# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import inspect import unittest import numpy as np from decorator_helper import prog_scope from test_imperative_base import new_program_scope import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.nets as nets import paddle.nn.functional as F from paddle.fluid import core from paddle.fluid.dygraph import base, nn, to_variable from paddle.fluid.framework import ( Program, _test_eager_guard, default_main_program, program_guard, ) from paddle.fluid.initializer import Constant from paddle.fluid.layers.device import get_places from paddle.fluid.param_attr import ParamAttr from paddle.tensor import random class LayerTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.seed = 111 @classmethod def tearDownClass(cls): pass def _get_place(self, force_to_use_cpu=False): # this option for ops that only have cpu kernel if force_to_use_cpu: return core.CPUPlace() else: if core.is_compiled_with_cuda(): return core.CUDAPlace(0) return core.CPUPlace() @contextlib.contextmanager def static_graph(self): with new_program_scope(): paddle.seed(self.seed) paddle.framework.random._manual_program_seed(self.seed) yield def get_static_graph_result( self, feed, fetch_list, with_lod=False, force_to_use_cpu=False ): exe = fluid.Executor(self._get_place(force_to_use_cpu)) exe.run(fluid.default_startup_program()) return exe.run( fluid.default_main_program(), feed=feed, fetch_list=fetch_list, return_numpy=(not with_lod), ) @contextlib.contextmanager def dynamic_graph(self, force_to_use_cpu=False): with fluid.dygraph.guard( self._get_place(force_to_use_cpu=force_to_use_cpu) ): paddle.seed(self.seed) paddle.framework.random._manual_program_seed(self.seed) yield class TestLayer(LayerTest): def test_custom_layer_with_kwargs(self): class CustomLayer(fluid.Layer): def __init__(self, input_size, linear1_size=4): super().__init__() self.linear1 = paddle.nn.Linear( input_size, linear1_size, bias_attr=False ) self.linear2 = paddle.nn.Linear( linear1_size, 1, bias_attr=False ) def forward(self, x, do_linear2=False): ret = self.linear1(x) if do_linear2: ret = self.linear2(ret) return ret with self.dynamic_graph(): with _test_eager_guard(): inp = np.ones([3, 3], dtype='float32') x = base.to_variable(inp) custom = CustomLayer(input_size=3, linear1_size=2) ret = custom(x, do_linear2=False) np.testing.assert_array_equal(ret.numpy().shape, [3, 2]) ret = custom(x, do_linear2=True) np.testing.assert_array_equal(ret.numpy().shape, [3, 1]) inp = np.ones([3, 3], dtype='float32') x = base.to_variable(inp) custom = CustomLayer(input_size=3, linear1_size=2) ret = custom(x, do_linear2=False) np.testing.assert_array_equal(ret.numpy().shape, [3, 2]) ret = custom(x, do_linear2=True) np.testing.assert_array_equal(ret.numpy().shape, [3, 1]) def test_dropout(self): inp = np.ones([3, 32, 32], dtype='float32') with self.static_graph(): t = layers.data( name='data', shape=[3, 32, 32], dtype='float32', append_batch_size=False, ) dropout = nn.Dropout(p=0.35, seed=1, is_test=False) ret = dropout(t) ret2 = fluid.layers.dropout( t, dropout_prob=0.35, seed=1, is_test=False ) static_ret, static_ret2 = self.get_static_graph_result( feed={'data': inp}, fetch_list=[ret, ret2] ) with self.dynamic_graph(): with _test_eager_guard(): t = base.to_variable(inp) dropout = nn.Dropout(p=0.35, seed=1, is_test=False) dy_eager_ret = dropout(t) dy_eager_ret2 = fluid.layers.dropout( t, dropout_prob=0.35, seed=1, is_test=False ) dy_eager_ret_value = dy_eager_ret.numpy() dy_eager_ret2_value = dy_eager_ret2.numpy() t = base.to_variable(inp) dropout = nn.Dropout(p=0.35, seed=1, is_test=False) dy_ret = dropout(t) dy_ret2 = fluid.layers.dropout( t, dropout_prob=0.35, seed=1, is_test=False ) dy_ret_value = dy_ret.numpy() dy_ret2_value = dy_ret2.numpy() np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value) np.testing.assert_array_equal(static_ret, dy_eager_ret_value) np.testing.assert_array_equal(static_ret, static_ret2) np.testing.assert_array_equal(dy_ret_value, dy_ret2_value) np.testing.assert_array_equal(static_ret, dy_ret_value) def test_linear(self): inp = np.ones([3, 32, 32], dtype='float32') with self.static_graph(): t = layers.data( name='data', shape=[3, 32, 32], dtype='float32', append_batch_size=False, ) linear = paddle.nn.Linear( 32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1) ) ret = linear(t) static_ret = self.get_static_graph_result( feed={'data': inp}, fetch_list=[ret] )[0] with self.dynamic_graph(): with _test_eager_guard(): t = base.to_variable(inp) linear = paddle.nn.Linear( 32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1), ) dy_eager_ret = linear(t) dy_eager_ret_value = dy_eager_ret.numpy() t = base.to_variable(inp) linear = paddle.nn.Linear( 32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1) ) dy_ret = linear(t) dy_ret_value = dy_ret.numpy() np.testing.assert_array_equal(static_ret, dy_eager_ret_value) np.testing.assert_array_equal(static_ret, dy_ret_value) with self.static_graph(): # the input of Linear must be Variable. def test_Variable(): inp = np.ones([3, 32, 32], dtype='float32') linear = paddle.nn.Linear( 32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1), ) linear_ret1 = linear(inp) self.assertRaises(TypeError, test_Variable) # the input dtype of Linear must be float16 or float32 or float64 # float16 only can be set on GPU place def test_type(): inp = np.ones([3, 32, 32], dtype='int32') linear = paddle.nn.Linear( 32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1), ) linear_ret2 = linear(inp) self.assertRaises(TypeError, test_type) def test_Flatten(self): inp = np.ones([3, 4, 4, 5], dtype='float32') with self.static_graph(): t = layers.data( name='data', shape=[3, 4, 4, 5], dtype='float32', append_batch_size=False, ) flatten = nn.Flatten() ret = flatten(t) static_ret = self.get_static_graph_result( feed={'data': inp}, fetch_list=[ret] )[0] with self.dynamic_graph(): with _test_eager_guard(): t = base.to_variable(inp) flatten = nn.Flatten() dy_eager_ret = flatten(t) dy_eager_ret_value = dy_eager_ret.numpy() t = base.to_variable(inp) flatten = nn.Flatten() dy_ret = flatten(t) dy_ret_value = dy_ret.numpy() np.testing.assert_array_equal(static_ret, dy_eager_ret_value) np.testing.assert_array_equal(static_ret, dy_ret_value) with self.static_graph(): # the input of Linear must be Variable. def test_Variable(): inp = np.ones([3, 32, 32], dtype='float32') linear = paddle.nn.Linear( 32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1), ) linear_ret1 = linear(inp) self.assertRaises(TypeError, test_Variable) # the input dtype of Linear must be float16 or float32 or float64 # float16 only can be set on GPU place def test_type(): inp = np.ones([3, 32, 32], dtype='int32') linear = paddle.nn.Linear( 32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1), ) linear_ret2 = linear(inp) self.assertRaises(TypeError, test_type) def test_layer_norm(self): inp = np.ones([3, 32, 32], dtype='float32') with self.static_graph(): t = layers.data( name='data', shape=[3, 32, 32], dtype='float32', append_batch_size=False, ) ret = layers.layer_norm( t, bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) static_ret = self.get_static_graph_result( feed={'data': inp}, fetch_list=[ret] )[0] with self.static_graph(): t = layers.data( name='data', shape=[3, 32, 32], dtype='float32', append_batch_size=False, ) lm = nn.LayerNorm( normalized_shape=[32, 32], bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) ret = lm(t) static_ret2 = self.get_static_graph_result( feed={'data': inp}, fetch_list=[ret] )[0] with self.dynamic_graph(): with _test_eager_guard(): lm = nn.LayerNorm( normalized_shape=[32, 32], bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) dy_eager_ret = lm(base.to_variable(inp)) dy_eager_ret_value = dy_eager_ret.numpy() lm = nn.LayerNorm( normalized_shape=[32, 32], bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) dy_ret = lm(base.to_variable(inp)) dy_ret_value = dy_ret.numpy() with self.dynamic_graph(): with _test_eager_guard(): lm = nn.LayerNorm( normalized_shape=[32, 32], shift=False, scale=False, param_attr=fluid.initializer.ConstantInitializer(value=1), bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) lm(base.to_variable(inp)) self.assertFalse(hasattr(lm, "_scale_w")) self.assertFalse(hasattr(lm, "_bias_w")) lm = nn.LayerNorm( normalized_shape=[32, 32], shift=False, scale=False, param_attr=fluid.initializer.ConstantInitializer(value=1), bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) lm(base.to_variable(inp)) self.assertFalse(hasattr(lm, "_scale_w")) self.assertFalse(hasattr(lm, "_bias_w")) np.testing.assert_array_equal(static_ret, static_ret2) np.testing.assert_array_equal(dy_eager_ret_value, static_ret2) np.testing.assert_array_equal(dy_ret_value, static_ret2) with self.dynamic_graph(): with _test_eager_guard(): lm = nn.LayerNorm( normalized_shape=[16, 32], bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) with self.assertRaises(ValueError): lm(base.to_variable(inp)) lm = nn.LayerNorm( normalized_shape=[16, 32], bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) with self.assertRaises(ValueError): lm(base.to_variable(inp)) def test_SyncBatchNorm(self): if core.is_compiled_with_cuda(): with self.static_graph(): t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32') my_sync_bn = paddle.nn.SyncBatchNorm(3) ret = my_sync_bn(t) static_ret = self.get_static_graph_result( feed={'t': np.ones([3, 3, 5, 5], dtype='float32')}, fetch_list=[ret], )[0] with self.dynamic_graph(): with _test_eager_guard(): t = np.ones([3, 3, 5, 5], dtype='float32') my_syncbn = paddle.nn.SyncBatchNorm(3) dy_eager_ret = my_syncbn(base.to_variable(t)) dy_eager_ret_value = dy_eager_ret.numpy() t = np.ones([3, 3, 5, 5], dtype='float32') my_syncbn = paddle.nn.SyncBatchNorm(3) dy_ret = my_syncbn(base.to_variable(t)) dy_ret_value = dy_ret.numpy() np.testing.assert_array_equal(static_ret, dy_ret_value) np.testing.assert_array_equal(static_ret, dy_eager_ret_value) def test_relu(self): with self.static_graph(): t = layers.data(name='t', shape=[3, 3], dtype='float32') ret = layers.relu(t) static_ret = self.get_static_graph_result( feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret] )[0] with self.dynamic_graph(): with _test_eager_guard(): t = np.ones([3, 3], dtype='float32') dy_eager_ret = layers.relu(base.to_variable(t)) dy_eager_ret_value = dy_eager_ret.numpy() t = np.ones([3, 3], dtype='float32') dy_ret = layers.relu(base.to_variable(t)) dy_ret_value = dy_ret.numpy() np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05) def test_matmul(self): with self.static_graph(): t = layers.data(name='t', shape=[3, 3], dtype='float32') t2 = layers.data(name='t2', shape=[3, 3], dtype='float32') ret = layers.matmul(t, t2) static_ret = self.get_static_graph_result( feed={ 't': np.ones([3, 3], dtype='float32'), 't2': np.ones([3, 3], dtype='float32'), }, fetch_list=[ret], )[0] with self.dynamic_graph(): with _test_eager_guard(): t = np.ones([3, 3], dtype='float32') t2 = np.ones([3, 3], dtype='float32') dy_eager_ret = layers.matmul( base.to_variable(t), base.to_variable(t2) ) dy_eager_ret_value = dy_eager_ret.numpy() t = np.ones([3, 3], dtype='float32') t2 = np.ones([3, 3], dtype='float32') dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2)) dy_ret_value = dy_ret.numpy() np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05) def test_gru_unit(self): lod = [[2, 4, 3]] D = 5 T = sum(lod[0]) N = len(lod[0]) input = np.random.rand(T, 3 * D).astype('float32') hidden_input = np.random.rand(T, D).astype('float32') with self.static_graph(): x = layers.data(name='x', shape=[-1, D * 3], dtype='float32') hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32') updated_hidden, reset_hidden_pre, gate = layers.gru_unit( input=x, hidden=hidden, size=D * 3 ) static_ret = self.get_static_graph_result( feed={'x': input, 'hidden': hidden_input}, fetch_list=[updated_hidden, reset_hidden_pre, gate], ) with self.static_graph(): x = layers.data(name='x', shape=[-1, D * 3], dtype='float32') hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32') updated_hidden, reset_hidden_pre, gate = layers.gru_unit( input=x, hidden=hidden, size=D * 3 ) gru = nn.GRUUnit(size=D * 3) updated_hidden, reset_hidden_pre, gate = gru(x, hidden) static_ret2 = self.get_static_graph_result( feed={'x': input, 'hidden': hidden_input}, fetch_list=[updated_hidden, reset_hidden_pre, gate], ) with self.dynamic_graph(): with _test_eager_guard(): gru = nn.GRUUnit(size=D * 3) dy_eager_ret = gru( base.to_variable(input), base.to_variable(hidden_input) ) dy_eager_ret_value = [] for i in range(len(static_ret)): dy_eager_ret_value.append(dy_eager_ret[i].numpy()) gru = nn.GRUUnit(size=D * 3) dy_ret = gru( base.to_variable(input), base.to_variable(hidden_input) ) dy_ret_value = [] for i in range(len(static_ret)): dy_ret_value.append(dy_ret[i].numpy()) for i in range(len(static_ret)): np.testing.assert_allclose( static_ret[i], static_ret2[i], rtol=1e-05 ) np.testing.assert_allclose( static_ret[i], dy_ret_value[i], rtol=1e-05 ) np.testing.assert_allclose( static_ret[i], dy_eager_ret_value[i], rtol=1e-05 ) with self.dynamic_graph(): with _test_eager_guard(): custom_weight = np.random.randn(D, D * 3).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) gru1 = nn.GRUUnit(size=D * 3) gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr) dy_ret1 = gru1( base.to_variable(input), base.to_variable(hidden_input) ) dy_ret2 = gru2( base.to_variable(input), base.to_variable(hidden_input) ) self.assertFalse( np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()) ) for o1, o2 in zip(dy_ret1, dy_ret2): self.assertFalse(np.array_equal(o1.numpy(), o2.numpy())) gru2.weight.set_value(gru1.weight.numpy()) gru2.bias.set_value(gru1.bias) dy_ret1 = gru1( base.to_variable(input), base.to_variable(hidden_input) ) dy_ret2 = gru2( base.to_variable(input), base.to_variable(hidden_input) ) for o1, o2 in zip(dy_ret1, dy_ret2): np.testing.assert_array_equal(o1.numpy(), o2.numpy()) gru2.weight = gru1.weight gru2.bias = gru1.bias np.testing.assert_array_equal( gru1.weight.numpy(), gru2.weight.numpy() ) np.testing.assert_array_equal( gru1.bias.numpy(), gru2.bias.numpy() ) custom_weight = np.random.randn(D, D * 3).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) gru1 = nn.GRUUnit(size=D * 3) gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr) dy_ret1 = gru1( base.to_variable(input), base.to_variable(hidden_input) ) dy_ret2 = gru2( base.to_variable(input), base.to_variable(hidden_input) ) self.assertFalse( np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()) ) for o1, o2 in zip(dy_ret1, dy_ret2): self.assertFalse(np.array_equal(o1.numpy(), o2.numpy())) gru2.weight.set_value(gru1.weight.numpy()) gru2.bias.set_value(gru1.bias) dy_ret1 = gru1( base.to_variable(input), base.to_variable(hidden_input) ) dy_ret2 = gru2( base.to_variable(input), base.to_variable(hidden_input) ) for o1, o2 in zip(dy_ret1, dy_ret2): np.testing.assert_array_equal(o1.numpy(), o2.numpy()) gru2.weight = gru1.weight gru2.bias = gru1.bias np.testing.assert_array_equal( gru1.weight.numpy(), gru2.weight.numpy() ) np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy()) def test_elementwise_math(self): n = np.ones([3, 3], dtype='float32') n2 = np.ones([3, 3], dtype='float32') * 1.1 n3 = np.ones([3, 3], dtype='float32') * 2 n4 = np.ones([3, 3], dtype='float32') * 3 n5 = np.ones([3, 3], dtype='float32') * 4 n6 = np.ones([3, 3], dtype='float32') * 5 with self.static_graph(): t = layers.data(name='t', shape=[3, 3], dtype='float32') t2 = layers.data(name='t2', shape=[3, 3], dtype='float32') t3 = layers.data(name='t3', shape=[3, 3], dtype='float32') t4 = layers.data(name='t4', shape=[3, 3], dtype='float32') t5 = layers.data(name='t5', shape=[3, 3], dtype='float32') t6 = layers.data(name='t6', shape=[3, 3], dtype='float32') ret = layers.elementwise_add(t, t2) ret = paddle.pow(ret, t3) ret = layers.elementwise_div(ret, t4) ret = layers.elementwise_sub(ret, t5) ret = layers.elementwise_mul(ret, t6) static_ret = self.get_static_graph_result( feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6}, fetch_list=[ret], )[0] with self.dynamic_graph(): with _test_eager_guard(): ret = layers.elementwise_add(to_variable(n), to_variable(n2)) ret = paddle.pow(ret, to_variable(n3)) ret = layers.elementwise_div(ret, to_variable(n4)) ret = layers.elementwise_sub(ret, to_variable(n5)) dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6)) dy_eager_ret_value = dy_eager_ret.numpy() ret = layers.elementwise_add(to_variable(n), to_variable(n2)) ret = paddle.pow(ret, to_variable(n3)) ret = layers.elementwise_div(ret, to_variable(n4)) ret = layers.elementwise_sub(ret, to_variable(n5)) dy_ret = layers.elementwise_mul(ret, to_variable(n6)) dy_ret_value = dy_ret.numpy() np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05) np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05) def test_elementwise_minmax(self): n = np.ones([3, 3], dtype='float32') n2 = np.ones([3, 3], dtype='float32') * 2 with self.dynamic_graph(): with _test_eager_guard(): min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2)) max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2)) min_eager_ret_value = min_eager_ret.numpy() max_eager_ret_value = max_eager_ret.numpy() min_ret = paddle.minimum(to_variable(n), to_variable(n2)) max_ret = paddle.maximum(to_variable(n), to_variable(n2)) min_ret_value = min_ret.numpy() max_ret_value = max_ret.numpy() np.testing.assert_allclose(n, min_ret_value, rtol=1e-05) np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05) np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05) np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05) def test_sequence_conv(self): inp_np = np.arange(12).reshape([3, 4]).astype('float32') if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() with self.static_graph(): seq = layers.data( name='seq_in', shape=[3, 4], dtype='float32', lod_level=1, append_batch_size=False, ) out = layers.sequence_conv(seq, 2, act='sigmoid') static_rlt = self.get_static_graph_result( feed={ "seq_in": fluid.create_lod_tensor( data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place ) }, fetch_list=[out], with_lod=True, )[0] with self.static_graph(): seq = layers.data( name='seq_in', shape=[3, 4], dtype='float32', lod_level=1, append_batch_size=False, ) seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid') out = seq_conv(seq) static_rlt2 = self.get_static_graph_result( feed={ "seq_in": fluid.create_lod_tensor( data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place ) }, fetch_list=[out], with_lod=True, )[0] np.testing.assert_array_equal( np.array(static_rlt), np.array(static_rlt2) ) def test_conv2d_transpose(self): inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32') with self.static_graph(): img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32') out = paddle.static.nn.conv2d_transpose( input=img, num_filters=10, filter_size=27, act='sigmoid', bias_attr=fluid.initializer.ConstantInitializer(value=1), ) static_rlt = self.get_static_graph_result( feed={'pixel': inp_np}, fetch_list=[out] )[0] with self.static_graph(): img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32') conv2d_transpose = nn.Conv2DTranspose( num_channels=3, num_filters=10, filter_size=27, act='sigmoid', bias_attr=fluid.initializer.ConstantInitializer(value=1), ) out = conv2d_transpose(img) static_rlt2 = self.get_static_graph_result( feed={'pixel': inp_np}, fetch_list=[out] )[0] with self.dynamic_graph(): with _test_eager_guard(): conv2d_transpose = nn.Conv2DTranspose( num_channels=3, num_filters=10, filter_size=27, act='sigmoid', bias_attr=fluid.initializer.ConstantInitializer(value=1), ) dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np)) dy_eager_rlt_value = dy_eager_rlt.numpy() conv2d_transpose = nn.Conv2DTranspose( num_channels=3, num_filters=10, filter_size=27, act='sigmoid', bias_attr=fluid.initializer.ConstantInitializer(value=1), ) dy_rlt = conv2d_transpose(base.to_variable(inp_np)) dy_rlt_value = dy_rlt.numpy() np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05) np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05) np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05) with self.dynamic_graph(): with _test_eager_guard(): images = np.ones([2, 3, 5, 5], dtype='float32') custom_weight = np.random.randn(3, 3, 2, 2).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) conv2d1 = nn.Conv2DTranspose( num_channels=3, num_filters=3, filter_size=[2, 2] ) conv2d2 = nn.Conv2DTranspose( num_channels=3, num_filters=3, filter_size=[2, 2], param_attr=weight_attr, ) dy_ret1 = conv2d1(base.to_variable(images)) dy_ret2 = conv2d2(base.to_variable(images)) self.assertFalse( np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()) ) conv2d1_weight_np = conv2d1.weight.numpy() conv2d1_bias = conv2d1.bias self.assertFalse( np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()) ) conv2d2.weight.set_value(conv2d1_weight_np) np.testing.assert_array_equal( conv2d1_weight_np, conv2d2.weight.numpy() ) conv2d2.bias.set_value(conv2d1_bias) dy_ret1 = conv2d1(base.to_variable(images)) dy_ret2 = conv2d2(base.to_variable(images)) np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy()) conv2d2.weight = conv2d1.weight conv2d2.bias = conv2d1.bias np.testing.assert_array_equal( conv2d1.weight.numpy(), conv2d2.weight.numpy() ) np.testing.assert_array_equal( conv2d1.bias.numpy(), conv2d2.bias.numpy() ) images = np.ones([2, 3, 5, 5], dtype='float32') custom_weight = np.random.randn(3, 3, 2, 2).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) conv2d1 = nn.Conv2DTranspose( num_channels=3, num_filters=3, filter_size=[2, 2] ) conv2d2 = nn.Conv2DTranspose( num_channels=3, num_filters=3, filter_size=[2, 2], param_attr=weight_attr, ) dy_ret1 = conv2d1(base.to_variable(images)) dy_ret2 = conv2d2(base.to_variable(images)) self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) conv2d1_weight_np = conv2d1.weight.numpy() conv2d1_bias = conv2d1.bias self.assertFalse( np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()) ) conv2d2.weight.set_value(conv2d1_weight_np) np.testing.assert_array_equal( conv2d1_weight_np, conv2d2.weight.numpy() ) conv2d2.bias.set_value(conv2d1_bias) dy_ret1 = conv2d1(base.to_variable(images)) dy_ret2 = conv2d2(base.to_variable(images)) np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy()) conv2d2.weight = conv2d1.weight conv2d2.bias = conv2d1.bias np.testing.assert_array_equal( conv2d1.weight.numpy(), conv2d2.weight.numpy() ) np.testing.assert_array_equal( conv2d1.bias.numpy(), conv2d2.bias.numpy() ) with self.static_graph(): # the input of Conv2DTranspose must be Variable. def test_Variable(): images = np.ones([2, 3, 5, 5], dtype='float32') conv2d = nn.Conv2DTranspose( num_channels=3, num_filters=3, filter_size=[2, 2] ) conv2d_ret1 = conv2d(images) self.assertRaises(TypeError, test_Variable) # the input dtype of Conv2DTranspose must be float16 or float32 or float64 # float16 only can be set on GPU place def test_type(): images = layers.data( name='pixel', shape=[3, 5, 5], dtype='int32' ) conv2d = nn.Conv2DTranspose( num_channels=3, num_filters=3, filter_size=[2, 2] ) conv2d_ret2 = conv2d(images) self.assertRaises(TypeError, test_type) def test_bilinear_tensor_product(self): inp_np_x = np.array([[1, 2, 3]]).astype('float32') inp_np_y = np.array([[4, 5, 6]]).astype('float32') with self.static_graph(): data_x = layers.data( name='x', shape=[1, 3], dtype="float32", append_batch_size=False ) data_y = layers.data( name='y', shape=[1, 3], dtype="float32", append_batch_size=False ) out = layers.bilinear_tensor_product( data_x, data_y, 6, bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) static_rlt = self.get_static_graph_result( feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out] )[0] with self.static_graph(): data_x = layers.data( name='x', shape=[1, 3], dtype="float32", append_batch_size=False ) data_y = layers.data( name='y', shape=[1, 3], dtype="float32", append_batch_size=False ) btp = nn.BilinearTensorProduct( 3, 3, 6, bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) out = btp(data_x, data_y) static_rlt2 = self.get_static_graph_result( feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out] )[0] with self.dynamic_graph(): with _test_eager_guard(): btp = nn.BilinearTensorProduct( 3, 3, 6, bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) dy_eager_rlt = btp( base.to_variable(inp_np_x), base.to_variable(inp_np_y) ) dy_eager_rlt_value = dy_eager_rlt.numpy() btp = nn.BilinearTensorProduct( 3, 3, 6, bias_attr=fluid.initializer.ConstantInitializer(value=1), act='sigmoid', ) dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y)) dy_rlt_value = dy_rlt.numpy() with self.dynamic_graph(): with _test_eager_guard(): btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid') dy_eager_rlt2 = btp2( base.to_variable(inp_np_x), base.to_variable(inp_np_y) ) dy_eager_rlt2_value = dy_eager_rlt2.numpy() btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid') dy_rlt2 = btp2( base.to_variable(inp_np_x), base.to_variable(inp_np_y) ) dy_rlt2_value = dy_rlt2.numpy() with self.static_graph(): data_x2 = layers.data( name='x', shape=[1, 3], dtype="float32", append_batch_size=False ) data_y2 = layers.data( name='y', shape=[1, 3], dtype="float32", append_batch_size=False ) out2 = layers.bilinear_tensor_product( data_x2, data_y2, 6, act='sigmoid' ) static_rlt3 = self.get_static_graph_result( feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2] )[0] np.testing.assert_array_equal(dy_rlt2_value, static_rlt3) np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3) np.testing.assert_array_equal(static_rlt2, static_rlt) np.testing.assert_array_equal(dy_rlt_value, static_rlt) np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt) with self.dynamic_graph(): with _test_eager_guard(): custom_weight = np.random.randn(6, 3, 3).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid') btp2 = nn.BilinearTensorProduct( 3, 3, 6, act='sigmoid', param_attr=weight_attr ) dy_rlt1 = btp1( base.to_variable(inp_np_x), base.to_variable(inp_np_y) ) dy_rlt2 = btp2( base.to_variable(inp_np_x), base.to_variable(inp_np_y) ) self.assertFalse( np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()) ) btp2.weight.set_value(btp1.weight.numpy()) btp2.bias.set_value(btp1.bias) dy_rlt1 = btp1( base.to_variable(inp_np_x), base.to_variable(inp_np_y) ) dy_rlt2 = btp2( base.to_variable(inp_np_x), base.to_variable(inp_np_y) ) np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()) btp2.weight = btp1.weight btp2.bias = btp1.bias np.testing.assert_array_equal( btp1.weight.numpy(), btp2.weight.numpy() ) np.testing.assert_array_equal( btp1.bias.numpy(), btp2.bias.numpy() ) custom_weight = np.random.randn(6, 3, 3).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid') btp2 = nn.BilinearTensorProduct( 3, 3, 6, act='sigmoid', param_attr=weight_attr ) dy_rlt1 = btp1( base.to_variable(inp_np_x), base.to_variable(inp_np_y) ) dy_rlt2 = btp2( base.to_variable(inp_np_x), base.to_variable(inp_np_y) ) self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())) btp2.weight.set_value(btp1.weight.numpy()) btp2.bias.set_value(btp1.bias) dy_rlt1 = btp1( base.to_variable(inp_np_x), base.to_variable(inp_np_y) ) dy_rlt2 = btp2( base.to_variable(inp_np_x), base.to_variable(inp_np_y) ) np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()) btp2.weight = btp1.weight btp2.bias = btp1.bias np.testing.assert_array_equal( btp1.weight.numpy(), btp2.weight.numpy() ) np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy()) def prelu_test(self, mode): inp_np = np.ones([5, 200, 100, 100]).astype('float32') with self.static_graph(): data_t = layers.data( name="input", shape=[5, 200, 100, 100], dtype="float32", append_batch_size=False, ) out = paddle.static.nn.prelu( data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0)) ) static_rlt = self.get_static_graph_result( feed={"input": inp_np}, fetch_list=[out] )[0] with self.static_graph(): data_t = layers.data( name="input", shape=[5, 200, 100, 100], dtype="float32", append_batch_size=False, ) prelu = nn.PRelu( mode=mode, channel=inp_np.shape[1], input_shape=data_t.shape, param_attr=ParamAttr(initializer=Constant(1.0)), ) out = prelu(data_t) static_rlt2 = self.get_static_graph_result( feed={"input": inp_np}, fetch_list=[out] )[0] with self.dynamic_graph(): with _test_eager_guard(): prelu = nn.PRelu( mode=mode, channel=inp_np.shape[1], input_shape=inp_np.shape, param_attr=ParamAttr(initializer=Constant(1.0)), ) dy_eager_rlt = prelu(base.to_variable(inp_np)) dy_eager_rlt_value = dy_eager_rlt.numpy() prelu = nn.PRelu( mode=mode, channel=inp_np.shape[1], input_shape=inp_np.shape, param_attr=ParamAttr(initializer=Constant(1.0)), ) dy_rlt = prelu(base.to_variable(inp_np)) dy_rlt_value = dy_rlt.numpy() np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05) np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05) np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05) with self.dynamic_graph(): with _test_eager_guard(): inp_np = np.random.randn(5, 200, 100, 100).astype("float32") inp = base.to_variable(inp_np) prelu1 = nn.PRelu( mode=mode, channel=inp_np.shape[1], input_shape=inp_np.shape, param_attr=ParamAttr(initializer=Constant(2.0)), ) prelu2 = nn.PRelu( mode=mode, channel=inp_np.shape[1], input_shape=inp_np.shape, param_attr=ParamAttr(initializer=Constant(1.0)), ) dy_rlt1 = prelu1(inp) dy_rlt2 = prelu2(inp) self.assertFalse( np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()) ) self.assertFalse( np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()) ) prelu2.weight.set_value(prelu1.weight.numpy()) dy_rlt1 = prelu1(inp) dy_rlt2 = prelu2(inp) np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()) prelu2.weight = prelu1.weight np.testing.assert_array_equal( prelu1.weight.numpy(), prelu2.weight.numpy() ) inp_np = np.random.randn(5, 200, 100, 100).astype("float32") inp = base.to_variable(inp_np) prelu1 = nn.PRelu( mode=mode, channel=inp_np.shape[1], input_shape=inp_np.shape, param_attr=ParamAttr(initializer=Constant(2.0)), ) prelu2 = nn.PRelu( mode=mode, channel=inp_np.shape[1], input_shape=inp_np.shape, param_attr=ParamAttr(initializer=Constant(1.0)), ) dy_rlt1 = prelu1(inp) dy_rlt2 = prelu2(inp) self.assertFalse( np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()) ) self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())) prelu2.weight.set_value(prelu1.weight.numpy()) dy_rlt1 = prelu1(inp) dy_rlt2 = prelu2(inp) np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()) prelu2.weight = prelu1.weight np.testing.assert_array_equal( prelu1.weight.numpy(), prelu2.weight.numpy() ) def test_prelu(self): self.prelu_test("channel") self.prelu_test("element") self.prelu_test("all") def test_embeding(self): inp_word = np.array([[[1]]]).astype('int64') dict_size = 20 with self.static_graph(): data_t = layers.data(name='word', shape=[1], dtype='int64') emb = layers.embedding( input=data_t, size=[dict_size, 32], param_attr='emb.w', is_sparse=False, ) static_rlt = self.get_static_graph_result( feed={'word': inp_word}, fetch_list=[emb] )[0] with self.static_graph(): data_t = layers.data(name='word', shape=[1], dtype='int64') emb2 = nn.Embedding( size=[dict_size, 32], param_attr='emb.w', is_sparse=False ) emb_rlt = emb2(data_t) static_rlt2 = self.get_static_graph_result( feed={'word': inp_word}, fetch_list=[emb_rlt] )[0] with self.dynamic_graph(): with _test_eager_guard(): emb2 = nn.Embedding( size=[dict_size, 32], param_attr='eager_emb.w', is_sparse=False, ) dy_eager_rlt = emb2(base.to_variable(inp_word)) dy_eager_rlt_value = dy_eager_rlt.numpy() emb2 = nn.Embedding( size=[dict_size, 32], param_attr='emb.w', is_sparse=False ) dy_rlt = emb2(base.to_variable(inp_word)) dy_rlt_value = dy_rlt.numpy() self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(dy_rlt_value, static_rlt)) self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt)) with self.dynamic_graph(): with _test_eager_guard(): custom_weight = np.random.randn(dict_size, 32).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False) emb2 = nn.Embedding( size=[dict_size, 32], param_attr=weight_attr, is_sparse=False, ) rep1 = emb1(base.to_variable(inp_word)) rep2 = emb2(base.to_variable(inp_word)) self.assertFalse( np.array_equal(emb1.weight.numpy(), custom_weight) ) np.testing.assert_array_equal( emb2.weight.numpy(), custom_weight ) self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy())) emb2.weight.set_value(emb1.weight.numpy()) rep2 = emb2(base.to_variable(inp_word)) np.testing.assert_array_equal(rep1.numpy(), rep2.numpy()) emb2.weight = emb1.weight np.testing.assert_array_equal( emb1.weight.numpy(), emb2.weight.numpy() ) custom_weight = np.random.randn(dict_size, 32).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False) emb2 = nn.Embedding( size=[dict_size, 32], param_attr=weight_attr, is_sparse=False ) rep1 = emb1(base.to_variable(inp_word)) rep2 = emb2(base.to_variable(inp_word)) self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight)) np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight) self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy())) emb2.weight.set_value(emb1.weight.numpy()) rep2 = emb2(base.to_variable(inp_word)) np.testing.assert_array_equal(rep1.numpy(), rep2.numpy()) emb2.weight = emb1.weight np.testing.assert_array_equal( emb1.weight.numpy(), emb2.weight.numpy() ) def test_nce(self): window_size = 5 dict_size = 20 label_word = int(window_size // 2) + 1 inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64') nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32') seed = 1 with self.static_graph(): words = [] for i in range(window_size): words.append( layers.data( name='word_{0}'.format(i), shape=[None], dtype='int64' ) ) sample_weights = layers.fill_constant( shape=[5, 1], dtype='float32', value=1 ) embs = [] for i in range(window_size): if i == label_word: continue emb = fluid.embedding( input=words[i], size=[dict_size, 32], param_attr='emb.w', is_sparse=False, ) embs.append(emb) embs = layers.concat(input=embs, axis=1) wl = fluid.layers.unsqueeze(words[label_word], axes=[0]) nce_loss = paddle.static.nn.nce( input=embs, label=wl, num_total_classes=dict_size, num_neg_samples=2, sampler="custom_dist", custom_dist=nid_freq_arr.tolist(), seed=seed, param_attr='nce.w', bias_attr='nce.b', sample_weight=sample_weights, ) feed_dict = dict() for i in range(window_size): feed_dict['word_{0}'.format(i)] = inp_word[i] static_rlt = self.get_static_graph_result( feed=feed_dict, fetch_list=[nce_loss] )[0] with self.static_graph(): words = [] for i in range(window_size): words.append( layers.data( name='word_{0}'.format(i), shape=[None], dtype='int64' ) ) sample_weights = layers.fill_constant( shape=[5, 1], dtype='float32', value=1 ) emb = nn.Embedding( size=[dict_size, 32], param_attr='emb.w', is_sparse=False ) embs2 = [] for i in range(window_size): if i == label_word: continue emb_rlt = emb(words[i]) embs2.append(emb_rlt) embs2 = layers.concat(input=embs2, axis=1) nce = nn.NCE( num_total_classes=dict_size, dim=embs2.shape[1], num_neg_samples=2, sampler="custom_dist", custom_dist=nid_freq_arr.tolist(), seed=seed, param_attr='nce.w', bias_attr='nce.b', sample_weight=sample_weights, ) wl = fluid.layers.unsqueeze(words[label_word], axes=[0]) nce_loss2 = nce(embs2, wl) feed_dict = dict() for i in range(len(words)): feed_dict['word_{0}'.format(i)] = inp_word[i] static_rlt2 = self.get_static_graph_result( feed=feed_dict, fetch_list=[nce_loss2] )[0] with self.dynamic_graph(): with _test_eager_guard(): words = [] for i in range(window_size): words.append(base.to_variable(inp_word[i])) sample_weights = layers.fill_constant( shape=[5, 1], dtype='float32', value=1 ) emb = nn.Embedding( size=[dict_size, 32], param_attr='eager_emb.w', is_sparse=False, ) embs3 = [] for i in range(window_size): if i == label_word: continue emb_rlt = emb(words[i]) embs3.append(emb_rlt) embs3 = layers.concat( input=embs3, axis=fluid.dygraph.to_variable(np.array([1])) ) nce = nn.NCE( num_total_classes=dict_size, dim=embs3.shape[1], num_neg_samples=2, sampler="custom_dist", custom_dist=nid_freq_arr.tolist(), seed=seed, param_attr='eager_nce.w', bias_attr='eager_nce.b', sample_weight=sample_weights, ) wl = fluid.layers.unsqueeze(words[label_word], axes=[0]) dy_eager_rlt = nce(embs3, wl) dy_eager_rlt_value = dy_eager_rlt.numpy() words = [] for i in range(window_size): words.append(base.to_variable(inp_word[i])) sample_weights = layers.fill_constant( shape=[5, 1], dtype='float32', value=1 ) emb = nn.Embedding( size=[dict_size, 32], param_attr='emb.w', is_sparse=False ) embs3 = [] for i in range(window_size): if i == label_word: continue emb_rlt = emb(words[i]) embs3.append(emb_rlt) embs3 = layers.concat( input=embs3, axis=fluid.dygraph.to_variable(np.array([1])) ) nce = nn.NCE( num_total_classes=dict_size, dim=embs3.shape[1], num_neg_samples=2, sampler="custom_dist", custom_dist=nid_freq_arr.tolist(), seed=seed, param_attr='nce.w', bias_attr='nce.b', sample_weight=sample_weights, ) wl = fluid.layers.unsqueeze(words[label_word], axes=[0]) dy_rlt = nce(embs3, wl) dy_rlt_value = dy_rlt.numpy() np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05) np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05) np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05) with self.dynamic_graph(): with _test_eager_guard(): custom_weight = np.random.randn(dict_size, 128).astype( "float32" ) weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) words = [] for i in range(window_size): words.append(base.to_variable(inp_word[i])) sample_weights = layers.fill_constant( shape=fluid.dygraph.to_variable(np.array([5, 1])), dtype='float32', value=1, ) emb = nn.Embedding( size=[dict_size, 32], param_attr='eager_emb.w', is_sparse=False, ) embs3 = [] for i in range(window_size): if i == label_word: continue emb_rlt = emb(words[i]) embs3.append(emb_rlt) embs3 = layers.concat(input=embs3, axis=1) nce1 = nn.NCE( num_total_classes=dict_size, dim=embs3.shape[1], num_neg_samples=2, sampler="custom_dist", custom_dist=nid_freq_arr.tolist(), seed=seed, param_attr='eager_nce1.w', bias_attr='eager_nce1.b', sample_weight=sample_weights, ) nce2 = nn.NCE( num_total_classes=dict_size, dim=embs3.shape[1], num_neg_samples=2, sampler="custom_dist", custom_dist=nid_freq_arr.tolist(), seed=seed, param_attr=weight_attr, bias_attr='eager_nce2.b', sample_weight=sample_weights, ) wl = fluid.layers.unsqueeze(words[label_word], axes=[0]) nce1_loss = nce1(embs3, wl) nce2_loss = nce2(embs3, wl) self.assertFalse( np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()) ) nce2.weight.set_value(nce1.weight.numpy()) nce2.bias.set_value(nce1.bias) nce1_loss = nce1(embs3, wl) nce2_loss = nce2(embs3, wl) np.testing.assert_array_equal( nce1_loss.numpy(), nce2_loss.numpy() ) nce2.weight = nce1.weight nce2.bias = nce1.bias np.testing.assert_array_equal( nce1.weight.numpy(), nce2.weight.numpy() ) np.testing.assert_array_equal( nce1.bias.numpy(), nce2.bias.numpy() ) custom_weight = np.random.randn(dict_size, 128).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) words = [] for i in range(window_size): words.append(base.to_variable(inp_word[i])) sample_weights = layers.fill_constant( shape=fluid.dygraph.to_variable(np.array([5, 1])), dtype='float32', value=1, ) emb = nn.Embedding( size=[dict_size, 32], param_attr='emb.w', is_sparse=False ) embs3 = [] for i in range(window_size): if i == label_word: continue emb_rlt = emb(words[i]) embs3.append(emb_rlt) embs3 = layers.concat(input=embs3, axis=1) nce1 = nn.NCE( num_total_classes=dict_size, dim=embs3.shape[1], num_neg_samples=2, sampler="custom_dist", custom_dist=nid_freq_arr.tolist(), seed=seed, param_attr='nce1.w', bias_attr='nce1.b', sample_weight=sample_weights, ) nce2 = nn.NCE( num_total_classes=dict_size, dim=embs3.shape[1], num_neg_samples=2, sampler="custom_dist", custom_dist=nid_freq_arr.tolist(), seed=seed, param_attr=weight_attr, bias_attr='nce2.b', sample_weight=sample_weights, ) wl = fluid.layers.unsqueeze(words[label_word], axes=[0]) nce1_loss = nce1(embs3, wl) nce2_loss = nce2(embs3, wl) self.assertFalse( np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()) ) nce2.weight.set_value(nce1.weight.numpy()) nce2.bias.set_value(nce1.bias) nce1_loss = nce1(embs3, wl) nce2_loss = nce2(embs3, wl) np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy()) nce2.weight = nce1.weight nce2.bias = nce1.bias np.testing.assert_array_equal( nce1.weight.numpy(), nce2.weight.numpy() ) np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy()) def test_one_hot(self): with self.dynamic_graph(): with _test_eager_guard(): label = fluid.dygraph.to_variable( np.array([[1], [1], [3], [0]]) ) one_hot_label1 = fluid.layers.one_hot(input=label, depth=4) one_hot_label2 = fluid.layers.one_hot( input=label, depth=fluid.dygraph.to_variable(np.array([4])) ) np.testing.assert_array_equal( one_hot_label1.numpy(), one_hot_label2.numpy() ) label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]])) one_hot_label1 = fluid.layers.one_hot(input=label, depth=4) one_hot_label2 = fluid.layers.one_hot( input=label, depth=fluid.dygraph.to_variable(np.array([4])) ) np.testing.assert_array_equal( one_hot_label1.numpy(), one_hot_label2.numpy() ) def test_split(self): with self.dynamic_graph(): with _test_eager_guard(): input = fluid.dygraph.to_variable(np.random.random((3, 8, 5))) x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1) x00, x11 = fluid.layers.split( input, num_or_sections=2, dim=fluid.dygraph.to_variable(np.array([1])), ) np.testing.assert_array_equal(x0.numpy(), x00.numpy()) np.testing.assert_array_equal(x1.numpy(), x11.numpy()) input = fluid.dygraph.to_variable(np.random.random((3, 8, 5))) x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1) x00, x11 = fluid.layers.split( input, num_or_sections=2, dim=fluid.dygraph.to_variable(np.array([1])), ) np.testing.assert_array_equal(x0.numpy(), x00.numpy()) np.testing.assert_array_equal(x1.numpy(), x11.numpy()) def test_topk(self): with self.dynamic_graph(): with _test_eager_guard(): input = fluid.dygraph.to_variable(np.random.random((13, 11))) top5_values1, top5_indices1 = layers.topk(input, k=5) top5_values2, top5_indices2 = layers.topk( input, k=fluid.dygraph.to_variable(np.array([5])) ) np.testing.assert_array_equal( top5_values1.numpy(), top5_values2.numpy() ) np.testing.assert_array_equal( top5_indices1.numpy(), top5_indices2.numpy() ) input = fluid.dygraph.to_variable(np.random.random((13, 11))) top5_values1, top5_indices1 = layers.topk(input, k=5) top5_values2, top5_indices2 = layers.topk( input, k=fluid.dygraph.to_variable(np.array([5])) ) np.testing.assert_array_equal( top5_values1.numpy(), top5_values2.numpy() ) np.testing.assert_array_equal( top5_indices1.numpy(), top5_indices2.numpy() ) def test_conv3d(self): with self.static_graph(): images = layers.data( name='pixel', shape=[3, 6, 6, 6], dtype='float32' ) ret = paddle.static.nn.conv3d( input=images, num_filters=3, filter_size=2 ) static_ret = self.get_static_graph_result( feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')}, fetch_list=[ret], )[0] with self.static_graph(): images = layers.data( name='pixel', shape=[3, 6, 6, 6], dtype='float32' ) conv3d = paddle.nn.Conv3D( in_channels=3, out_channels=3, kernel_size=2 ) ret = conv3d(images) static_ret2 = self.get_static_graph_result( feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')}, fetch_list=[ret], )[0] with self.dynamic_graph(): with _test_eager_guard(): images = np.ones([2, 3, 6, 6, 6], dtype='float32') conv3d = paddle.nn.Conv3D( in_channels=3, out_channels=3, kernel_size=2 ) dy_eager_ret = conv3d(base.to_variable(images)) dy_eager_rlt_value = dy_eager_ret.numpy() images = np.ones([2, 3, 6, 6, 6], dtype='float32') conv3d = paddle.nn.Conv3D( in_channels=3, out_channels=3, kernel_size=2 ) dy_ret = conv3d(base.to_variable(images)) dy_rlt_value = dy_ret.numpy() np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05) np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05) np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05) with self.dynamic_graph(): with _test_eager_guard(): images = np.ones([2, 3, 6, 6, 6], dtype='float32') custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) conv3d1 = paddle.nn.Conv3D( in_channels=3, out_channels=3, kernel_size=2 ) conv3d2 = paddle.nn.Conv3D( in_channels=3, out_channels=3, kernel_size=2, weight_attr=weight_attr, ) dy_ret1 = conv3d1(base.to_variable(images)) dy_ret2 = conv3d2(base.to_variable(images)) self.assertFalse( np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()) ) conv3d1_weight_np = conv3d1.weight.numpy() conv3d1_bias = conv3d1.bias self.assertFalse( np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()) ) conv3d2.weight.set_value(conv3d1_weight_np) np.testing.assert_array_equal( conv3d1_weight_np, conv3d2.weight.numpy() ) conv3d1.bias.set_value(conv3d1_bias) dy_ret1 = conv3d1(base.to_variable(images)) dy_ret2 = conv3d2(base.to_variable(images)) np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy()) conv3d2.weight = conv3d1.weight conv3d2.bias = conv3d1.bias np.testing.assert_array_equal( conv3d1.weight.numpy(), conv3d2.weight.numpy() ) np.testing.assert_array_equal( conv3d1.bias.numpy(), conv3d2.bias.numpy() ) images = np.ones([2, 3, 6, 6, 6], dtype='float32') custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) conv3d1 = paddle.nn.Conv3D( in_channels=3, out_channels=3, kernel_size=2 ) conv3d2 = paddle.nn.Conv3D( in_channels=3, out_channels=3, kernel_size=2, weight_attr=weight_attr, ) dy_ret1 = conv3d1(base.to_variable(images)) dy_ret2 = conv3d2(base.to_variable(images)) self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) conv3d1_weight_np = conv3d1.weight.numpy() conv3d1_bias = conv3d1.bias self.assertFalse( np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()) ) conv3d2.weight.set_value(conv3d1_weight_np) np.testing.assert_array_equal( conv3d1_weight_np, conv3d2.weight.numpy() ) conv3d1.bias.set_value(conv3d1_bias) dy_ret1 = conv3d1(base.to_variable(images)) dy_ret2 = conv3d2(base.to_variable(images)) np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy()) conv3d2.weight = conv3d1.weight conv3d2.bias = conv3d1.bias np.testing.assert_array_equal( conv3d1.weight.numpy(), conv3d2.weight.numpy() ) np.testing.assert_array_equal( conv3d1.bias.numpy(), conv3d2.bias.numpy() ) def test_row_conv(self): input = np.arange(15).reshape([3, 5]).astype('float32') if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() with self.static_graph(): x = layers.data( name='X', shape=[3, 5], dtype='float32', lod_level=1, append_batch_size=False, ) ret = layers.row_conv(input=x, future_context_size=2) static_ret = self.get_static_graph_result( feed={ 'X': fluid.create_lod_tensor( data=input, recursive_seq_lens=[[1, 1, 1]], place=place ) }, fetch_list=[ret], with_lod=True, )[0] with self.static_graph(): x = layers.data( name='X', shape=[3, 5], dtype='float32', lod_level=1, append_batch_size=False, ) rowConv = nn.RowConv('RowConv', future_context_size=2) ret = rowConv(x) static_ret2 = self.get_static_graph_result( feed={ 'X': fluid.create_lod_tensor( data=input, recursive_seq_lens=[[1, 1, 1]], place=place ) }, fetch_list=[ret], with_lod=True, )[0] # TODO: dygraph can't support LODTensor np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05) def func_group_norm(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() shape = (2, 4, 3, 3) input = np.random.random(shape).astype('float32') with self.static_graph(): X = fluid.layers.data( name='X', shape=shape, dtype='float32', lod_level=1, append_batch_size=False, ) ret = paddle.static.nn.group_norm( input=X, groups=2, param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5), bias_attr=fluid.initializer.ConstantInitializer(value=1), ) static_ret = self.get_static_graph_result( feed={ 'X': fluid.create_lod_tensor( data=input, recursive_seq_lens=[[1, 1]], place=place ) }, fetch_list=[ret], with_lod=True, )[0] with self.static_graph(): X = fluid.layers.data( name='X', shape=shape, dtype='float32', lod_level=1, append_batch_size=False, ) groupNorm = nn.GroupNorm( channels=shape[1], groups=2, param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5), bias_attr=fluid.initializer.ConstantInitializer(value=1), ) ret = groupNorm(X) static_ret2 = self.get_static_graph_result( feed={ 'X': fluid.create_lod_tensor( data=input, recursive_seq_lens=[[1, 1]], place=place ) }, fetch_list=[ret], with_lod=True, )[0] with self.dynamic_graph(): groupNorm = nn.GroupNorm( channels=shape[1], groups=2, param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5), bias_attr=fluid.initializer.ConstantInitializer(value=1), ) dy_ret = groupNorm(base.to_variable(input)) dy_rlt_value = dy_ret.numpy() np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05) np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05) def test_group_norm(self): with _test_eager_guard(): self.func_group_norm() self.func_group_norm() def test_instance_norm(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() shape = (2, 4, 3, 3) input = np.random.random(shape).astype('float32') with self.static_graph(): X = fluid.layers.data( name='X', shape=shape, dtype='float32', append_batch_size=False ) ret = paddle.static.nn.instance_norm(input=X) static_ret = self.get_static_graph_result( feed={'X': input}, fetch_list=[ret] )[0] with self.static_graph(): X = fluid.layers.data( name='X', shape=shape, dtype='float32', append_batch_size=False ) instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1]) ret = instanceNorm(X) static_ret2 = self.get_static_graph_result( feed={'X': input}, fetch_list=[ret] )[0] with self.dynamic_graph(): with _test_eager_guard(): instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1]) dy_eager_ret = instanceNorm(base.to_variable(input)) dy_eager_rlt_value = dy_eager_ret.numpy() instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1]) dy_ret = instanceNorm(base.to_variable(input)) dy_rlt_value = dy_ret.numpy() with self.dynamic_graph(): with _test_eager_guard(): instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1]) dy_eager_ret = instanceNorm(base.to_variable(input)) dy_eager_rlt_value2 = dy_eager_ret.numpy() instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1]) dy_ret = instanceNorm(base.to_variable(input)) dy_rlt_value2 = dy_ret.numpy() np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05) np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05) np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05) np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05) np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05) with self.static_graph(): # the input of InstanceNorm must be Variable. def test_Variable(): instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1]) ret1 = instanceNorm(input) self.assertRaises(TypeError, test_Variable) # the input dtype of InstanceNorm must be float32 or float64 def test_type(): input = np.random.random(shape).astype('int32') instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1]) ret2 = instanceNorm(input) self.assertRaises(TypeError, test_type) def test_spectral_norm(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() shape = (2, 4, 3, 3) input = np.random.random(shape).astype('float32') with self.static_graph(): Weight = fluid.layers.data( name='Weight', shape=shape, dtype='float32', lod_level=1, append_batch_size=False, ) ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2) static_ret = self.get_static_graph_result( feed={ 'Weight': fluid.create_lod_tensor( data=input, recursive_seq_lens=[[1, 1]], place=place ), }, fetch_list=[ret], with_lod=True, )[0] with self.static_graph(): Weight = fluid.layers.data( name='Weight', shape=shape, dtype='float32', lod_level=1, append_batch_size=False, ) spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2) ret = spectralNorm(Weight) static_ret2 = self.get_static_graph_result( feed={ 'Weight': fluid.create_lod_tensor( data=input, recursive_seq_lens=[[1, 1]], place=place ) }, fetch_list=[ret], with_lod=True, )[0] with self.dynamic_graph(): with _test_eager_guard(): spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2) dy_eager_ret = spectralNorm(base.to_variable(input)) dy_eager_rlt_value = dy_eager_ret.numpy() spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2) dy_ret = spectralNorm(base.to_variable(input)) dy_rlt_value = dy_ret.numpy() np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05) np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05) np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05) def test_tree_conv(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10] adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32') adj = np.tile(adj, (1, 1, 1)) vectors = np.random.random((1, 10, 5)).astype('float32') with self.static_graph(): NodesVector = fluid.layers.data( name='NodesVector', shape=(1, 10, 5), dtype='float32', lod_level=1, append_batch_size=False, ) EdgeSet = fluid.layers.data( name='EdgeSet', shape=(1, 9, 2), dtype='int32', lod_level=1, append_batch_size=False, ) ret = fluid.contrib.layers.tree_conv( nodes_vector=NodesVector, edge_set=EdgeSet, output_size=6, num_filters=1, max_depth=2, ) static_ret = self.get_static_graph_result( feed={ 'NodesVector': fluid.create_lod_tensor( data=vectors, recursive_seq_lens=[[1]], place=place ), 'EdgeSet': fluid.create_lod_tensor( data=adj, recursive_seq_lens=[[1]], place=place ), }, fetch_list=[ret], with_lod=False, )[0] with self.static_graph(): NodesVector = fluid.layers.data( name='NodesVector', shape=(1, 10, 5), dtype='float32', lod_level=1, append_batch_size=False, ) EdgeSet = fluid.layers.data( name='EdgeSet', shape=(1, 9, 2), dtype='int32', lod_level=1, append_batch_size=False, ) treeConv = nn.TreeConv( feature_size=5, output_size=6, num_filters=1, max_depth=2 ) ret = treeConv(NodesVector, EdgeSet) static_ret2 = self.get_static_graph_result( feed={ 'NodesVector': fluid.create_lod_tensor( data=vectors, recursive_seq_lens=[[1]], place=place ), 'EdgeSet': fluid.create_lod_tensor( data=adj, recursive_seq_lens=[[1]], place=place ), }, fetch_list=[ret], with_lod=False, )[0] with self.dynamic_graph(): with _test_eager_guard(): treeConv = nn.TreeConv( feature_size=5, output_size=6, num_filters=1, max_depth=2 ) dy_eager_ret = treeConv( base.to_variable(vectors), base.to_variable(adj) ) dy_eager_rlt_value = dy_eager_ret.numpy() treeConv = nn.TreeConv( feature_size=5, output_size=6, num_filters=1, max_depth=2 ) dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj)) dy_rlt_value = dy_ret.numpy() np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05) np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05) np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05) with self.dynamic_graph(): with _test_eager_guard(): custom_weight = np.random.randn(5, 3, 6, 1).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) treeConv1 = nn.TreeConv( feature_size=5, output_size=6, num_filters=1, max_depth=2, bias_attr='eager_tc1_b', ) treeConv2 = nn.TreeConv( feature_size=5, output_size=6, num_filters=1, max_depth=2, param_attr=weight_attr, bias_attr='eager_tc2_b', ) dy_ret1 = treeConv1( base.to_variable(vectors), base.to_variable(adj) ) dy_ret2 = treeConv2( base.to_variable(vectors), base.to_variable(adj) ) self.assertFalse( np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()) ) treeConv2.weight.set_value(treeConv1.weight.numpy()) treeConv2.bias.set_value(treeConv1.bias) dy_ret1 = treeConv1( base.to_variable(vectors), base.to_variable(adj) ) dy_ret2 = treeConv2( base.to_variable(vectors), base.to_variable(adj) ) np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy()) treeConv2.weight = treeConv1.weight treeConv2.bias = treeConv1.bias np.testing.assert_array_equal( treeConv1.weight.numpy(), treeConv2.weight.numpy() ) np.testing.assert_array_equal( treeConv1.bias.numpy(), treeConv2.bias.numpy() ) custom_weight = np.random.randn(5, 3, 6, 1).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) treeConv1 = nn.TreeConv( feature_size=5, output_size=6, num_filters=1, max_depth=2, bias_attr='tc1_b', ) treeConv2 = nn.TreeConv( feature_size=5, output_size=6, num_filters=1, max_depth=2, param_attr=weight_attr, bias_attr='tc2_b', ) dy_ret1 = treeConv1( base.to_variable(vectors), base.to_variable(adj) ) dy_ret2 = treeConv2( base.to_variable(vectors), base.to_variable(adj) ) self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) treeConv2.weight.set_value(treeConv1.weight.numpy()) treeConv2.bias.set_value(treeConv1.bias) dy_ret1 = treeConv1( base.to_variable(vectors), base.to_variable(adj) ) dy_ret2 = treeConv2( base.to_variable(vectors), base.to_variable(adj) ) np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy()) treeConv2.weight = treeConv1.weight treeConv2.bias = treeConv1.bias np.testing.assert_array_equal( treeConv1.weight.numpy(), treeConv2.weight.numpy() ) np.testing.assert_array_equal( treeConv1.bias.numpy(), treeConv2.bias.numpy() ) def test_conv3d_transpose(self): input_array = ( np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32') ) with self.static_graph(): img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32') out = paddle.static.nn.conv3d_transpose( input=img, num_filters=12, filter_size=12, use_cudnn=True ) static_rlt = self.get_static_graph_result( feed={'pixel': input_array}, fetch_list=[out] )[0] with self.static_graph(): img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32') conv3d_transpose = paddle.nn.Conv3DTranspose( in_channels=3, out_channels=12, kernel_size=12 ) out = conv3d_transpose(img) static_rlt2 = self.get_static_graph_result( feed={'pixel': input_array}, fetch_list=[out] )[0] with self.dynamic_graph(): with _test_eager_guard(): conv3d_transpose = paddle.nn.Conv3DTranspose( in_channels=3, out_channels=12, kernel_size=12, ) dy_eager_rlt = conv3d_transpose(base.to_variable(input_array)) dy_eager_rlt_value = dy_eager_rlt.numpy() conv3d_transpose = paddle.nn.Conv3DTranspose( in_channels=3, out_channels=12, kernel_size=12 ) dy_rlt = conv3d_transpose(base.to_variable(input_array)) dy_rlt_value = dy_rlt.numpy() np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05) np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05) np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05) with self.dynamic_graph(): with _test_eager_guard(): images = np.ones([2, 3, 6, 6, 6], dtype='float32') custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) conv3d1 = paddle.nn.Conv3DTranspose( in_channels=3, out_channels=3, kernel_size=2, bias_attr='eager_conv3d1_b', ) conv3d2 = paddle.nn.Conv3DTranspose( in_channels=3, out_channels=3, kernel_size=2, weight_attr=weight_attr, bias_attr='eager_conv3d2_b', ) dy_ret1 = conv3d1(base.to_variable(images)) dy_ret2 = conv3d2(base.to_variable(images)) self.assertFalse( np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()) ) conv3d1_weight_np = conv3d1.weight.numpy() conv3d1_bias = conv3d1.bias self.assertFalse( np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()) ) conv3d2.weight.set_value(conv3d1_weight_np) np.testing.assert_array_equal( conv3d1_weight_np, conv3d2.weight.numpy() ) conv3d1.bias.set_value(conv3d1_bias) dy_ret1 = conv3d1(base.to_variable(images)) dy_ret2 = conv3d2(base.to_variable(images)) np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy()) conv3d2.weight = conv3d1.weight conv3d2.bias = conv3d1.bias np.testing.assert_array_equal( conv3d1.weight.numpy(), conv3d2.weight.numpy() ) np.testing.assert_array_equal( conv3d1.bias.numpy(), conv3d2.bias.numpy() ) images = np.ones([2, 3, 6, 6, 6], dtype='float32') custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32") weight_attr = fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( custom_weight ) ) conv3d1 = paddle.nn.Conv3DTranspose( in_channels=3, out_channels=3, kernel_size=2, bias_attr='conv3d1_b', ) conv3d2 = paddle.nn.Conv3DTranspose( in_channels=3, out_channels=3, kernel_size=2, weight_attr=weight_attr, bias_attr='conv3d2_b', ) dy_ret1 = conv3d1(base.to_variable(images)) dy_ret2 = conv3d2(base.to_variable(images)) self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) conv3d1_weight_np = conv3d1.weight.numpy() conv3d1_bias = conv3d1.bias self.assertFalse( np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()) ) conv3d2.weight.set_value(conv3d1_weight_np) np.testing.assert_array_equal( conv3d1_weight_np, conv3d2.weight.numpy() ) conv3d1.bias.set_value(conv3d1_bias) dy_ret1 = conv3d1(base.to_variable(images)) dy_ret2 = conv3d2(base.to_variable(images)) np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy()) conv3d2.weight = conv3d1.weight conv3d2.bias = conv3d1.bias np.testing.assert_array_equal( conv3d1.weight.numpy(), conv3d2.weight.numpy() ) np.testing.assert_array_equal( conv3d1.bias.numpy(), conv3d2.bias.numpy() ) def func_while_loop(self): with self.static_graph(): i = layers.fill_constant(shape=[1], dtype='int64', value=0) ten = layers.fill_constant(shape=[1], dtype='int64', value=10) def cond(i): return layers.less_than(i, ten) def body(i): return i + 1 out = layers.while_loop(cond, body, [i]) static_ret = self.get_static_graph_result(feed={}, fetch_list=out) with self.dynamic_graph(): i = layers.fill_constant(shape=[1], dtype='int64', value=0) ten = layers.fill_constant(shape=[1], dtype='int64', value=10) def cond1(i): return layers.less_than(i, ten) def body1(i): return i + 1 dy_ret = layers.while_loop(cond1, body1, [i]) with self.assertRaises(ValueError): j = layers.fill_constant(shape=[1], dtype='int64', value=0) def body2(i): return i + 1, i + 2 layers.while_loop(cond1, body2, [j]) np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy()) def test_while_loop(self): with _test_eager_guard(): self.func_while_loop() self.func_while_loop() def test_compare(self): value_a = np.arange(3) value_b = np.arange(3) # less than with self.static_graph(): a = layers.data(name='a', shape=[1], dtype='int64') b = layers.data(name='b', shape=[1], dtype='int64') cond = layers.less_than(x=a, y=b) static_ret = self.get_static_graph_result( feed={"a": value_a, "b": value_b}, fetch_list=[cond] )[0] with self.dynamic_graph(): with _test_eager_guard(): da = base.to_variable(value_a) db = base.to_variable(value_b) dcond = layers.less_than(x=da, y=db) for i in range(len(static_ret)): self.assertTrue(dcond.numpy()[i] == static_ret[i]) da = base.to_variable(value_a) db = base.to_variable(value_b) dcond = layers.less_than(x=da, y=db) for i in range(len(static_ret)): self.assertTrue(dcond.numpy()[i] == static_ret[i]) # less equal with self.static_graph(): a1 = layers.data(name='a1', shape=[1], dtype='int64') b1 = layers.data(name='b1', shape=[1], dtype='int64') cond1 = paddle.less_equal(x=a1, y=b1) static_ret1 = self.get_static_graph_result( feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1] )[0] with self.dynamic_graph(): with _test_eager_guard(): da1 = base.to_variable(value_a) db1 = base.to_variable(value_b) dcond1 = paddle.less_equal(x=da1, y=db1) for i in range(len(static_ret1)): self.assertTrue(dcond1.numpy()[i] == static_ret1[i]) da1 = base.to_variable(value_a) db1 = base.to_variable(value_b) dcond1 = paddle.less_equal(x=da1, y=db1) for i in range(len(static_ret1)): self.assertTrue(dcond1.numpy()[i] == static_ret1[i]) # greater than with self.static_graph(): a2 = layers.data(name='a2', shape=[1], dtype='int64') b2 = layers.data(name='b2', shape=[1], dtype='int64') cond2 = paddle.greater_than(x=a2, y=b2) static_ret2 = self.get_static_graph_result( feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2] )[0] with self.dynamic_graph(): with _test_eager_guard(): da2 = base.to_variable(value_a) db2 = base.to_variable(value_b) dcond2 = paddle.greater_than(x=da2, y=db2) for i in range(len(static_ret2)): self.assertTrue(dcond2.numpy()[i] == static_ret2[i]) da2 = base.to_variable(value_a) db2 = base.to_variable(value_b) dcond2 = paddle.greater_than(x=da2, y=db2) for i in range(len(static_ret2)): self.assertTrue(dcond2.numpy()[i] == static_ret2[i]) # greater equal with self.static_graph(): a3 = layers.data(name='a3', shape=[1], dtype='int64') b3 = layers.data(name='b3', shape=[1], dtype='int64') cond3 = paddle.greater_equal(x=a3, y=b3) static_ret3 = self.get_static_graph_result( feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3] )[0] with self.dynamic_graph(): with _test_eager_guard(): da3 = base.to_variable(value_a) db3 = base.to_variable(value_b) dcond3 = paddle.greater_equal(x=da3, y=db3) for i in range(len(static_ret3)): self.assertTrue(dcond3.numpy()[i] == static_ret3[i]) da3 = base.to_variable(value_a) db3 = base.to_variable(value_b) dcond3 = paddle.greater_equal(x=da3, y=db3) for i in range(len(static_ret3)): self.assertTrue(dcond3.numpy()[i] == static_ret3[i]) # equal with self.static_graph(): a4 = layers.data(name='a4', shape=[1], dtype='int64') b4 = layers.data(name='b4', shape=[1], dtype='int64') cond4 = paddle.equal(x=a4, y=b4) static_ret4 = self.get_static_graph_result( feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4] )[0] with self.dynamic_graph(): with _test_eager_guard(): da4 = base.to_variable(value_a) db4 = base.to_variable(value_b) dcond4 = paddle.equal(x=da4, y=db4) for i in range(len(static_ret4)): self.assertTrue(dcond4.numpy()[i] == static_ret4[i]) da4 = base.to_variable(value_a) db4 = base.to_variable(value_b) dcond4 = paddle.equal(x=da4, y=db4) for i in range(len(static_ret4)): self.assertTrue(dcond4.numpy()[i] == static_ret4[i]) # not equal with self.static_graph(): a5 = layers.data(name='a5', shape=[1], dtype='int64') b5 = layers.data(name='b5', shape=[1], dtype='int64') cond5 = paddle.equal(x=a5, y=b5) static_ret5 = self.get_static_graph_result( feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5] )[0] with self.dynamic_graph(): with _test_eager_guard(): da5 = base.to_variable(value_a) db5 = base.to_variable(value_b) dcond5 = paddle.equal(x=da5, y=db5) for i in range(len(static_ret5)): self.assertTrue(dcond5.numpy()[i] == static_ret5[i]) da5 = base.to_variable(value_a) db5 = base.to_variable(value_b) dcond5 = paddle.equal(x=da5, y=db5) for i in range(len(static_ret5)): self.assertTrue(dcond5.numpy()[i] == static_ret5[i]) def test_cond(self): def less_than_branch(a, b): return fluid.layers.elementwise_add(a, b) def greater_equal_branch(a, b): return fluid.layers.elementwise_sub(a, b) with self.static_graph(): a = fluid.layers.fill_constant( shape=[1], dtype='float32', value=0.1 ) b = fluid.layers.fill_constant( shape=[1], dtype='float32', value=0.23 ) out = fluid.layers.cond( a >= b, lambda: greater_equal_branch(a, b), lambda: less_than_branch(a, b), ) place = ( fluid.CUDAPlace(0) if core.is_compiled_with_cuda() else fluid.CPUPlace() ) exe = fluid.Executor(place) ret = exe.run(fetch_list=[out]) static_res = ret[0] with self.dynamic_graph(): with _test_eager_guard(): a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32')) b = fluid.dygraph.to_variable( np.array([0.23]).astype('float32') ) out = layers.cond( a < b, lambda: less_than_branch(a, b), lambda: greater_equal_branch(a, b), ) out2 = layers.cond( a >= b, lambda: greater_equal_branch(a, b), lambda: less_than_branch(a, b), ) eager_dynamic_res = out.numpy() eager_dynamic_res2 = out2.numpy() np.testing.assert_array_equal( eager_dynamic_res, eager_dynamic_res2 ) with self.assertRaises(TypeError): layers.cond(a < b, 'str', 'str') with self.assertRaises(TypeError): layers.cond(a >= b, 'str', 'str') a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32')) b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32')) out = layers.cond( a < b, lambda: less_than_branch(a, b), lambda: greater_equal_branch(a, b), ) out2 = layers.cond( a >= b, lambda: greater_equal_branch(a, b), lambda: less_than_branch(a, b), ) dynamic_res = out.numpy() dynamic_res2 = out2.numpy() np.testing.assert_array_equal(dynamic_res, dynamic_res2) with self.assertRaises(TypeError): layers.cond(a < b, 'str', 'str') with self.assertRaises(TypeError): layers.cond(a >= b, 'str', 'str') np.testing.assert_array_equal(static_res, dynamic_res) np.testing.assert_array_equal(static_res, eager_dynamic_res) def test_case(self): def fn_1(): return layers.fill_constant(shape=[1, 2], dtype='float32', value=1) def fn_2(): return layers.fill_constant(shape=[2, 2], dtype='int32', value=2) def fn_3(): return layers.fill_constant(shape=[3], dtype='int32', value=3) with self.static_graph(): x = layers.fill_constant(shape=[1], dtype='float32', value=0.3) y = layers.fill_constant(shape=[1], dtype='float32', value=0.1) z = layers.fill_constant(shape=[1], dtype='float32', value=0.2) pred_1 = layers.less_than(z, x) # true: 0.2 < 0.3 pred_2 = layers.less_than(x, y) # false: 0.3 < 0.1 pred_3 = paddle.equal(x, y) # false: 0.3 == 0.1 out_1 = layers.case( pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3 ) out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]) place = ( fluid.CUDAPlace(0) if core.is_compiled_with_cuda() else fluid.CPUPlace() ) exe = fluid.Executor(place) static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2]) with self.dynamic_graph(): with _test_eager_guard(): x = layers.fill_constant(shape=[1], dtype='float32', value=0.3) y = layers.fill_constant(shape=[1], dtype='float32', value=0.1) z = layers.fill_constant(shape=[1], dtype='float32', value=0.2) pred_1 = layers.less_than(z, x) # true: 0.2 < 0.3 pred_2 = layers.less_than(x, y) # false: 0.3 < 0.1 pred_3 = paddle.equal(x, y) # false: 0.3 == 0.1 out_1 = layers.case( pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3 ) out_2 = layers.case( pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)] ) eager_dynamic_res1 = out_1.numpy() eager_dynamic_res2 = out_2.numpy() x = layers.fill_constant(shape=[1], dtype='float32', value=0.3) y = layers.fill_constant(shape=[1], dtype='float32', value=0.1) z = layers.fill_constant(shape=[1], dtype='float32', value=0.2) pred_1 = layers.less_than(z, x) # true: 0.2 < 0.3 pred_2 = layers.less_than(x, y) # false: 0.3 < 0.1 pred_3 = paddle.equal(x, y) # false: 0.3 == 0.1 out_1 = layers.case( pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3 ) out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]) dynamic_res1 = out_1.numpy() dynamic_res2 = out_2.numpy() np.testing.assert_array_equal(static_res1, dynamic_res1) np.testing.assert_array_equal(static_res2, dynamic_res2) np.testing.assert_array_equal(static_res1, eager_dynamic_res1) np.testing.assert_array_equal(static_res2, eager_dynamic_res2) def test_switch_case(self): def fn_1(): return layers.fill_constant(shape=[1, 2], dtype='float32', value=1) def fn_2(): return layers.fill_constant(shape=[2, 2], dtype='int32', value=2) def fn_3(): return layers.fill_constant(shape=[3], dtype='int32', value=3) with self.static_graph(): index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1) index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2) out_1 = layers.switch_case( branch_index=index_1, branch_fns={1: fn_1, 2: fn_2}, default=fn_3, ) out_2 = layers.switch_case( branch_index=index_2, branch_fns=[(1, fn_1), (2, fn_2)], default=fn_3, ) out_3 = layers.switch_case( branch_index=index_2, branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)], ) place = ( fluid.CUDAPlace(0) if core.is_compiled_with_cuda() else fluid.CPUPlace() ) exe = fluid.Executor(place) static_res1, static_res2, static_res3 = exe.run( fetch_list=[out_1, out_2, out_3] ) with self.dynamic_graph(): with _test_eager_guard(): index_1 = layers.fill_constant( shape=[1], dtype='int32', value=1 ) index_2 = layers.fill_constant( shape=[1], dtype='int32', value=2 ) out_1 = layers.switch_case( branch_index=index_1, branch_fns={1: fn_1, 2: fn_2}, default=fn_3, ) out_2 = layers.switch_case( branch_index=index_2, branch_fns=[(1, fn_1), (2, fn_2)], default=fn_3, ) out_3 = layers.switch_case( branch_index=index_2, branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)], ) eager_dynamic_res1 = out_1.numpy() eager_dynamic_res2 = out_2.numpy() eager_dynamic_res3 = out_3.numpy() index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1) index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2) out_1 = layers.switch_case( branch_index=index_1, branch_fns={1: fn_1, 2: fn_2}, default=fn_3, ) out_2 = layers.switch_case( branch_index=index_2, branch_fns=[(1, fn_1), (2, fn_2)], default=fn_3, ) out_3 = layers.switch_case( branch_index=index_2, branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)], ) dynamic_res1 = out_1.numpy() dynamic_res2 = out_2.numpy() dynamic_res3 = out_3.numpy() np.testing.assert_array_equal(static_res1, dynamic_res1) np.testing.assert_array_equal(static_res2, dynamic_res2) np.testing.assert_array_equal(static_res3, dynamic_res3) np.testing.assert_array_equal(static_res1, eager_dynamic_res1) np.testing.assert_array_equal(static_res2, eager_dynamic_res2) np.testing.assert_array_equal(static_res3, eager_dynamic_res3) def test_crop_tensor(self): with self.static_graph(): x = fluid.layers.data(name="x1", shape=[6, 5, 8]) dim1 = fluid.layers.data( name="dim1", shape=[1], append_batch_size=False ) dim2 = fluid.layers.data( name="dim2", shape=[1], append_batch_size=False ) crop_shape1 = (1, 2, 4, 4) crop_shape2 = fluid.layers.data( name="crop_shape", shape=[4], append_batch_size=False ) crop_shape3 = [-1, dim1, dim2, 4] crop_offsets1 = [0, 0, 1, 0] crop_offsets2 = fluid.layers.data( name="crop_offset", shape=[4], append_batch_size=False ) crop_offsets3 = [0, dim1, dim2, 0] out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1) out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2) out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3) self.assertIsNotNone(out1) self.assertIsNotNone(out2) self.assertIsNotNone(out3) def test_shard_index(self): with self.static_graph(): x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64') shard_label = fluid.layers.shard_index( input=x, index_num=20, nshards=2, shard_id=0 ) self.assertIsNotNone(shard_label) def test_accuracy(self): x = np.random.rand(3, 32, 32).astype("float32") y = np.array([[1], [0], [1]]) with self.static_graph(): data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32") label = fluid.data(name="label", shape=[-1, 1], dtype="int") fc_out = fluid.layers.fc(input=data, size=10) predict = fluid.layers.softmax(input=fc_out) result = fluid.layers.accuracy(input=predict, label=label, k=5) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) # x = np.random.rand(3, 32, 32).astype("float32") # y = np.array([[1], [0], [1]]) static_out = exe.run( feed={"input": x, "label": y}, fetch_list=result[0] ) with self.dynamic_graph(force_to_use_cpu=True): data = base.to_variable(x) label = base.to_variable(y) fc_out = fluid.layers.fc(data, size=10) predict = fluid.layers.softmax(fc_out) dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5) np.testing.assert_array_equal(static_out[0], dynamic_out.numpy()) class TestBook(LayerTest): def setUp(self): self.only_static_set = set({"make_word_embedding"}) self.not_compare_static_dygraph_set = set( { "make_gaussian_random", "make_kldiv_loss", "make_sampling_id", "make_uniform_random_batch_size_like", } ) self.all_close_compare = set({"make_spectral_norm"}) def func_all_layers(self): attrs = (getattr(self, name) for name in dir(self)) methods = filter(inspect.ismethod, attrs) for method in methods: if not method.__name__.startswith('make_'): continue self._low_data_bound = 0 self._high_data_bound = 2 self._batch_size = 2 self._feed_dict = {} self._force_to_use_cpu = False with self.static_graph(): static_var = method() if isinstance(static_var, tuple): static_var = static_var[0] if static_var is not None: fetch_list = [static_var.name] static_result = self.get_static_graph_result( feed=self._feed_dict, fetch_list=fetch_list, force_to_use_cpu=self._force_to_use_cpu, ) else: assert method.__name__ in ('make_get_places') continue if method.__name__ in self.only_static_set: continue with self.dynamic_graph(self._force_to_use_cpu): dy_result = method() if isinstance(dy_result, tuple): dy_result = dy_result[0] dy_result_value = dy_result.numpy() if method.__name__ in self.all_close_compare: np.testing.assert_allclose( static_result[0], dy_result_value, rtol=1e-05, atol=0, err_msg='Result of function [{}] compare failed'.format( method.__name__ ), ) continue if method.__name__ not in self.not_compare_static_dygraph_set: np.testing.assert_array_equal( static_result[0], dy_result_value, err_msg='Result of function [{}] not equal'.format( method.__name__ ), ) def test_all_layers(self): with _test_eager_guard(): self.func_all_layers() self.func_all_layers() def _get_np_data(self, shape, dtype, append_batch_size=True): np.random.seed(self.seed) if append_batch_size: shape = [self._batch_size] + shape if dtype == 'float32': return np.random.random(shape).astype(dtype) elif dtype == 'float64': return np.random.random(shape).astype(dtype) elif dtype == 'int32': return np.random.randint( self._low_data_bound, self._high_data_bound, shape ).astype(dtype) elif dtype == 'int64': return np.random.randint( self._low_data_bound, self._high_data_bound, shape ).astype(dtype) def _get_data( self, name, shape, dtype, set_feed_dict=True, append_batch_size=True ): if base.enabled(): return base.to_variable( value=self._get_np_data(shape, dtype, append_batch_size), name=name, zero_copy=False, ) else: if set_feed_dict: self._feed_dict[name] = self._get_np_data( shape, dtype, append_batch_size ) return layers.data( name=name, shape=shape, dtype=dtype, append_batch_size=append_batch_size, ) def make_fit_a_line(self): with program_guard( fluid.default_main_program(), startup_program=fluid.default_startup_program(), ): x = self._get_data(name='x', shape=[13], dtype='float32') y_predict = layers.fc(input=x, size=1, act=None) y = self._get_data(name='y', shape=[1], dtype='float32') cost = layers.square_error_cost(input=y_predict, label=y) avg_cost = paddle.mean(cost) return avg_cost def make_recognize_digits_mlp(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): # Change g_program, so the rest layers use `g_program` images = self._get_data(name='pixel', shape=[784], dtype='float32') label = self._get_data(name='label', shape=[1], dtype='int64') hidden1 = layers.fc(input=images, size=128, act='relu') hidden2 = layers.fc(input=hidden1, size=64, act='relu') predict = layers.fc( input=[hidden2, hidden1], size=10, act='softmax', param_attr=["sftmax.w1", "sftmax.w2"], ) cost = layers.cross_entropy(input=predict, label=label) avg_cost = paddle.mean(cost) return avg_cost def make_conv2d_transpose(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32') return paddle.static.nn.conv2d_transpose( input=img, num_filters=10, output_size=28 ) def make_recognize_digits_conv(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): images = self._get_data( name='pixel', shape=[1, 28, 28], dtype='float32' ) label = self._get_data(name='label', shape=[1], dtype='int64') conv_pool_1 = nets.simple_img_conv_pool( input=images, filter_size=5, num_filters=2, pool_size=2, pool_stride=2, act="relu", ) conv_pool_2 = nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=4, pool_size=2, pool_stride=2, act="relu", ) predict = layers.fc(input=conv_pool_2, size=10, act="softmax") cost = layers.cross_entropy(input=predict, label=label) avg_cost = paddle.mean(cost) return avg_cost def make_word_embedding(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): dict_size = 10000 embed_size = 32 first_word = self._get_data(name='firstw', shape=[1], dtype='int64') second_word = self._get_data( name='secondw', shape=[1], dtype='int64' ) third_word = self._get_data(name='thirdw', shape=[1], dtype='int64') forth_word = self._get_data(name='forthw', shape=[1], dtype='int64') next_word = self._get_data(name='nextw', shape=[1], dtype='int64') embed_first = layers.embedding( input=first_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w', ) embed_second = layers.embedding( input=second_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w', ) embed_third = layers.embedding( input=third_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w', ) embed_forth = layers.embedding( input=forth_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w', ) concat_embed = layers.concat( input=[embed_first, embed_second, embed_third, embed_forth], axis=1, ) hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid') predict_word = layers.fc( input=hidden1, size=dict_size, act='softmax' ) cost = layers.cross_entropy(input=predict_word, label=next_word) avg_cost = paddle.mean(cost) return avg_cost def make_pool2d(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32') return layers.pool2d( x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1) ) def make_pool2d_infershape(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): theta = self._get_data("theta", shape=[2, 3], dtype='float32') x = paddle.nn.functional.affine_grid( theta, out_shape=[2, 3, 244, 244] ) return layers.pool2d( x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1) ) def make_lstm_unit(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x_t_data = self._get_data( name='x_t_data', shape=[10, 10], dtype='float32' ) x_t = layers.fc(input=x_t_data, size=10) prev_hidden_data = self._get_data( name='prev_hidden_data', shape=[10, 30], dtype='float32' ) prev_hidden = layers.fc(input=prev_hidden_data, size=30) prev_cell_data = self._get_data( name='prev_cell', shape=[10, 30], dtype='float32' ) prev_cell = layers.fc(input=prev_cell_data, size=30) return layers.lstm_unit( x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell ) def make_softmax(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): data = self._get_data(name='data', shape=[10], dtype='float32') hid = layers.fc(input=data, size=20) return layers.softmax(hid, axis=1) def make_get_places(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): get_places(device_count=1) @prog_scope() def make_nce(self): window_size = 5 words = [] for i in range(window_size): words.append( self._get_data( name='word_{0}'.format(i), shape=[1], dtype='int64' ) ) dict_size = 10000 label_word = int(window_size // 2) + 1 embs = [] for i in range(window_size): if i == label_word: continue emb = layers.embedding( input=words[i], size=[dict_size, 32], param_attr='emb.w', is_sparse=True, ) embs.append(emb) embs = layers.concat(input=embs, axis=1) loss = paddle.static.nn.nce( input=embs, label=words[label_word], num_total_classes=dict_size, param_attr='nce.w', bias_attr='nce.b', ) avg_loss = paddle.mean(loss) return avg_loss def make_multiplex(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x1 = self._get_data(name='x1', shape=[4], dtype='float32') x2 = self._get_data(name='x2', shape=[4], dtype='float32') index = self._get_data(name='index', shape=[1], dtype='int32') out = layers.multiplex(inputs=[x1, x2], index=index) return out def make_softmax_with_cross_entropy(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[16], dtype='float32') y = self._get_data(name='label', shape=[1], dtype='int64') loss, softmax = layers.softmax_with_cross_entropy( x, y, return_softmax=True ) self.assertIsNotNone(loss) self.assertIsNotNone(softmax) loss = layers.softmax_with_cross_entropy(x, y) self.assertIsNotNone(loss) x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32') y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64') y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64') y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64') loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1) loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2) loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3) loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1) self.assertIsNotNone(loss1) self.assertIsNotNone(loss2) self.assertIsNotNone(loss3) self.assertIsNotNone(loss4) return loss4 def make_smooth_l1(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[4], dtype='float32') y = self._get_data(name='label', shape=[4], dtype='float32') loss = layers.smooth_l1(x, y) return loss def make_scatter(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data( name='x', shape=[3, 3], append_batch_size=False, dtype='float32' ) idx = self._get_data( name='idx', shape=[2], append_batch_size=False, dtype='int32' ) updates = self._get_data( name='updates', shape=[2, 3], append_batch_size=False, dtype='float32', ) out = paddle.scatter(x, index=idx, updates=updates) return out def make_one_hot(self): with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()): label = self._get_data(name="label", shape=[1], dtype="int32") one_hot_label = layers.one_hot(input=label, depth=10) return one_hot_label def make_label_smooth(self): # TODO(minqiyang): support gpu ut self._force_to_use_cpu = True with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()): label = self._get_data(name="label", shape=[1], dtype="int32") one_hot_label = layers.one_hot(input=label, depth=10) smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1) return smooth_label def make_topk(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): data = self._get_data(name="label", shape=[200], dtype="float32") values, indices = layers.topk(data, k=5) return values return indices def make_resize_bilinear(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32") output = layers.resize_bilinear(x, out_shape=[12, 12]) return output def make_resize_bilinear_by_scale(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32") output = layers.resize_bilinear(x, scale=1.5) return output def make_resize_nearest(self): try: with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32") output = layers.resize_nearest(x, out_shape=[12, 12]) except ValueError: pass try: with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data( name='x2', shape=[3, 9, 6, 7], dtype="float32" ) output = layers.resize_nearest(x, out_shape=[12, 12, 12]) except ValueError: pass with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32") output = layers.resize_nearest(x, out_shape=[12, 12]) return output def make_resize_nearest_by_scale(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32") output = layers.resize_nearest(x, scale=1.8) return output def make_resize_trilinear(self): try: with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32") output = layers.resize_trilinear(x, out_shape=[12, 12, 12]) except ValueError: pass try: with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data( name='x', shape=[3, 9, 6, 7], dtype="float32" ) output = layers.resize_trilinear(x, out_shape=[12, 12]) except ValueError: pass with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32") output = layers.resize_trilinear(x, out_shape=[12, 12, 12]) return output def make_resize_trilinear_by_scale(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32") output = layers.resize_trilinear(x, scale=2.1) return output def make_polygon_box_transform(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32") output = layers.polygon_box_transform(input=x) return output def make_l2_normalize(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32") output = layers.l2_normalize(x, axis=1) return output def make_argsort(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32") out, ids = layers.argsort(input=data, axis=1) return out return ids def make_shape(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): input = self._get_data( name="input", shape=[3, 100, 100], dtype="float32" ) out = layers.shape(input) return out def make_pad2d(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): input = self._get_data( name="input", shape=[3, 100, 100], dtype="float32" ) tmp_pad = paddle.nn.Pad2D( padding=[1, 2, 3, 4], mode='reflect', data_format='NCHW', name="shape", ) out = tmp_pad(input) return out def make_mish(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.mish(input, name='mish') return out def make_cross_entropy(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name="x", shape=[30, 10], dtype="float32") label = self._get_data(name="label", shape=[30, 1], dtype="int64") mode = 'channel' out = layers.cross_entropy(x, label, False, 4) return out def make_uniform_random_batch_size_like(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): input = self._get_data( name="input", shape=[13, 11], dtype='float32' ) out = random.uniform_random_batch_size_like(input, [-1, 11]) return out def make_gaussian_random(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): out = layers.gaussian_random(shape=[20, 30]) return out def make_sampling_id(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data( name="X", shape=[13, 11], dtype='float32', append_batch_size=False, ) out = layers.sampling_id(x) return out def make_sum(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): input = self._get_data( name="input", shape=[13, 11], dtype='float32' ) out = layers.sum(input) return out def make_slice(self): starts = [1, 0, 2] ends = [3, 3, 4] axes = [0, 1, 2] with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): input = self._get_data( name="input", shape=[3, 4, 5, 6], dtype='float32' ) out = paddle.slice(input, axes=axes, starts=starts, ends=ends) return out def make_scale_variable(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): input = self._get_data( name="input", shape=[3, 4, 5, 6], dtype='float32' ) scale_var = self._get_data( name="scale", shape=[1], dtype='float32', append_batch_size=False, ) out = paddle.scale(input, scale=scale_var) return out def make_iou_similarity(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name="x", shape=[4], dtype="float32") y = self._get_data(name="y", shape=[4], dtype="float32") out = layers.iou_similarity(x, y, name='iou_similarity') return out def make_grid_sampler(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32') grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32') out = layers.grid_sampler(x, grid) return out def make_bilinear_tensor_product_layer(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): data = self._get_data(name='data', shape=[4], dtype="float32") theta = self._get_data(name="theta", shape=[5], dtype="float32") out = layers.bilinear_tensor_product(data, theta, 6) return out def make_batch_norm(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): data = self._get_data( name='data', shape=[32, 128, 128], dtype="float32" ) out = layers.batch_norm(data) return out def make_batch_norm_momentum_variable(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): data = self._get_data( name='data', shape=[32, 128, 128], dtype="float32" ) momentum = self._get_data( name='momentum', shape=[1], dtype='float32', append_batch_size=False, ) out = layers.batch_norm(data, momentum=momentum) return out def make_range(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): paddle.arange(0, 10, 2, 'int32') paddle.arange(0.1, 10.0, 0.2, 'float32') paddle.arange(0.1, 10.0, 0.2, 'float64') start = layers.fill_constant(shape=[1], value=0.1, dtype="float32") end = layers.fill_constant(shape=[1], value=10.0, dtype="float32") step = layers.fill_constant(shape=[1], value=0.2, dtype="float32") y = paddle.arange(start, end, step, 'float64') return y def make_spectral_norm(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): weight = self._get_data( name='weight', shape=[2, 3, 32, 32], dtype="float32", append_batch_size=False, ) out = layers.spectral_norm(weight, dim=1, power_iters=1) return out def make_kldiv_loss(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data( name='x', shape=[32, 128, 128], dtype="float32", append_batch_size=False, ) target = self._get_data( name='target', shape=[32, 128, 128], dtype="float32", append_batch_size=False, ) loss = paddle.nn.functional.kl_div( input=x, label=target, reduction='batchmean' ) return loss def make_temporal_shift(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32") out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2) return out def make_fsp_matrix(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32") y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32") out = layers.fsp_matrix(x, y) return out def make_pixel_shuffle(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32") out = layers.pixel_shuffle(x, upscale_factor=3) return out def make_mse_loss(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name="X", shape=[1], dtype="float32") y = self._get_data(name="Y", shape=[1], dtype="float32") out = paddle.nn.functional.mse_loss(input=x, label=y) return out def make_square_error_cost(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name="X", shape=[1], dtype="float32") y = self._get_data(name="Y", shape=[1], dtype="float32") out = layers.square_error_cost(input=x, label=y) return out def test_dynamic_lstmp(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): hidden_dim, proj_dim = 16, 8 seq_data = layers.data( name='seq_data', shape=[10, 10], dtype='float32', lod_level=1 ) fc_out = layers.fc(input=seq_data, size=4 * hidden_dim) self.assertIsNotNone( layers.dynamic_lstmp( input=fc_out, size=4 * hidden_dim, proj_size=proj_dim ) ) def test_im2sequence(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): x = layers.data(name='x', shape=[3, 128, 128], dtype='float32') y = layers.data(name='y', shape=[], dtype='float32') output = layers.im2sequence( input=x, input_image_size=y, stride=[1, 1], filter_size=[2, 2], out_stride=[1, 1], ) return output def test_lod_reset(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): # case 1 x = layers.data(name='x', shape=[10], dtype='float32') y = layers.data( name='y', shape=[10, 20], dtype='float32', lod_level=2 ) z = layers.lod_reset(x=x, y=y) self.assertTrue(z.lod_level == 2) # case 2 lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32') z = layers.lod_reset(x=x, y=lod_tensor_in) self.assertTrue(z.lod_level == 1) # case 3 z = layers.lod_reset(x=x, target_lod=[1, 2, 3]) self.assertTrue(z.lod_level == 1) return z def test_affine_grid(self): with self.static_graph(): data = layers.data(name='data', shape=[2, 3, 3], dtype="float32") out, ids = layers.argsort(input=data, axis=1) theta = layers.data(name="theta", shape=[2, 3], dtype="float32") out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32") data_0 = paddle.nn.functional.affine_grid(theta, out_shape) data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28]) self.assertIsNotNone(data_0) self.assertIsNotNone(data_1) def test_stridedslice(self): axes = [0, 1, 2] starts = [1, 0, 2] ends = [3, 3, 4] strides = [1, 1, 1] with self.static_graph(): x = layers.data(name="x", shape=[245, 30, 30], dtype="float32") out = paddle.strided_slice( x, axes=axes, starts=starts, ends=ends, strides=strides ) return out def test_fill_constant_batch_size_like(self): with self.static_graph(): like = fluid.layers.fill_constant( shape=[1, 200], value=10, dtype='int64' ) out = layers.fill_constant_batch_size_like( input=like, shape=[2, 3300], value=1315454564656, dtype='int64' ) return out def test_sequence_expand(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): x = layers.data(name='x', shape=[10], dtype='float32') y = layers.data( name='y', shape=[10, 20], dtype='float32', lod_level=2 ) return layers.sequence_expand(x=x, y=y, ref_level=1) def test_sequence_reshape(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1) out = layers.sequence_reshape(input=x, new_dim=16) return out def test_sequence_unpad(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): x = layers.data(name='x', shape=[10, 5], dtype='float32') length = layers.data(name='length', shape=[], dtype='int64') return layers.sequence_unpad(x=x, length=length) def test_sequence_softmax(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): seq_data = layers.data( name='seq_data', shape=[10, 10], dtype='float32', lod_level=1 ) seq = layers.fc(input=seq_data, size=20) return layers.sequence_softmax(seq) def test_sequence_unsqueeze(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): x = layers.data(name='x', shape=[8, 2], dtype='float32') out = layers.unsqueeze(input=x, axes=[1]) return out def test_sequence_scatter(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): x = layers.data( name='x', shape=[3, 6], append_batch_size=False, dtype='float32' ) idx = layers.data( name='idx', shape=[12, 1], append_batch_size=False, dtype='int32', lod_level=1, ) updates = layers.data( name='updates', shape=[12, 1], append_batch_size=False, dtype='float32', lod_level=1, ) out = layers.sequence_scatter(input=x, index=idx, updates=updates) return out def test_sequence_slice(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): import numpy as np seqs = layers.data( name='x', shape=[10, 5], dtype='float32', lod_level=1 ) offset = layers.assign(input=np.array([[0, 1]]).astype('int32')) length = layers.assign(input=np.array([[2, 1]]).astype('int32')) out = layers.sequence_slice( input=seqs, offset=offset, length=length ) return out def test_shuffle_batch(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): x = layers.data( name='X', shape=[4, 50], dtype='float32', lod_level=0 ) out1 = fluid.contrib.layers.shuffle_batch(x) default_main_program().random_seed = 1000 out2 = fluid.contrib.layers.shuffle_batch(x) self.assertIsNotNone(out1) self.assertIsNotNone(out2) return out1 def test_partial_sum(self): with self.static_graph(): x = fluid.data(name="x", shape=[None, 3], dtype="float32") y = fluid.data(name="y", shape=[None, 3], dtype="float32") sum = fluid.contrib.layers.partial_sum( [x, y], start_index=0, length=2 ) return sum def test_batch_fc(self): with self.static_graph(): input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32") out = fluid.contrib.layers.batch_fc( input=input, param_size=[16, 3, 10], param_attr=fluid.ParamAttr( learning_rate=1.0, name="w_0", initializer=fluid.initializer.Xavier(uniform=False), ), bias_size=[16, 10], bias_attr=fluid.ParamAttr( learning_rate=1.0, name="b_0", initializer=fluid.initializer.Xavier(uniform=False), ), act="relu", ) return out def test_rank_attention(self): with self.static_graph(): input = fluid.data(name="input", shape=[None, 2], dtype="float32") rank_offset = fluid.data( name="rank_offset", shape=[None, 7], dtype="int32" ) out = fluid.contrib.layers.rank_attention( input=input, rank_offset=rank_offset, rank_param_shape=[18, 3], rank_param_attr=fluid.ParamAttr( learning_rate=1.0, name="ubm_rank_param.w_0", initializer=fluid.initializer.Xavier(uniform=False), ), max_rank=3, ) return out def test_sequence_enumerate(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1) out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0) def test_roi_perspective_transform(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): x = layers.data(name="x", shape=[256, 30, 30], dtype="float32") rois = layers.data( name="rois", shape=[8], dtype="float32", lod_level=1 ) output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6) return output def test_row_conv(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1) out = layers.row_conv(input=x, future_context_size=2) return out def test_simple_conv2d(self): # TODO(minqiyang): dygraph do not support layers with param now with self.static_graph(): images = layers.data( name='pixel', shape=[3, 48, 48], dtype='float32' ) return layers.conv2d( input=images, num_filters=3, filter_size=[4, 4] ) def test_squeeze(self): # TODO(minqiyang): dygraph do not support layers with param now with self.static_graph(): x = layers.data(name='x', shape=[1, 1, 4], dtype='float32') out = paddle.squeeze(x, axis=[2]) return out def test_flatten(self): # TODO(minqiyang): dygraph do not support op without kernel now with self.static_graph(): x = layers.data( name='x', append_batch_size=False, shape=[4, 4, 3], dtype="float32", ) out = paddle.flatten(x, 1, -1, name="flatten") return out def test_linspace(self): program = Program() with program_guard(program): out = layers.linspace(20, 10, 5, 'float64') self.assertIsNotNone(out) print(str(program)) def test_unfold(self): with self.static_graph(): x = layers.data(name='x', shape=[3, 20, 20], dtype='float32') out = layers.unfold(x, [3, 3], 1, 1, 1) return out def test_partial_concat(self): with self.static_graph(): x = fluid.data(name="x", shape=[None, 3], dtype="float32") y = fluid.data(name="y", shape=[None, 3], dtype="float32") concat1 = fluid.contrib.layers.partial_concat( [x, y], start_index=0, length=2 ) concat2 = fluid.contrib.layers.partial_concat( x, start_index=0, length=-1 ) return concat1, concat2 def test_deform_roi_pooling(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): input = layers.data( name='input', shape=[2, 3, 32, 32], dtype='float32', append_batch_size=False, ) rois = layers.data( name="rois", shape=[4], dtype='float32', lod_level=1 ) trans = layers.data( name="trans", shape=[2, 3, 32, 32], dtype='float32', append_batch_size=False, ) out = layers.deformable_roi_pooling( input=input, rois=rois, trans=trans, no_trans=False, spatial_scale=1.0, group_size=(1, 1), pooled_height=8, pooled_width=8, part_size=(8, 8), sample_per_part=4, trans_std=0.1, ) return out def test_retinanet_target_assign(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): bbox_pred = layers.data( name='bbox_pred', shape=[1, 100, 4], append_batch_size=False, dtype='float32', ) cls_logits = layers.data( name='cls_logits', shape=[1, 100, 10], append_batch_size=False, dtype='float32', ) anchor_box = layers.data( name='anchor_box', shape=[100, 4], append_batch_size=False, dtype='float32', ) anchor_var = layers.data( name='anchor_var', shape=[100, 4], append_batch_size=False, dtype='float32', ) gt_boxes = layers.data( name='gt_boxes', shape=[10, 4], append_batch_size=False, dtype='float32', ) gt_labels = layers.data( name='gt_labels', shape=[10, 1], append_batch_size=False, dtype='int32', ) is_crowd = layers.data( name='is_crowd', shape=[1], append_batch_size=False, dtype='int32', ) im_info = layers.data( name='im_info', shape=[1, 3], append_batch_size=False, dtype='float32', ) return layers.retinanet_target_assign( bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10, ) def test_sigmoid_focal_loss(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): input = layers.data( name='data', shape=[10, 80], append_batch_size=False, dtype='float32', ) label = layers.data( name='label', shape=[10, 1], append_batch_size=False, dtype='int32', ) fg_num = layers.data( name='fg_num', shape=[1], append_batch_size=False, dtype='int32' ) out = fluid.layers.sigmoid_focal_loss( x=input, label=label, fg_num=fg_num, gamma=2.0, alpha=0.25 ) return out def test_addmm(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): input = layers.data( name='input_data', shape=[3, 3], append_batch_size=False, dtype='float32', ) x = layers.data( name='x', shape=[3, 2], append_batch_size=False, dtype='float32' ) y = layers.data( name='y', shape=[2, 3], append_batch_size=False, dtype='float32' ) out = paddle.addmm(input=input, x=x, y=y) return out def test_retinanet_detection_output(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() ): bboxes = layers.data( name='bboxes', shape=[1, 21, 4], append_batch_size=False, dtype='float32', ) scores = layers.data( name='scores', shape=[1, 21, 10], append_batch_size=False, dtype='float32', ) anchors = layers.data( name='anchors', shape=[21, 4], append_batch_size=False, dtype='float32', ) im_info = layers.data( name="im_info", shape=[1, 3], append_batch_size=False, dtype='float32', ) nmsed_outs = layers.retinanet_detection_output( bboxes=[bboxes, bboxes], scores=[scores, scores], anchors=[anchors, anchors], im_info=im_info, score_threshold=0.05, nms_top_k=1000, keep_top_k=100, nms_threshold=0.3, nms_eta=1.0, ) return nmsed_outs def test_warpctc_with_padding(self): # TODO(minqiyang): dygraph do not support lod now with self.static_graph(): input_length = paddle.static.data( name='logits_length', shape=[11], dtype='int64' ) label_length = paddle.static.data( name='labels_length', shape=[12], dtype='int64' ) label = paddle.static.data( name='label', shape=[12, 1], dtype='int32' ) predict = paddle.static.data( name='predict', shape=[4, 4, 8], dtype='float32' ) output = paddle.nn.functional.ctc_loss( log_probs=predict, labels=label, input_lengths=input_length, label_lengths=label_length, reduction='none', ) return output def test_basic_gru(self): input_size = 128 hidden_size = 256 with self.static_graph(): input = fluid.data( name="input", shape=[None, None, input_size], dtype='float32' ) pre_hidden = fluid.data( name="pre_hidden", shape=[None, hidden_size], dtype='float32' ) sequence_length = fluid.data( name="sequence_length", shape=[None], dtype='int32' ) for bidirectional in [True, False]: for batch_first in [True, False]: rnn_out, last_hidden = fluid.contrib.layers.basic_gru( input, pre_hidden, hidden_size=256, num_layers=2, sequence_length=sequence_length, dropout_prob=0.5, bidirectional=bidirectional, batch_first=batch_first, ) class TestMetricsDetectionMap(unittest.TestCase): def test_detection_map(self): program = fluid.Program() with program_guard(program): detect_res = fluid.layers.data( name='detect_res', shape=[10, 6], append_batch_size=False, dtype='float32', ) label = fluid.layers.data( name='label', shape=[10, 1], append_batch_size=False, dtype='float32', ) box = fluid.layers.data( name='bbox', shape=[10, 4], append_batch_size=False, dtype='float32', ) map_eval = fluid.metrics.DetectionMAP( detect_res, label, box, class_num=21 ) cur_map, accm_map = map_eval.get_map_var() self.assertIsNotNone(cur_map) self.assertIsNotNone(accm_map) print(str(program)) class ExampleNet(paddle.nn.Layer): def __init__(self): super().__init__() self.weight = self.create_parameter( shape=[1, 1], attr=paddle.ParamAttr(trainable=False) ) def forward(self): # only for test parameter trainable attr pass class TestLayerParameterTrainableSet(unittest.TestCase): def test_layer_parameter_set(self): with fluid.dygraph.guard(): net = ExampleNet() self.assertFalse(net.weight.trainable) class TestLayerTrainingAttribute(unittest.TestCase): def test_set_train_eval_in_dynamic_mode(self): with fluid.dygraph.guard(): net = paddle.nn.Dropout() net.train() self.assertTrue(net.training) net.eval() self.assertFalse(net.training) def test_set_train_eval_in_static_mode(self): net = paddle.nn.Dropout() net.train() self.assertTrue(net.training) net.eval() self.assertFalse(net.training) class MyLayer(paddle.nn.Layer): def __init__(self): super().__init__() self._linear = paddle.nn.Linear(1, 1) self._dropout = paddle.nn.Dropout(p=0.5) def forward(self, input): temp = self._linear(input) temp = self._dropout(temp) return temp class MySuperLayer(paddle.nn.Layer): def __init__(self): super().__init__() self._mylayer = MyLayer() def forward(self, input): temp = self._mylayer(input) return temp class TestSubLayerCount(unittest.TestCase): def test_sublayer(self): with fluid.dygraph.guard(): mySuperlayer = MySuperLayer() self.assertTrue(len(mySuperlayer.sublayers()) == 3) self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4) if __name__ == '__main__': paddle.enable_static() unittest.main()