829 1830 1831 1832 1833 1834
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1835 1836 1837 1838 1839 1840 1841
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1842
            ret = layers.row_conv(input=x, future_context_size=2)
1843 1844 1845 1846 1847 1848 1849 1850 1851
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1852 1853

        with self.static_graph():
1854 1855 1856 1857 1858 1859 1860
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1861 1862
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1863 1864 1865 1866 1867 1868 1869 1870 1871
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1872

1873
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1874

1875
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1876

1877
    def func_group_norm(self):
L
lujun 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1888 1889 1890 1891 1892 1893 1894
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1895
            ret = paddle.static.nn.group_norm(
1896 1897
                input=X,
                groups=2,
1898
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1910 1911

        with self.static_graph():
1912 1913 1914 1915 1916 1917 1918
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1919 1920 1921
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1922
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1923 1924
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1925
            ret = groupNorm(X)
1926 1927 1928 1929 1930 1931 1932 1933 1934
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1935 1936

        with self.dynamic_graph():
1937 1938 1939
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1940
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1941 1942
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1943
            dy_ret = groupNorm(base.to_variable(input))
1944
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1945

1946 1947
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1948

1949 1950 1951 1952 1953
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1965 1966 1967
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1968
            ret = paddle.static.nn.instance_norm(input=X)
1969 1970 1971
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1972 1973

        with self.static_graph():
1974 1975 1976
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1977
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1978
            ret = instanceNorm(X)
1979 1980 1981
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1982 1983

        with self.dynamic_graph():
1984
            with _test_eager_guard():
1985
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1986 1987 1988
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1989
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1990 1991 1992 1993
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1994
            with _test_eager_guard():
1995
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1996 1997 1998
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1999
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
2000 2001 2002
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

2003 2004 2005 2006 2007
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
2008 2009 2010 2011

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
2012
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
2013 2014 2015 2016 2017 2018 2019
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
2020
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
2021 2022 2023 2024
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
2036 2037 2038 2039 2040 2041 2042
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
2043
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
2044 2045 2046 2047 2048 2049 2050 2051 2052
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2053 2054

        with self.static_graph():
2055 2056 2057 2058 2059 2060 2061
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
2062
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2063
            ret = spectralNorm(Weight)
2064 2065 2066 2067 2068 2069 2070 2071 2072
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2073 2074

        with self.dynamic_graph():
2075 2076 2077 2078 2079
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2080
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2081
            dy_ret = spectralNorm(base.to_variable(input))
2082
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2083

2084 2085 2086
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2131 2132

        with self.static_graph():
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2150
            ret = treeConv(NodesVector, EdgeSet)
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2163 2164

        with self.dynamic_graph():
2165
            with _test_eager_guard():
2166 2167 2168 2169 2170 2171
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2172 2173
                dy_eager_rlt_value = dy_eager_ret.numpy()

2174 2175 2176
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2177
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2178
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2179

2180 2181 2182
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
2183

2184
        with self.dynamic_graph():
2185 2186 2187 2188
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2213
                self.assertFalse(
2214 2215
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2216 2217
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2218 2219 2220 2221 2222 2223
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2224
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2225 2226 2227

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
2228 2229 2230 2231 2232 2233
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
2234

2235
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2262 2263 2264
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2265 2266 2267 2268 2269 2270
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2271
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2272 2273 2274

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
2275 2276 2277 2278 2279 2280
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
2281

L
lujun 已提交
2282
    def test_conv3d_transpose(self):
2283 2284 2285
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
2286 2287 2288

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2289
            out = paddle.static.nn.conv3d_transpose(
2290
                input=img, num_filters=12, filter_size=12, use_cudnn=True
2291
            )
L
lujun 已提交
2292
            static_rlt = self.get_static_graph_result(
2293 2294
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2295 2296
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2297 2298
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
2299
            )
L
lujun 已提交
2300 2301
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
2302 2303
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2304
        with self.dynamic_graph():
2305
            with _test_eager_guard():
2306 2307 2308 2309
                conv3d_transpose = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=12,
                    kernel_size=12,
2310
                )
2311 2312 2313
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2314 2315
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
2316
            )
L
lujun 已提交
2317
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2318
            dy_rlt_value = dy_rlt.numpy()
2319 2320 2321
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
2322

2323
        with self.dynamic_graph():
2324 2325 2326 2327 2328
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2329 2330 2331
                        custom_weight
                    )
                )
2332 2333 2334 2335
                conv3d1 = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
2336 2337
                    bias_attr='eager_conv3d1_b',
                )
2338 2339 2340 2341 2342
                conv3d2 = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
                    weight_attr=weight_attr,
2343 2344
                    bias_attr='eager_conv3d2_b',
                )
2345 2346 2347
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
2348 2349
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2350 2351 2352 2353

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
2354 2355
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
2356
                conv3d2.weight.set_value(conv3d1_weight_np)
2357 2358 2359
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
2360 2361 2362
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2363
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2364 2365 2366

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
2367 2368 2369 2370 2371 2372
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
2373

2374 2375
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2376 2377 2378 2379 2380
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
2381 2382 2383 2384
            conv3d1 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
2385 2386
                bias_attr='conv3d1_b',
            )
2387 2388 2389 2390 2391
            conv3d2 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
2392 2393
                bias_attr='conv3d2_b',
            )
2394 2395 2396 2397 2398 2399 2400
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
2401 2402
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
2403
            conv3d2.weight.set_value(conv3d1_weight_np)
2404 2405 2406
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
2407 2408 2409
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
2410
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2411 2412 2413

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
2414 2415 2416 2417 2418 2419
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
2420

2421
    def func_while_loop(self):
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2439
            def cond1(i):
2440 2441
                return layers.less_than(i, ten)

2442
            def body1(i):
2443 2444
                return i + 1

2445
            dy_ret = layers.while_loop(cond1, body1, [i])
2446 2447 2448 2449 2450 2451
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2452
                layers.while_loop(cond1, body2, [j])
2453

2454
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
2455

2456 2457 2458 2459 2460
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2461 2462 2463 2464 2465 2466 2467 2468
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2469 2470 2471
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
2472
        with self.dynamic_graph():
2473 2474 2475 2476 2477 2478 2479 2480
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2481 2482 2483 2484
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2485 2486
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2487 2488 2489 2490 2491

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
2492
            cond1 = paddle.less_equal(x=a1, y=b1)
2493 2494 2495
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
2496
        with self.dynamic_graph():
2497 2498 2499
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
2500
                dcond1 = paddle.less_equal(x=da1, y=db1)
2501 2502 2503 2504

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2505 2506
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
2507
            dcond1 = paddle.less_equal(x=da1, y=db1)
2508 2509 2510 2511

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2512
        # greater than
2513 2514 2515
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
2516
            cond2 = paddle.greater_than(x=a2, y=b2)
2517 2518 2519
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
2520
        with self.dynamic_graph():
2521 2522 2523
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
2524
                dcond2 = paddle.greater_than(x=da2, y=db2)
2525 2526 2527 2528

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2529 2530
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
2531
            dcond2 = paddle.greater_than(x=da2, y=db2)
2532 2533 2534 2535

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2536
        # greater equal
2537 2538 2539
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
2540
            cond3 = paddle.greater_equal(x=a3, y=b3)
2541 2542 2543
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
2544
        with self.dynamic_graph():
2545 2546 2547
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
2548
                dcond3 = paddle.greater_equal(x=da3, y=db3)
2549 2550 2551 2552

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2553 2554
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
2555
            dcond3 = paddle.greater_equal(x=da3, y=db3)
2556 2557 2558 2559 2560 2561 2562 2563

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
2564
            cond4 = paddle.equal(x=a4, y=b4)
2565 2566 2567
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
2568
        with self.dynamic_graph():
2569 2570 2571
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
2572
                dcond4 = paddle.equal(x=da4, y=db4)
2573 2574 2575 2576

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2577 2578
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
2579
            dcond4 = paddle.equal(x=da4, y=db4)
2580 2581 2582 2583 2584 2585 2586 2587

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
2588
            cond5 = paddle.equal(x=a5, y=b5)
2589 2590 2591
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
2592
        with self.dynamic_graph():
2593 2594 2595
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
2596
                dcond5 = paddle.equal(x=da5, y=db5)
2597 2598 2599 2600

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2601 2602
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
2603
            dcond5 = paddle.equal(x=da5, y=db5)
2604 2605 2606 2607

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2608 2609 2610 2611 2612 2613 2614 2615
    def test_cond(self):
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2632 2633 2634 2635 2636
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2637 2638 2639
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
2652 2653
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2654 2655 2656
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
2657 2658 2659 2660 2661
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2662 2663
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
2674 2675
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2676
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2677 2678 2679 2680 2681
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2682 2683
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2684

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
2702
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2703

2704 2705 2706
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2707 2708
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2709 2710 2711 2712 2713
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2714 2715 2716 2717
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2718 2719 2720 2721 2722 2723 2724
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
2725
                pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2726

2727 2728 2729 2730 2731 2732
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
2733 2734 2735
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2736 2737 2738 2739 2740 2741
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
2742
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2743

2744 2745 2746
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2747 2748 2749 2750
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2751 2752 2753 2754
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2790 2791
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
2792 2793
                fetch_list=[out_1, out_2, out_3]
            )
2794 2795

        with self.dynamic_graph():
2796
            with _test_eager_guard():
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
2818 2819 2820 2821 2822

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2823 2824 2825
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
2840 2841 2842 2843 2844

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2845 2846 2847 2848 2849 2850
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2851

2852 2853 2854 2855
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2856 2857 2858 2859 2860 2861
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2862
            crop_shape1 = (1, 2, 4, 4)
2863 2864 2865
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2866 2867
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2868 2869 2870
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2871 2872
            crop_offsets3 = [0, dim1, dim2, 0]

2873 2874 2875
            out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3)
2876 2877 2878 2879 2880

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2881 2882 2883
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2884 2885 2886
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2887 2888 2889

        self.assertIsNotNone(shard_label)

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2903 2904
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2905 2906 2907
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2908

L
Leo Chen 已提交
2909
        with self.dynamic_graph(force_to_use_cpu=True):
2910 2911 2912 2913 2914 2915
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

2916
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2917

Y
Yu Yang 已提交
2918

2919
class TestBook(LayerTest):
H
hong 已提交
2920 2921
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2922 2923 2924 2925 2926 2927 2928 2929
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_kldiv_loss",
                "make_sampling_id",
                "make_uniform_random_batch_size_like",
            }
        )
2930
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2931

2932
    def func_all_layers(self):
2933 2934 2935 2936 2937
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2938 2939 2940
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
2953 2954
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
2955

2956 2957 2958
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
2959 2960
            if method.__name__ in self.only_static_set:
                continue
2961 2962 2963 2964 2965

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2966
                dy_result_value = dy_result.numpy()
2967

2968
            if method.__name__ in self.all_close_compare:
2969 2970 2971 2972 2973 2974
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
2975 2976 2977
                        method.__name__
                    ),
                )
2978 2979
                continue

H
hong 已提交
2980
            if method.__name__ not in self.not_compare_static_dygraph_set:
2981 2982 2983 2984
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
2985 2986 2987
                        method.__name__
                    ),
                )
2988

2989 2990 2991 2992 2993
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2994 2995 2996
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2997
            shape = [self._batch_size] + shape
2998 2999 3000 3001 3002
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
3003 3004 3005
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
3006
        elif dtype == 'int64':
3007 3008 3009 3010 3011 3012 3013
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
3014
        if base.enabled():
3015 3016 3017 3018 3019
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
3020 3021
        else:
            if set_feed_dict:
3022
                self._feed_dict[name] = self._get_np_data(
3023 3024 3025 3026 3027 3028 3029 3030
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
3031 3032

    def make_fit_a_line(self):
3033 3034 3035 3036
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
3037
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
3038
            y_predict = layers.fc(input=x, size=1, act=None)
3039
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
3040
            cost = layers.square_error_cost(input=y_predict, label=y)
3041
            avg_cost = paddle.mean(cost)
3042
            return avg_cost
Y
Yu Yang 已提交
3043

3044
    def make_recognize_digits_mlp(self):
3045 3046 3047
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3048
            # Change g_program, so the rest layers use `g_program`
3049 3050
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3051 3052
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
3053 3054 3055 3056 3057 3058
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
3059
            cost = layers.cross_entropy(input=predict, label=label)
3060
            avg_cost = paddle.mean(cost)
3061
            return avg_cost
Y
Yu Yang 已提交
3062

3063
    def make_conv2d_transpose(self):
3064 3065 3066
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3067
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
3068
            return paddle.static.nn.conv2d_transpose(
3069 3070
                input=img, num_filters=10, output_size=28
            )
3071

3072
    def make_recognize_digits_conv(self):
3073 3074 3075 3076 3077 3078
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
3079
            label = self._get_data(name='label', shape=[1], dtype='int64')
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
3096 3097 3098

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
3099
            avg_cost = paddle.mean(cost)
3100
            return avg_cost
Y
Yu Yang 已提交
3101

3102
    def make_word_embedding(self):
3103 3104 3105
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3106 3107
            dict_size = 10000
            embed_size = 32
3108
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3109 3110 3111
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
3112 3113 3114
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3115

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
3141 3142 3143

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
3144 3145
                axis=1,
            )
Y
Yu Yang 已提交
3146 3147

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
3148 3149 3150
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
3151
            cost = layers.cross_entropy(input=predict_word, label=next_word)
3152
            avg_cost = paddle.mean(cost)
3153
            return avg_cost
Y
Yu Yang 已提交
3154

3155
    def make_pool2d(self):
3156 3157 3158
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3159
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3160 3161 3162
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
3163

K
Kaipeng Deng 已提交
3164
    def make_pool2d_infershape(self):
3165 3166 3167
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3168
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
3169 3170 3171
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
3172 3173 3174
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
3175

3176
    def make_lstm_unit(self):
3177 3178 3179 3180 3181 3182
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
3183
            x_t = layers.fc(input=x_t_data, size=10)
3184 3185 3186
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3187
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3188 3189 3190
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3191
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3192 3193 3194
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
3195

3196
    def make_softmax(self):
3197 3198 3199
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3200
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3201
            hid = layers.fc(input=data, size=20)
3202
            return layers.softmax(hid, axis=1)
D
dangqingqing 已提交
3203

3204
    def make_get_places(self):
3205 3206 3207
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3208
            get_places(device_count=1)
X
xuezhong 已提交
3209

3210
    @prog_scope()
3211
    def make_nce(self):
Y
Yang Yu 已提交
3212 3213
        window_size = 5
        words = []
3214
        for i in range(window_size):
Y
Yang Yu 已提交
3215
            words.append(
3216 3217 3218 3219
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
3220 3221

        dict_size = 10000
M
minqiyang 已提交
3222
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3223 3224

        embs = []
3225
        for i in range(window_size):
Y
Yang Yu 已提交
3226 3227 3228
            if i == label_word:
                continue

3229 3230 3231 3232 3233 3234
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
3235 3236 3237 3238

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
3239
        loss = paddle.static.nn.nce(
3240 3241 3242 3243 3244 3245
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
3246
        avg_loss = paddle.mean(loss)
3247
        return avg_loss
Y
Yang Yu 已提交
3248

3249
    def make_multiplex(self):
3250 3251 3252
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3253 3254 3255
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3256
            out = layers.multiplex(inputs=[x1, x2], index=index)
3257
            return out
3258 3259

    def make_softmax_with_cross_entropy(self):
3260 3261 3262
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3263 3264
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3265
            loss, softmax = layers.softmax_with_cross_entropy(
3266 3267
                x, y, return_softmax=True
            )
3268 3269 3270
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3271
            loss = layers.softmax_with_cross_entropy(x, y)
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
3286
            return loss4
3287 3288

    def make_smooth_l1(self):
3289 3290 3291
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3292 3293
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3294
            loss = layers.smooth_l1(x, y)
3295
            return loss
3296

3297
    def make_scatter(self):
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
3313
            out = paddle.scatter(x, index=idx, updates=updates)
3314
            return out
Y
yangyaming 已提交
3315

3316 3317 3318 3319
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3320
            return one_hot_label
3321

3322 3323 3324 3325 3326
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3327
            one_hot_label = layers.one_hot(input=label, depth=10)
3328
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
3329
            return smooth_label
3330

3331
    def make_topk(self):
3332 3333 3334
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3335 3336
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
3337 3338
            return values
            return indices
J
jerrywgz 已提交
3339

3340
    def make_resize_bilinear(self):
3341 3342 3343
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3344
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3345
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3346
            return output
K
Kaipeng Deng 已提交
3347 3348

    def make_resize_bilinear_by_scale(self):
3349 3350 3351
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3352 3353
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3354
            return output
3355

3356
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3357
        try:
3358 3359 3360
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3361 3362 3363 3364 3365 3366
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
3367 3368 3369 3370 3371 3372
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3373 3374 3375 3376
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3377 3378 3379
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3380
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3381
            output = layers.resize_nearest(x, out_shape=[12, 12])
3382
            return output
K
Kaipeng Deng 已提交
3383 3384

    def make_resize_nearest_by_scale(self):
3385 3386 3387
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3388 3389
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
3390
            return output
K
Kaipeng Deng 已提交
3391 3392 3393

    def make_resize_trilinear(self):
        try:
3394 3395 3396
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3397 3398 3399 3400 3401 3402
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
3403 3404 3405 3406 3407 3408
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3409 3410 3411 3412
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

3413 3414 3415
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3416 3417
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
3418
            return output
K
Kaipeng Deng 已提交
3419 3420

    def make_resize_trilinear_by_scale(self):
3421 3422 3423
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3424 3425
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3426
            return output
3427

3428
    def make_polygon_box_transform(self):
3429 3430 3431
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3432
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3433
            output = layers.polygon_box_transform(input=x)
3434
            return output
3435

3436
    def make_l2_normalize(self):
3437 3438 3439
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3440
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3441
            output = layers.l2_normalize(x, axis=1)
3442
            return output
3443

3444
    def make_argsort(self):
3445 3446 3447
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3448
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3449
            out, ids = layers.argsort(input=data, axis=1)
3450 3451
            return out
            return ids
3452 3453

    def make_shape(self):
3454 3455 3456 3457 3458 3459
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
G
fix  
gongweibao 已提交
3460
            out = layers.shape(input)
3461
            return out
B
Bai Yifan 已提交
3462

3463
    def make_pad2d(self):
3464 3465 3466 3467 3468 3469
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
3470 3471 3472

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
3473 3474 3475 3476
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
3477
            out = tmp_pad(input)
3478
            return out
W
whs 已提交
3479

K
Kaipeng Deng 已提交
3480
    def make_mish(self):
3481 3482 3483
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3484 3485
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
3486
            return out
K
Kaipeng Deng 已提交
3487

3488
    def make_cross_entropy(self):
3489 3490 3491
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3492 3493
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3494 3495
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3496
            return out
3497

3498
    def make_uniform_random_batch_size_like(self):
3499 3500 3501 3502 3503 3504
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
3505
            out = random.uniform_random_batch_size_like(input, [-1, 11])
3506
            return out
G
fix  
gongweibao 已提交
3507

3508
    def make_gaussian_random(self):
3509 3510 3511
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
3512
            out = layers.gaussian_random(shape=[20, 30])
3513
            return out
G
fix  
gongweibao 已提交
3514

3515
    def make_sampling_id(self):
3516 3517 3518 3519 3520 3521 3522 3523 3524
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False,
            )
G
fix  
gongweibao 已提交
3525 3526

            out = layers.sampling_id(x)
3527
            return out
G
fix  
gongweibao 已提交
3528

3529
    def make_sum(self):
3530 3531 3532 3533 3534 3535
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3536 3537

            out = layers.sum(input)
3538
            return out
G
fix  
gongweibao 已提交
3539

3540
    def make_slice(self):
G
fix  
gongweibao 已提交
3541 3542 3543 3544
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3545 3546 3547 3548 3549 3550
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
3551

2
201716010711 已提交
3552
            out = paddle.slice(input, axes=axes, starts=starts, ends=ends)
3553
            return out
G
merge  
gongweibao 已提交
3554

3555
    def make_scale_variable(self):
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2
201716010711 已提交
3568
            out = paddle.scale(input, scale=scale_var)
3569 3570
            return out

M
minqiyang 已提交
3571
    def make_iou_similarity(self):
3572 3573 3574
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3575 3576
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3577
            out = layers.iou_similarity(x, y, name='iou_similarity')
3578
            return out
3579 3580

    def make_grid_sampler(self):
3581 3582 3583
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3584 3585
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3586
            out = layers.grid_sampler(x, grid)
3587
            return out
3588 3589

    def make_bilinear_tensor_product_layer(self):
3590 3591 3592
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3593 3594 3595 3596
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
3597
            return out
3598 3599

    def make_batch_norm(self):
3600 3601 3602 3603 3604 3605
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
3606
            out = layers.batch_norm(data)
3607
            return out
3608

3609
    def make_batch_norm_momentum_variable(self):
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3622
            out = layers.batch_norm(data, momentum=momentum)
3623
            return out
3624

3625
    def make_range(self):
3626 3627 3628
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
3629 3630 3631
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
3632 3633 3634
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
3635
            y = paddle.arange(start, end, step, 'float64')
3636 3637 3638
            return y

    def make_spectral_norm(self):
3639 3640 3641 3642 3643 3644 3645 3646 3647
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
3648
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
3649
            return out
3650 3651

    def make_kldiv_loss(self):
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
3667 3668 3669
            loss = paddle.nn.functional.kl_div(
                input=x, label=target, reduction='batchmean'
            )
3670
            return loss
3671 3672

    def make_temporal_shift(self):
3673 3674 3675
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3676 3677
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
3678
            return out
3679

M
minqiyang 已提交
3680
    def make_fsp_matrix(self):
3681 3682 3683
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3684 3685 3686
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
3687
            return out
3688

M
minqiyang 已提交
3689
    def make_pixel_shuffle(self):
3690 3691 3692
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3693 3694
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
3695
            return out
M
minqiyang 已提交
3696

R
ruri 已提交
3697
    def make_mse_loss(self):
3698 3699 3700
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
3701 3702
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
3703
            out = paddle.nn.functional.mse_loss(input=x, label=y)
3704
            return out
R
ruri 已提交
3705

3706
    def make_square_error_cost(self):
3707 3708 3709
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3710 3711 3712
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
3713
            return out
3714

3715 3716 3717 3718
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
3719 3720 3721
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3722 3723
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
3724 3725 3726 3727
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
3728 3729 3730 3731 3732 3733

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
3734 3735 3736 3737 3738 3739 3740 3741
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1],
            )
            return output
3742 3743 3744 3745

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3746
            # case 1
3747
            x = layers.data(name='x', shape=[10], dtype='float32')
3748 3749 3750
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
3751 3752 3753
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
3754
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
3755 3756 3757 3758 3759 3760
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
3761

W
whs 已提交
3762
    def test_affine_grid(self):
3763
        with self.static_graph():
W
whs 已提交
3764 3765 3766 3767
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
3768
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
3769 3770
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
3771 3772 3773

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3774

W
wangchaochaohu 已提交
3775 3776 3777 3778 3779 3780 3781
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
2
201716010711 已提交
3782
            out = paddle.strided_slice(
3783 3784
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
3785 3786
            return out

3787 3788
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
3789 3790 3791 3792 3793 3794
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
3795 3796
            return out

3797 3798 3799 3800
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
3801 3802 3803 3804
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
3805

3806 3807 3808 3809 3810
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
3811
            return out
3812

3813 3814 3815 3816
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
3817
            length = layers.data(name='length', shape=[], dtype='int64')
3818
            return layers.sequence_unpad(x=x, length=length)
3819

3820 3821 3822
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3823 3824 3825
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3826
            seq = layers.fc(input=seq_data, size=20)
3827
            return layers.sequence_softmax(seq)
3828

3829 3830 3831 3832 3833
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
3834
            return out
3835

3836 3837 3838
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
3856
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
3857
            return out
W
whs 已提交
3858

3859 3860 3861 3862
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
3863 3864 3865 3866

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
3867 3868
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
3869 3870 3871 3872
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
3873

Z
zhoushiyu 已提交
3874 3875 3876
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3877 3878 3879
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
3880 3881 3882 3883 3884
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
3885
            return out1
Z
zhoushiyu 已提交
3886

3887 3888 3889 3890
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
3891 3892 3893 3894
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
3895

S
ShenLiang 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
3905 3906
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
3907 3908 3909 3910
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
3911 3912 3913 3914 3915
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
3916

S
ShenLiang 已提交
3917 3918 3919
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
3920 3921 3922
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
3923 3924 3925 3926 3927 3928 3929
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
3930 3931 3932 3933 3934
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
3935

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
3946 3947 3948
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
3949
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
3950
            return output
3951 3952 3953 3954 3955 3956

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
3957
            return out
3958 3959 3960 3961

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
3962 3963 3964 3965 3966 3967
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
3968 3969 3970 3971 3972

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
3973
            out = paddle.squeeze(x, axis=[2])
3974
            return out
3975 3976 3977 3978

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
3979 3980 3981 3982 3983 3984
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
3985
            out = paddle.flatten(x, 1, -1, name="flatten")
3986
            return out
3987

Z
zhoukunsheng 已提交
3988 3989 3990 3991 3992 3993 3994
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

3995 3996 3997 3998
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
3999
            return out
4000

4001 4002 4003 4004
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4005 4006 4007 4008 4009 4010
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
4011 4012
            return concat1, concat2

C
cjt222 已提交
4013
    def test_deform_roi_pooling(self):
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
4046

4047
    def test_retinanet_target_assign(self):
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='int32',
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.retinanet_target_assign(
                bbox_pred,
                cls_logits,
                anchor_box,
                anchor_var,
                gt_boxes,
                gt_labels,
                is_crowd,
                im_info,
                10,
            )
4110

4111
    def test_sigmoid_focal_loss(self):
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            fg_num = layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32'
            )
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2.0, alpha=0.25
            )
            return out
4134

4135
    def test_addmm(self):
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
4151 4152

            out = paddle.addmm(input=input, x=x, y=y)
4153
            return out
4154

4155
    def test_retinanet_detection_output(self):
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
4183 4184 4185 4186 4187 4188 4189 4190 4191
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
4192 4193 4194
                nms_eta=1.0,
            )
            return nmsed_outs
4195

4196 4197 4198
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4199
            input_length = paddle.static.data(
4200 4201
                name='logits_length', shape=[11], dtype='int64'
            )
4202
            label_length = paddle.static.data(
4203 4204
                name='labels_length', shape=[12], dtype='int64'
            )
4205 4206 4207 4208
            label = paddle.static.data(
                name='label', shape=[12, 1], dtype='int32'
            )
            predict = paddle.static.data(
4209 4210
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
4211 4212 4213 4214 4215 4216
            output = paddle.nn.functional.ctc_loss(
                log_probs=predict,
                labels=label,
                input_lengths=input_length,
                label_lengths=label_length,
                reduction='none',
4217 4218
            )
            return output
4219

4220 4221 4222 4223
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4224 4225 4226 4227 4228 4229 4230 4231 4232
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
4244 4245
                        batch_first=batch_first,
                    )
4246

Y
Yu Yang 已提交
4247

4248 4249 4250 4251
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
4273 4274 4275 4276 4277 4278
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4279 4280
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
4281
        super().__init__()
4282
        self.weight = self.create_parameter(
4283 4284
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4315 4316
class MyLayer(paddle.nn.Layer):
    def __init__(self):
4317
        super().__init__()
J
Jiabin Yang 已提交
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
4329
        super().__init__()
J
Jiabin Yang 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4345
if __name__ == '__main__':
4346
    paddle.enable_static()
Y
Yu Yang 已提交
4347
    unittest.main()